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Abstract. We study a nonlinear boundary value problem arising from electrochem-
istry. The essential difficulties are due to the strong nonlinear nature of part of the
boundary condition. This part of the boundary condition is of an exponential type and
is normally in the corrosion literature associated with the names of Butler and Volmer.
We examine the questions of existence and uniqueness of solutions to this boundary
value problem. In a numerical example we compare the behaviour of the solutions to
the nonlinear problem with the behaviour of the solutions to a corresponding linearized
problem. In contrast to earlier studies we put a major emphasis on studying parameter
values that may be relevant for the case in which part of the boundary is in a transition
to passivity—in practice most likely because it is nearly covered by an oxide layer.

0. Introduction. In this paper we shall study a nonlinear boundary value problem
arising from galvanic corrosion. Before proceeding to a mathematical analysis of this
problem we shall devote this first section to a brief explanation of some background
material. Consider the battery cell illustrated in Fig. 1 (see p. 480). It consists of two
strips of metal (one of silver and one of zinc) partially emerged in a saltwater solution. It
is well known that chemical reactions at each metal strip will result in a current passing
between the two. At the silver strip, hydrogen gas is produced,

2H20 + 2e~ -> H2 T +20H".

Here the reactant gains electrons, i.e., one says that a reduction takes place, and the
strip is defined to be cathodic. Simultaneously, at the zinc strip, zinc is dissolved into
the solution,

Zn —> Zn2+ +2e~.

The reactant loses electrons, an oxidation takes place, and the strip is defined to be
anodic.

In electrochemical cells, oxidation and reduction always occur simultaneously. As
a result of the chemical reactions, the metal strips change shape. In the voltaic cell
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Fig. 2. A cell formed by rust on iron

illustrated above, the driving force for the oxidation-reduction reactions is the chemical
potential difference between silver and zinc, and the chemical reactions produce a current.
One may conversely use current generated by an outside power source to cause chemical
reactions (involving electron transfer) at the metal surfaces. This alternate process is
called electrolysis. The quantitative relationship between the electric current and the
mass of substances consumed and produced by the chemical reactions has been studied
intensively going back to the early work of Faraday.

Today, the use of electrochemical reactions plays a significant role in industry. Aside
from electrochemical energy conversion, examples can be found in the production of chlo-
rine, aluminum, and other chemicals, and in electroplating and electromachining. On the
other hand, electrochemical phenomena also cause great damage, primarily in the form
of corrosion. Corrosion is defined as the deterioration of a metal by chemical or electro-
chemical reaction with its environment. Most corrosion processes are electrochemical. In
aqueous media, the action is similar to that taking place in the battery cell shown in Fig.
1, where the zinc electrode is corroded, i.e., metallic zinc is converted into hydrated zinc
ions Zn"+. Figure 2 illustrates a local cell on a piece of iron when it becomes rusted [16].
It is predominantly from the point of view of corrosion detection and corrosion control
that we are interested in the problems associated with electrochemistry. To justify the
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commercial interest in these subjects it may be relevant to mention that a study con-
ducted by the National Institute of Standards and Technology, under the request of the
U.S. Congress, showed that the effect of corrosion cost the U.S. over 200 billion dollars
in 1989, which was approximately 4.2% of the U.S. gross national product of that year

[2]-
The idealized electrochemical system we consider consists of a domain 0, containing

an ionic solution (electrolyte). A part of the boundary of fl is electrochemically active,
the rest is electrochemically inactive (but may transmit an imposed current). For sim-
plicity we restrict our attention to two-dimensional domains. We emphasize that the
entire boundary is in contact with the same bulk solution, i.e., there are no membranes
involved. One may imagine that outer circuits carry flows of electrons to and from the
electrochemically active boundary parts, but exactly how this is done technically is of
no importance for the analysis that we present here. Our main focus is to study the
mathematical characteristics of a boundary value problem which incorporates a quite
realistic model for the currents on the electrochemically active boundary parts. Since
Faraday's law states that the rate of change of the boundary at any point is proportional
to the normal current flux across the boundary at the point [5], a realistic modeling of
the boundary fluxes thus indirectly provides a good understanding of the shape changes
(corrosion) of the boundary.

We shall work entirely within the so-called potential model; we refer to [5], [12], [17]
and the references therein, for a detailed derivation and justification of this model. Briefly
stated the transport processes in the electrolytic solution are modeled by a dilute solution
theory, in which the concentrations of the various species of the electrolytic solution are
considered spatially constant away from the boundary. In this fashion one obtains a
single elliptic equation for the electric potential, </>,

V • (—«V(^>) = 0 in fl, (1)

where k, the conductivity of the solution, is given by

k = F2^zfuiCi. (2)
i

In (2), Zi is the charge number for the species i, Ui is its mobility, and a its concentration.
Since the concentrations c, are assumed to be constant, so is the conductivity k. Equation
(1) therefore simply expresses that cf) is harmonic in fl.

Let us now take a closer look at the interface between the electrochemically active
boundary part and the electrolyte, where the oxidation-reduction reactions occur. As an
aide to understanding the physical situation we consider for a moment a single strip of
metal (anodic, say) placed in an electrolytic solution. After some period of time a state
of equilibrium has been reached, at which point there is a discontinuity in the electrical
potential across the metal-electrolyte interface (free electrons have gathered on the metal
strip, metal ions have been released into the solution). The exact value of this potential
jump depends on the specific metal and the specific electrolyte. Note that no net current
is flowing between the metal and the electrolyte as a result of this potential jump.

Since the difference (</>metai - '/'solution) is not directly amenable to measurements, one
introduces a reference device, such as a normal hydrogen electrode (NHE), to make a
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relative measurement. The relative potential of the metal strip with respect to an NHE
placed in the solution is called its Nernst potential, £jv- If another strip of metal (of
a different Nernst potential) is also placed in the solution, and if the two metal strips
are connected by an outer circuit, then a current will flow through this circuit. At the
metal-electrolyte interfaces, the potential differences will now be out of equilibrium. If
one measures the potential of any one of the metal strips with respect to an NHE placed
in the solution adjacent to the strip, then one obtains the galvanic potential of that
strip, Eg. The difference i]s = Eg — £\v is called the surface overpotential. It is the
overpotential that is the driving force for the oxidation (or reduction) reaction at the
metal-electrolyte interface. At each metal strip r]s is functionally related to the current
density

J n = F(rts), (3)

where J is the current density and n is the unit outward normal (relative to the elec-
trolyte, say). The exact form of T depends on the composition of the electrolyte near
the interface and on the composition of the metal strip. For simplicity we suppose that
there is only one reacting species in the electrolyte near each interface. In that case the
composition of the electrolyte is locally characterized by the concentration, c, of this
species.

In general, an analytical expression for T is not available, and approximations are
usually obtained by interpolation of experimental data. The plot of \J~\ verses \t]s\ is
called the polarization curve. Figure 3 illustrates a typical polarization curve (cf. [12]),
where the vertical axis is In \T\ and the horizontal axis is |r/s|. Quite often when r]s is
small, i.e., in the active region, the function J- in (3) is well modeled by an exponential.
At an anodic surface, r]s is positive and T is negative; so

J n = -Joe^"1*.

At a cathodic surface r]s is negative and T is positive; so
(l-a)zF

J-n = J0e RT Vs.
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Here Jo > 0 is the exchange current density, which depends on the concentration c
(near the interface), on the composition of the metal surface, and on the temperature.
0 < a < 1 is a kinetic parameter, called the transfer coefficient, and z (a positive integer)
is the charge number of the dissolved or deposited species. F is Faraday's constant,
R is the universal gas constant, and T is absolute temperature. Combining the anodic
and cathodic behaviour in one single boundary condition we obtain the so-called Butler-
Volmer formula

-J • n = J0 7,5 - j . (4)

When rjs is small and positive, the first term is leading and the formula closely approxi-
mates the anodic boundary condition discussed earlier. When r)s is small and negative,
the second term is leading and the formula closely approximates the cathodic boundary
condition discussed earlier.

When rjs is in the transition region, the reactions on the surface are complicated and
unstable (see for instance [14] and the references therein). It may nonetheless in this
region be reasonable to approximate the function, J7, by an expression very similar to
that in (4), namely

_j . n = — Ji — e~' ^ ^5^

with Ji > 0, 0 < a < 1, and M(t) := sign(t)K, for some positive constant K. We shall
see that the boundary value problem corresponding to (5) is more difficult to analyze
than that corresponding to (4); in particular, there may also exist multiple solutions.

Frequently when deriving realistic boundary conditions for the normal current one also
includes an overpotential due to a diffusion layer. Such a diffusion layer is a region close
to the boundary where the concentration, c, changes rapidly, and therefore the electric
potential 4> is not harmonic. Provided the thickness of this diffusion layer is small it is
very reasonable to include the effects of this layer into the boundary condition for the
normal current instead of changing the "interior" equation for (p. The corresponding
concentration overpotential is positive at the anodic part of the boundary, negative at
the cathodic part. The concentration overpotential is simply added to the surface over-
potential to form the total overpotential; we refer to ([5]) for a model of its relation to
the normal current. In this paper, we have decided not to include the modeling of such
a diffusion layer. It may be relevant here to note that under certain circumstances there
are very simple experimental techniques to dramatically reduce the effect of the diffusion
layer (cf. [9] and [10]).

As before let <^>metai denote the potential inside the metal that makes up the boundary
and let 4> denote the potential in the electrolyte. According to the previous discussion
we then have

</>metal(z) ~ <t>{x) = T]s{x) + EN(x) On dfi,

or equivalently,

Vs(x) = <Ametal(z) - EN(x) - <j){x) On dQ.

In this context h{x) = <f>metai(^) — En(x), x £ dQ., is an a priori given driving force for
the internal voltage potential <fi(x). We assume that h(x) is a genuine driving force, that
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is, we assume that h(x) is not constant on <9f2. For r)s in the active region, the nonlinear
boundary value problem for the electrolytic voltage potential therefore becomes

—A<f> = 0 in

_ t f^^(h-<t>) , - (1~°i'F(
dn

Let w denote the solution to
—Aw; = 0 in Q,

w = h(x) on dfl,

and define g = Since we have assumed that h is not constant it follows that
w is not constant, and therefore that g is not identically zero. At the same time we
have that JgQgdl = fQ Awdx = 0. Let v denote the function v = j^(w — (f>). This
function satisfies the boundary value problem

—Av = 0 in Q,

If we consider r]s entirely in the transition region and if we as a simplification think of
M(i?s) as a known function of x, m{x) = M(r]3), then a calculation similar to that above,
but with h(x) = 0metai(z) - EN(x) replaced by h(x) = 4>metai(x) - EN(x) - m(x), gives
that v = — <t>) satisfies the boundary value problem

—Av = 0 in tt,

P- = Ji^(eav - e^v) + 9 on dn.
on RT

Here we have used the notation a in place of a. Instead of implicitly letting the elec-
trochemically inactive part of the boundary correspond to that part where v is zero or
extremely close to zero we find it more convenient to explicitly prescribe the Neumann
condition ^ = g on some part of the boundary. Combining the above two boundary
value problems into one, and taking into account the change in boundary condition just
mentioned, we end up with the exact nonlinear boundary value problem, which we shall
consider in the rest of this paper, namely

—Alt = 0 in f2, (6)

™=\(e™_e-(i-*)u) + g onTu (7)

du „^ = 9 on IV (8)

Here fl C R2 is a bounded, smooth domain and we suppose that Ti and T2 are two
mutually disjoint, nonempty, connected, open subsets of dfl, with dfl = Ti U IV The
parameter A is given by A = -Jo^p < 0 or A = Jij^ >0, corresponding to the active
region or the transition region, respectively. The positive constant a lies strictly between
0 and 1. The source term g satisfies Jgn g dl = 0. We introduce the functions

F(x) = -eax + (9)
a I — a
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(not to be confused with Faraday's constant) and

f(x) = F'{x) = eax - e~(1-a)x, i£l, (10)

Using /, we can write the boundary condition (7) as

du
— = Xf(u)+g onTi.

We shall consider the boundary value problem (6)-(8) in its natural weak formulation:
find u £ H1 (f2) such that

[ X?uVvdx = X f f(u)vdl+ [
J n J ri Jd

gvdl (11)
an

for any v € We always suppose that g is in L2(dQ).
As we shall see in the beginning of the next section, the function f(u) is in £2(Fi)

if u is in H1 (Q). Standard elliptic regularity theory therefore implies that any weak
solution, u, is C°° inside Q and globally is in H:''/2(Q). The global regularity of u gives
that u|r! lies in H1{rx) and since #*^1) C L°°(ri) (remember, the boundary is one
dimensional) it follows by differentiation that f(u) lies in //^Fi). If we now additionally
required that g be in Hl^2 (dil), then elliptic regularity theory would imply that given
any y in the interior of Ti or T2 there exists a neighborhood of y,ujy, such that u is
in H2(Q n ojy). In addition to being a classical solution to Au = 0 inside fi the weak
solution u would therefore satisfy the boundary conditions (7)-(8) in the sense of traces
on any of the boundary parts dil fl ojy. If g were to be smooth then u would be smooth
up to the boundary at any point interior to Fj (or I^), and the boundary conditions
would be satisfied in a classical sense. There will in general be singularities of u at the
points that separate Ti and f^, even if g is smooth.

The main theoretical results in this paper are proven in Sees. 1 and 2, and they may
be summarized in the following.

Theorem. Given g e L2(diT) there exists Ao > 0 such that the boundary value problem
(11) has a solution for any —oo < A < Ao- For A < 0 this solution is unique (for A = 0, it
is unique up to a constant). This unique solution may also be characterized as an energy
minimizer. For A > 0 the problem (11) is likely to have multiple solutions; however, it is
possible to construct a specific branch of solutions consisting of energy minimizers. The
energy expressions differ for A < 0 and A > 0.

The Taylor expansion for the function / at x = 0 is given by
. 2oc 1 2

f(x) = x+ —-—X H .

The boundary value problem (6)-(8) may thus be linearized near u — 0 (and g = 0) to
give

—Au = 0 in fl,
du , ^
— = Xu + g on Fi,

du ^
-=„ only
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The corresponding weak formulation becomes

gvdl. (12)/ \7uVvdx = A / uvdl +
Jn J rj Jdi>dn

This linear problem has a unique solution when A lies outside a countable set of values
0 < Ai < A2 < • ■ ■, with {1/An}%Li representing the eigenvalues of an associated compact
operator (for A = 0 the solution is unique up to a constant). In Sec. 3 of this paper
we characterize the set {Anl^Lj and we examine the structure of the solutions to (12)
between these values. In particular, we characterize these intermediate solutions as
solutions to appropriate minimization problems. In Sec. 4 we compare some numerical
results obtained by the solution of the linear boundary value problem (12) with results
obtained by the solution of the nonlinear boundary value problem (11). These numerical
results also clearly indicate that the nonlinear boundary value problem has solutions for A
moderately large and positive. It should be interesting to see if among these solutions it is
still possible to select curves consisting of energy minimizers—but we have not succeeded
in doing so. Finally, a short appendix is devoted to a survey of some fundamental facts
concerning Orlicz spaces, which are needed in order to establish the existence of solutions
for the nonlinear boundary value problem (11).

1. Existence and uniqueness for A < 0. In this section we shall establish the
existence and uniqueness of a solution to the boundary value problem (11) for values of
A < 0. For A = 0 the existence of a solution to the boundary value problem (11) is well
known. It is equally well known that this solution is unique modulo a constant. It thus
remains to consider A < 0. Let /: i/1(f]) —> M be the functional defined by

I(u) — 7; [ |Vu|2c£e — A I F(u)dl— f gudl.
2 Jn Jri Jan

We shall now prove that / is well defined and that it has a minimizer in ff1($7). This
minimizer is easily seen to satisfy the Euler-Lagrange equation

[ S7u'Vvdx = \ f f(u)vdl+ f gvdl WveHl(Q),
J o J rt JdU

which is exactly the weak formulation (11). It is very easy to see that this solution is
unique.

From the appendix at the end of this paper it follows that

IMU*(ri) < C|Mltfi/2(ri) (13)
where || • ||l4 is the Luxemburg norm corresponding to the function

$(t) = e4" - 1.

The definition of || • Hl*^) implies that there is a positive real number k,

INk^ro < k < IMlL^rj) + L (14)
such that

L* (I) d> S
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Insertion of the formula for $ into this last inequality leads to

ldl + l = |ri| + l- (15)[ e"2/,fc2 dl < [
Jr1 Jr1

Combining (15) with the inequality

, P2k2 u2

we find

[ e^uUl<e^k2,i{\Tx\ + l) for any /3 e H

Due to the bounds (13) and (14) this immediately yields

e^1"1 dl < ec^2(||"||ff1/2(r1)+1)(|r1| + i).I e"
r.

For any u e H1(f2),

llwllffV2(ri) < l|w||ffi/2(an) < C||u||//i(f2),

and hence

e'8'"' dl < eC'^2(l|l'll«1(n)+1)(|ri| + 1) for any /? € M, (16)/ e"

from which it follows that the functional JFi F(u) dl, and thus the entire functional I(u),
is well defined on It also follows directly from (16) that e^'"' is in Lp(Fi) for any
P E R and any 1 < p < oo. The inequality (16) is by no means new; it is for instance
very similar to one found in [7], where one also finds an existence and uniqueness proof
corresponding to A < 0. That proof is directly based on the convexity properties of
the functional /(■), for A < 0. The existence and uniqueness proof we give here uses
the convexity properties more indirectly since it proceeds by the "direct method" of the
calculus of variations. We provide this simple argument, since a part of it is also used
in our existence proof for the mathematically more interesting case of positive A. We
proceed to show that

inf I(u) > —oo, (17)
u€Hi(Q) '

and to show that any minimizing sequence has a subsequence that converges weakly in
H1(Q,). For any d £ ffi. we find

/ gudl = g(u + d) dl
J dQ J dCl

< ||ff||.L2(Sfi)||w + d||L2(df2)-

At the same time,

min||u + d||L2(an) < Cmin ||tt + d\\Hi{n) < C|| Vu||L2(n).
Cl£M a£K

The two previous estimates in combination yield

gu dl
j ,JdQ

C Cf
< C,||fflU2(9r!)l|Vu||L2(n) < ;r-lis-II 1,2(00) + -H|Vu||l,2(n), (18)
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for any e > 0. From this estimate and the form of I(u) it follows that there exist positive
constants c and C, independent of u, such that

I(u) > c||V«||22(n) - A [ F(u) dl - C\\g\\l2{mr (19)
•' r ]

Since the two first terms on the right-hand side are positive it is clear that I(u) >
and thus infue#i(n) I{u) > —oo. Let un G H1(SI) be a sequence such that

I(un) inf Hu)-
ueH!(n)

Due to the estimate (19) there exists a constant C such that

||Vun||L2(n) < C, Vn,

and consequently there exists a subsequence unk and a sequence of real number cJlk such
that unk + cnk converges to some u* weakly in H1(fi). For simplicity we henceforth
denote the index of this subsequence by n. We claim that the sequence cn is bounded.
Since

d\u\ < F(u), (20)

for some d > 0, and since A < 0 it follows from the bounds (19) and (20) that

\un\dl < C, Vn. (21)Jr.Ti

The weak convergence of the sequence un + cn implies that it is bounded in and
therefore

||^n ~t~ Cn||L2(dr2) — C•> Vn.

In particular, this implies that

/ \un + cn\dl < C, Vn.
J rx

Using (21) we now conclude

|Fi| \cn\ < I \un\dl + C Vn.L
This boundedness of cn implies the existence of a convergent subsequence, which we for
simplicity also index by n. The weak convergence of un + cn combined with the fact that
the constants cn converge to c* yield that

un - u* = u* - c* in H1 (0). (22)

We now proceed to show that u* is a minimizer of /(•). The convexity of the functional

|Vw|2 dx

and the fact that the un converge weakly to u* in H1(SI) give

[ |Vu*|2 dx < liminf [ |Vw„|2 dx. (23)
J n n Jn

JJn
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Due to the weak convergence of the un in H1(fi) it follows that un —* u* in H1^2(dQ),
and so

/ gu* dl = lim / gun dl. (24)
Jan n Jan

Finally, we also have that

[ F(u*) dl = lim f F(un) dl. (25)
Jf! n JFi

To prove this it clearly suffices to prove that

f ePu* dl = lim f e0Un dl, (26)
A1! n Jr1

for any /? € R. Using the mean value theorem we find, for each n and a.e. x, a value
in(x) with

min(u„(x),u*(a;)) < £n(a;) < max(un(a:),u*(x)),

such that

eDun _e0u' = peKn(Un_u*y

The value £n(x) satisfies

|£n(z)| < \un(x)\ + |u*(z)|,

and therefore it follows that

|e/3u„ _ e0u* | < |^|el/3|(l"nl + |u*|)|Un _ u*|_

Repeated use of the Schwartz inequality now yields

I Ie^-e^ldl < \(3\ ||e4l^"l||^ri) • ||e4l^||^4(ri) • K -

Since un (and u*) are bounded in H1 (SI), (16) shows that the first two norms on the
right-hand side are bounded. The statement (26) follows from the fact that un converges
strongly to u* in L2(Fi). A direct combination of the three statements (23), (24), and
(25) now yields

I(,u*) ^ lim/(wn) = inf I(u),
n u£Hl(fl)

or in other words, u* is a minimizer of /(•). This concludes the proof of existence of
solutions to the boundary value problem (11) for A < 0.

To conclude the study for A < 0, we show that the solution to the problem (11) is
unique if A < 0. Let u* and u be two solutions to (11) for some A < 0. Then

[ \7(u*-u)Vvdx = \ [ f(u))vdl Vv <= H\fl),
JQ JTi

which by insertion of v = u* — u yields

/ |Vw* - Vu\2dx = A f f(u))(u* -u)dl. (27)
Jn Jti
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Since f'(x) = aeax + (1 — a)e^^~a^x > 0 for any x € R, we have

(/(«*) - /(«))(«* " «) > 0. (28)

It follows form (27), (28), and the fact that A < 0 that

|Vu* — Vm|2 dx < 0./1J n
Consequently, u = u* + d for some constant d. For A < 0 any solution to the boundary
value problem (11) obeys the condition fr f(u)dl = 0 (simply insert v — 1 into (11)).
Therefore,

f f(u*)dl — 0 and f f(u*+d)dl = 0,
J r! Jr1

which immediately leads to ead = e~^~a^d, i.e., d = 0 and u = u*.

2. Existence for small A > 0. In this section we consider the mathematically most
interesting case, A > 0. We prove that the weakly formulated boundary value problem
(11) possesses a solution for A sufficiently small. This existence proof is based on a
different minimization than that used in the previous section. A change of variational
principle is clearly required, since the exponential character of the term fr F(u) dl makes
the functional /(■) unbounded from below, for A > 0. We introduce the functional

J(u) = \ f \\7u\2 dx — A In f F(u)dl— f gudl.
Jn J r\ Jon

This functional is similar to that introduced in [11] for a related problem; we also refer
to the introduction of [6] for a brief survey. The functional J(-) is still unbounded from

below: it is easy to see that J(cn) —> —oo for any sequence of constants, c„, that converge
to -(-oo. We remove this latter unboundedness by defining

J(u) = sup J{u + r),
re R

and we now seek a solution to the boundary value problem (11) by minimizing J(-) in
Hl(Q). In terms of the functional J we thus solve the saddle-point problem

inf sup J(u + r).
ueH1((i) rSR

It is not very difficult to calculate an explicit expression for the functional J(-). Indeed
for any u G H1(fl) and any r£l

J(u + r) = \ f \Vu\2 dx — A In f F(u + r)dl— j gudl, (29)
Jn J ri Jd n

and since A > 0 and In is a monotonically increasing function, the problem of maximizing
J{u + r) in r thus reduces to the problem of finding the constant r that minimizes

/ F(u + r) dl. (30)
Jri
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The expression (30) is well defined, continuous and always positive; furthermore, its value
approaches +00 as r —* ±00; so it attains its minimum. By taking the derivative with
respect to r, we find that the minimizer r*(u) must satisfy

Lf(u + r*) dl = 0,

the solution of which is given by

<■< \ fr dler (u) = JTi   (31)
/Fi eau dl

It follows from the discussion in the previous section that the expression on the right-
hand side is well defined and positive for any u € Hl{fi). Substitution of (31) back into
the expression of the right-hand side of (29), now leads to

J(u) = sup J(u + r) = J(u + r*(u))
rem

e-(1~a)udl= \ f | Vw|2 dx — A(1 — a) In f eau dl — Aa In f >
Jn Jti Jtx

— / gudl + Alna(l—a).
J an

We proceed to study the minimization of J(-) in Due to the definition of J
it follows immediately that J(u) = J(u + r) for any r E R. In order to prove that
infu€jifi(n) J(u) > —00 we shall in particular use that

J{u) = J{u — u), (32)

where

5=w\Ludt■
Using the estimate (16) we find that

In f e^u~^ dl < Cp2(\\u — u||^i(fi) + 1) + ln(|r 11 + 1),
Jr i

for any /3 € R. It now follows from

llu - w||ffi(fi) < C||Vti||t2(f2) (33)

that

In [ e^u-^dl<C02(\\Vu\\l2m + l) +1^1^1 + 1). (34)
J r 1

Combining (34) (for (3 = a and /3 = 1 — a) with the estimate (18) and rearranging terms,
we find that there exist positive constants Ao,c, and C such that

J{u) > c||Vu|||2(Q) - C(ll^llz,2(r1) + 1); (35)
for any 0 < A < Aq. This proves that J is bounded from below for any 0 < A < A0. To
show the existence of a minimizer, let un € Hl(Vl) be a sequence such that

J(un)-> inf J(u).
UGH1)!))
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We may without loss of generality suppose that un — 0. The estimate (35) yields that
||Vun||£,2(n) is bounded, and hence that ||un||/ji(n) is bounded. We may now extract
a subsequence of un (for simplicity also indexed by n) that converges weakly to some
u* G H1^), i.e.,

un u* in

It follows, as in the previous section, that

J{u*) < lim J(un). (36)
n

Therefore, u* is a minimizer of J(-) in Hx(n). In contrast to the last section it requires a
little analysis to see that u* gives rise to solutions to (11) for an interval of small positive
A. As part of this analysis we shall prove that the minimizer u* is unique for A sufficiently
small.

We now prove that for any 0 < A < Ao there exists a 0 < A such that the function
u = u* + r*{u*) is a solution of the boundary value problem (11) corresponding to
the parameter A. Here r*(u*) is defined by (31). Simple manipulations give that the
minimizer u* satisfies the variational equation

/ Vu*'Vv dx - ^ ~ ^ [ eau* v dl
Jn fri dl Jri

+ f AQ((1i_~w H, I e-ll-a)u'v<n- [ 9vdl = 0 (37)
Jr1 ̂  d,l Jri JdQ

for any v G H1(^). In terms of u = u* + r*(u*) and the parameter

A = Aa(l - a) (^J eau* d?j {^J e-^~a)u' cUj >0

this may be written

f VuVvdx = X f f(u)vdl+ [ gv dl Vv € H1^).
Jn Jri Jan

(38)

(39)

Thus u is a solution of the problem (11), corresponding to the parameter value A. It
still remains to verify that the values A[A] cover an entire interval [0,Ao], with Ao > 0,
when A runs through an interval [0, Ao] with Ao > 0 sufficiently small. Since A[0] = 0
and 0 < A [A] for 0 < A, this follows immediately if we verify that the function A[-] is
continuous on [0, Ao] for A0 > 0 sufficiently small. In order to do so we first demonstrate
that the minimizer u* is unique (modulo a constant) for A sufficiently small.

At this point it becomes natural to emphasize that the functional J(-) = J\(-) and
any minimizer, v* =v\, depend on A. We suppose that v*x is normalized by

/Jn
v*x dx — 0. (40)

From the explicit expression for J\(-) and the lower bound (35) we now obtain

X{lna(l-a)-ln\T1\) = Jx(0)>Jx(vl)

>c||V^|||2(n)-C(N||2(ri) + l),
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for 0 < A < Ao- The constants c and C are positive and independent of 0 < A < Ao, for
Ao > 0 sufficiently small. This estimate immediately shows that there exists a constant
C, independent of A, such that

<C, 0 < A < Ao-

Combining this with the estimate (16), we immediately get that there exists a constant
C, independent of A, such that

L <dl<C, 0 < A < A0. (42)

Schwartz's inequality yields

|ri| = J ldl<^J eav"xdl^ ' (/ e~av*x dl^j ' ,

and upon insertion of the bound (42), we now find that there exists a positive constant,
c, independent of A, such that

LeaVx dl > c, 0 < A < A0. (43)
J rx

Similarly, we can show that

e—(i—«K dl>c, 0 < A < A0. (44)L
Based on the definition of A, (38), we conclude that there exists a constant, C, so that
0 < A < C for 0 < A < A(,. Since the function v*x is a minimizer of J\, the function
v\ = v^ + r*(vsatisfies the variational equation (39) where A is given by the expression
(38) with u* replaced by v^. The functions f(v\) and g are in I<2(ri) and L2(dQ.)
respectively, and hence it follows from classical regularity estimates for linear elliptic
boundary value problems that v\ is in H:i>2(Q). Furthermore, since A is uniformly
bounded, it follows that

II^A||ff3/2(fi) < C, 0 < A < A0, (45)

with a constant C, which is independent of A. Let now u\ and v\ denote two minimizers
of J\, normalized by

u\dx = / v\dx = 0.
Jn Jq

Since u\ and v\ both satisfy the variational equation (37) we get

f V(ul-v\)Vvdx = \ [ (f*(ul)-r(v*x))vdl VveH\tt), (46)
Jq. Jt i

where the function f*(u)(x) is given by the formula

f*(u)(x) = a(l - a)
£au(x) e-(l-a)u(x)

fri eaudl JFi e-^~a>dl J '
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Taking v = u*x — vx in (46) we obtain

f \Vu*x-Vvt\2dx = \ [ (r(ul)-r(v*x))(u*x-vl)dl. (47)
J a Jr!

If we combine the identity

f1 d/»-/» = jT ̂ />+«(«-«))dt

with the explicit formula

I

e<*(v+t(u-v))(u _

^f*{v + t(u-v))

= a2(l - a)-

6
■ a2(l — a)-

f ea(v+t(u-v))
JL i

a(u+t(«-v)) J- ga^+t^-u))^ _ dl

(fr, ea(v+t(u~v))

2 e_(1_a)^+t(u_,,))(u — u)
+ a(l a) ~ e_(1_a)(„+t(u_t,)) ^

J I i

-(l-a)(v+t(u-«)) r e-^-a)^+t(.u-v)),u_v\dl
a\2 Jl 1 v 7-Q)  7— 1   T2  

( fFi e-(l-a)(v+t(u-v)) dl j

insert the result into (47), and change the order of integration, then we immediately get

[ \Vu*x-Vv*x\2dx
Ju

=xfJo

- ^ f ea(,;+^-,;))K_^)2 dl
a a fVi eaK+t(uS-«J)) dl

— a2(l — a)
(fri eQW+«K-^))(u* -v*x)dlY

(fr, ea^+t«~v^ dl) 2 (48)

2/Fi e-(1-a)W+i(«;-^))(u* - v\)2dl
+ a(1 a^ r e-(-1-a)(vZ+t(u*~vV) dl

J I i

— a(l — a)' dt.
(/Pi e-(1-Q)K+<K-«A))(u* - v*x) dl)'

^ fr e-(l-a)(vt,+t(Ux~vV) dl)

It follows from (45) that

HuAllL°°(ri) < CII^All//3/2(0) < C', o < A < Ao. (49)
The same estimate holds for vx. Employing a technique similar to that which we used
earlier to prove the lower bounds (43) and (44), we find that all the terms that appear
in the denominators in (48) are bounded uniformly away from 0 for 0 < A < Ao and
0 < t < 1. These lower bounds in combination with the estimate (49) justify the validity



NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM 495

of the change of order of integration that led to (48); but more importantly, because of
the form of the identity (48) they lead to the existence of a constant C, independent of
A, such that

[ |V< - Vvl\2dx < AC [ (■u*x-v*x)2dl
Jn J i\

for all 0 < A < Ao- Prom the Poincare estimate (33) and the fact that u*x = v*x = 0 we
now obtain

[ |VuJ - Vv*x\2dx < AC [ \Vu*x-Vv*x\2dx, (50)
Jn J n

with C independent of 0 < A < Ao- For A < 1/C this implies that ux = vx. Therefore
there exists 0 < Ao such that J\(-) has a unique minimizer (modulo a constant) for
0 < A < Ao. We note that we have only proved the uniqueness of the minimizer of Jx
(which in turn leads to a particular solution to the boundary value problem (11) for
parameter value A). We have not proved uniqueness of solutions to the boundary value
problem (11), and indeed numerical evidence strongly suggests that such uniqueness is
not true.

We are now ready to prove that A depends continuously on A £ [0, A0]. The key here
is to show that for any An, A 6 [0, Ao], the fact that An —> A implies that

u\n-*ul in H\n), (51)

where ux denotes the unique minimizer of Jx with u\ = 0 (and similarly for An). The
fact that A[A„] —> A [A] then follows directly from the formula (38). It is already known
that

||V<J|La(n) < C (52)

uniformly in n; it is also known that one has the bounds

0 <c< [ eau*x" dl, [ e-(1-Q)u^n dl < C (53)
Jr, Jrl

uniformly in n. As a consequence of (52) there exists a subsequence (also dentoed uXn)
and some u € Hl(Q) such that

u*Xn —>■ u in

To verify the convergence (51) for the entire sequence, it suffices to show that u = u*x.
Due to the (previously established) weak lower semicontinuity of the functional Ja(-) and
due to the bounds (53) it follows that

Jx (u) < lim Jx (u\ ) = lim JXn (u*x ). (54)
n n n n

It is also clear that

Ja(«a) = I™ JXn(u*x). (55)n

Since u*Xn is the minimizer of JXn, we have

JxMJ < JXn(u*x). (56)
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If we now let n —> oo and combine (54), (55), and (56), then

J\(u) < lim J\n{u*x ) < lim J\n{u*x) = J\(u*x).
n n

By uniqueness of the minimizer with integral zero, we thus obtain u = u\. This concludes
the proof of existence of solutions to the boundary value problem (11) for 0 < A < Ao
with Ao > 0 sufficiently small.

Remark. It might be relevant to note that there are other approaches one could use
to establish the existence of solutions to the problem (11) for sufficiently small positive
A. One could for instance use an approach based on an Implicit Function Theorem such
as that found in Chapter 1 of [4]. Such an approach would establish the existence of a
curve of solutions, but it would not lead to a global characterization of this particular
curve of solutions (as obtained from energy minimization).

3. Linear theory. In this section we study the behaviour of the solutions to the
linear boundary value problem (12), as A varies. For simplicity we shall from now on
always select the boundary flux g e L2{dVt) such that g = 0 on Ti (and therefore
Jp2 gdl = 0). We thus consider the solutions to

[ Vu\S7vdx = A f u\vdl+ f gvdl Vi> € Hl(Q). (57)
J n JTi J r2

In order to carry out our study it is convenient to define a linear operator, T, from the
space

L2(r!) = L2(ri)n<! I r)di = o{L"dl=0}
to itself. Given any r] € L2{T\) let S{q) € denote the solution to the weakly
formulated Neumann problem

[ VS(r])Vv dx = [ rjvdl VvGHl{n),
Jn J r*!

satisfying the integral condition

f S(r])dl = 0.
Jr1

Define

Tr) = S{r])\ri.

The operator T is one-to-one, positive definite and selfadjoint. Since S^)!^ is in
Hl/2(Vi), T\ L2(ri) —> i2(ri) is also compact. We remark that, for A / 0, any
solution of (57) automatically satisfies

Lu\ dl = 0.

For A = 0 the solution to (57), Uq, is only defined up to a constant; we may select this
constant so that the above integral constraint holds. If we write w\ = u\ — uq, then w\
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is a solution to

/ X?w\Vvdx = \ / (w\ + u0)vdl Vv£H1(f2),
Jn J rx

satisfying the integral constraint

/ w\dl = 0.•M
Using the operator T this is equivalent to saying that w^lri is a solution to

AT(w;A|ri + wolrj =

For A = 0 there is a unique solution, wq = 0. For A/Owe rearrange terms to obtain

wx\Tl =-T(u0\ri).

This problem has a unique solution exactly when 1/A is not an eigenvalue of T. If 1/A is
an eigenvalue of T, then the problem is solvable if and only if T(?ifJ]rl) is orthogonal to
the eigenfunctions of T associated with 1/A (in the usual L2(Ti) inner product) and the
solution is only determined up to a linear combination of eigenfunctions. We note that
since T is selfadjoint, and since 0 is not an eigenvalue of T, T(uo|ri) orthogonal to a
particular eigenfunction, (f>, if and only if uo|ri is orthogonal to that same eigenfunction.
In terms of g it is not very difficult to see that «o|ri is orthogonal to an eigenfunction <j>
if and only if g is orthogonal to S(0)|r2 (in the usual L2^2) inner product). In terms of
the original boundary value problem for u\, this may be restated to say that (57) has a
unique solution exactly when 1 /A is not an eigenvalue of T. If 1/A is an eigenvalue then
there is a solution if and only if the source term g is orthogonal to all the functions 5(0)
where 4> is an eigenfunction associated with 1/A (or, equivalently, if Mo|ri is orthogonal
to all such (f>). This in particular means that for any g that is not identically zero on T2
(but vanishes on Ti) there exists at least one (positive) value A for which (57) has no
solution. If indeed (57) had a solution for all A > 0 then uolri would be orthogonal to all
eigenfunctions of T. Since the eigenfunctions of T form an orthogonal basis for L2(T\)
it follows that Mo|r! = 0, and hence

duo a ruq = — =0 on Ti.
on

Since Auo = 0 in O, we conclude from the unique continuation property of the Laplacian
that Wo = 0 in all of fl. Due to (57) this implies that g = 0, which clearly represents
a contradiction. In the previous argument we have used the fact that standard elliptic
regularity theory ensures that uo is smooth inside f2, and is also smooth up to the
boundary near any interior point of Ti.

In order to better understand the structure of solutions to the linear boundary value
problem (57) we provide a characterization in terms of appropriate minimization prob-
lems. Let Ei denote the eigenspace corresponding to the ith eigenvalue of T (numbered
in decreasing order). We initially suppose that g is not orthogonal to either the space
5(£li)|r2 or the space 5(£^2)|r2 (in L2(Yq)). Let (•, •) denote the inner product

(u,v) = uvdl
Jr1
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and let Bq denote the set

Bo = H\fl) n {(u, 1) = 0, (v,v) = 1}.

For each 0 < /z < oc. the functional Ifl is defined by

^(u) = \ [ \Vv\2dx - - [ gvdl.
1 Jn A4 Jr2

Consider now the minimization problem

min I^v). (58)
veB o

This problem has a unique minimizer with minimal fn |V ■ 12dx, and it is easy to see that
this minimizer, also solves

I dx = A(/z) j u^vdl-\— [ gvdl Vv € Hl(Q),
Jn Jri M Jr2

with

Hi-1) = / I v12 do; — — I gu^dl.
Jn M Jr2

It is not difficult to see that A(/z) depends continuously on ji and that

—oo < A(/z) < Ai for 0 < [i < oo

with

X(n) —+ —oo as n —> 0 and A(/z) —+ Ai as ^ —> oo.

Here 1/Ai is the largest eigenvalue of the operator T. If we define u = \iuthen it is
clear that u is the solution to (57) with A = A(/z). The formula (58) therefore provides
an alternate variational characterization of the solution to the linear boundary value
problem (57) for —oo < A < Ai. For A = Aj there is, as discussed above, no solution to

(57).
To characterize the solution of (57) for Ai < A < A2 (where I/A2 is the second largest

eigenvalue of T) it is possible to derive an analogous minimization problem. At this point
we suppose that g is not orthogonal to any of the spaces S,(£'i)|r2, S,(£,2)|r2, or 5(£;3)|r2-
Define the set

Bi = H\fl) n {(u,l) = 0,(v,<j>) = 0 V(t>£ Eu(v,v) = 1}.

For any fixed 0 < /z < 00 consider now the minimization problem

min IJv), (59)
veB 1

where is as defined previously. The minimizer, u^, with minimal fn | V • |2 dx, satisfies
the equation

f • Vv dx = A(/z) I u^vdl-\— f gvdl, (60)
Jn Jr\ M Jr2

for any v G with (v, (f>) = 0 V</> £ E\. Here A(/z) is given by

MaO = / (Vu^l2 dx - - f gu^dl.
Jn A1 J r2
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Suppose now for simplicity that the eigenvalue 1/Ai has multiplicity 1, i.e., E\ =
span{</>i}, where <j>\ is a single function, say with = 1. Let vi E Hl(Sl) de-
note the solution to

[ VviVvdx= [ favdl Vue#1^),
J n Jrl

(61)

in other words v\ = S(<j>i). Due to the definition of the operator T we have V\ |r, = T<pi =
(1/Ai)0i; as a consequence (vi, 1) = 0 and (v\,vi) = 1 /Af. Any vector v G H1^) may
now be decomposed as

v = w + \l(v,vi)vi, (62)

where the function w satisfies (w, <p) — 0 V0 £ E\. To make the system governing the
minimizer, u^, more familiar we use (60), (61), and (62) to compute

/ Vu^Vvdx — / VunVwdx + / Vu^Vvidx
Jn J n Jq

— A(/u) [ UuW dl + — f gwdl
JTi M Jr2

= A(/z) [ u„vdl+- [ gvdl-X2^V)Vl^ [
Jrx M Jr2 ^ Jr

gv i dl

ms f ~ , 1 f ^ Ai/r2 9S{4>\)dl f= \{n) / UuVdl-\— / gvdl    / V\vdl.
Jri M Jr2 M Jr1

If we now define u = /.iuM — 7^1, then we obtain

gvdl/ VuVvdx = A(/x) / uvdl +
Jo. J rx Jr2

7(A(/i) - Ai) - A? [ gS{(j)i)dl f vxvdl,
./r2 J

for any w € H1^). If A(/i) ^ Ai and we choose ^ fr^ gS((f)i) dl/(\(n) — Ai) then the
last term disappears, and u is indeed a solution to the linear boundary value problem
(57), for A = A(/z). As before it is not very difficult to see that A(/i) is a continuous
function of 0 < // < oo, but this time with

—oo < A(/lx) < A2 for 0 < n < 00,

\(n) —* —00 as fi —> 0 and A(/z) —> A2 as ^ —» 00.

It is now possible to find 0 < /^i such that Ai < A(/i) < A2 for fii < ^ < 00 and
with A(/i) —> Ai as ^ » /xi. The formula (59) thus indirectly provides a variational
characterization of the solution to the linear boundary value problem (57) for Ai < A <
A2. For A = Ai and A = A2 there are, as discussed earlier, no solutions to (57). These
results can easily be generalized to give a variational characterization of the solution
to the boundary value problem (57) for any interval Ara_! < A < An. It would be
interesting to see if there were also variational ways to characterize particular solutions
to the nonlinear boundary value problem (11) for positive A that are not necessarily
small.
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4. Numerical experiments. In this section, we report the results of some numerical
experiments for the nonlinear boundary value problem (11) and the associated linear
boundary value problem (12). In our computations, we take il to be the region in the
first quadrant enclosed by the circular arc x2 + y2 — 1 and the four lines x = 0, x = 2,
y = 0, and y — 2. As indicated in Fig. 4, r\ is taken to be the circular piece of the
boundary and T2 consists of the four straight segments labeled Si, S2, S3, and S4. The
Neumann data g is defined as follows: on Si, S3, S4, and Fi, g — 0; on S2,g is the
piecewise constant function

if 0 < y < \ - e
ii\ — e<y<\+e
if i + e<y<|-£ (63)5(2, y) =

2e

-b if !-£<2/<!+e
20 if|+e<y<2.

This means that Si, S3, and S4 are insulating, and there is an imposed current pattern
on the side S2. In the computations, e is set to be 0.1, and the parameter a in the
function F (or /) is set to be 0.5.

For the linear as well as for the nonlinear boundary value problem, we employed the
finite element package PLTMG to compute the numerical solutions and draw the solution
diagrams. PLTMG has been developed by R. E. Bank; it is based on piecewise linear
triangular elements, and it employs a multigrid strategy for mesh refinement and for the

S3

S4

S2

SI

Fig. 4. Domain fl
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Fig. 5. Solution diagram for the linear problem

solution of the associated finite-dimensional systems. In our computations we used of
the order of 1500 degrees of freedom.

The results of our numerical experiments are summarized in Figures 5, 6, and 7. In all
figures, the horizontal axis represents the parameter A. In Figures 5 and 6, the vertical
axis represents ||C/aIlz,2(r2)' where U\ is a solution to the discrete analog of (12) or (11)
respectively. In Fig. 7, the vertical axis represents HVC/™1" — VC/|||x,2(fi)/||V?7{||i2(f2),
where U"nn is the discrete solution corresponding to the lower curves in Fig. 6 and U'x
is the solution of the discrete analog of the linear boundary value problem.

In Fig. 5 we observe that H^aH^o) blows up when A approaches Ai ~ 1.9 and
A2 ~ 4. This indicates that the linear boundary value problem does not have solutions
corresponding to the parameter values Ai and A2, because T(u<)\i1) is not orthogonal to
the eigenvectors of T associated with 1/Ai or those associated with I/A2. Recall that uq
is the solution to (57) for A = 0.

For the nonlinear problem we find three branches of solutions that in a certain sense
look like perturbations of the three branches of solutions for the linear problem. We are
fairly confident of the accuracy of these branches in a region near the horizontal axis.
However, when it comes to the exact crossings of these branches near the vertical axis
we expect that they only very crudely approximate the behaviour of the solutions to
the continuous problem. We believe that more branches of solutions for the nonlinear
problem would show up if we had continued our computations for larger positive A's.
For the linear problem we know that a unique solution exists for all positive A, outside
a countable set. It might even be that the nonlinear boundary value problem (11) has
at least one solution for each A. The branch of solutions that starts from A = 0 has a
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Fig. 6. Solution diagram for the nonlinear problem

Fig. 7. Relative solution difference
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turning point around A = 1.59, which is close to Ai, the first eigenvalue of the linear
problem. From Fig. 7 we see that ||V£/™m — V[/^||/,2(n)/||Vi7{||£,2(n) is small when
0.5 < A < 5 is not close to Ai or A2.
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Appendix. In this appendix we provide a brief introduction to Orlicz spaces, in
particular focusing on the way in which the more classical Sobolev spaces are imbedded
into these. We refer the interested reader to the book of Adams [1] for an excellent and
much more detailed account.

Let $ be a real-valued continuous, convex, even function of the real variable t, satis-
fying

r n r Ht)lim = 0, lim  = 00.
t-*o t t—> 00 t

Some examples of such <j> are

$(t) = |f|p, 1 < p < 00, (64)

$(*) = e*2 - t2 - 1, (65)

$(£) = e^'" — 1, l<p<oo. (66)

Let £1 be a bounded domain in R". The Orlicz class K<i>(Q) is the set of all measurable
functions, u, on Q such that

$(u(x)) dx < 00. (67)

It follows from the convexity of $ that is a convex set. However, it is not
necessarily a vector space. If one does not put additional restrictions on $ there are
examples where u € K<s>(Q) and A G R but Am is not in K&(Q). This is for instance the
case with the examples (65) and (66) above. For the first of these examples, (64), K&((i)
is clearly a vector space (namely Lp{fi)).

In general, the Orlicz space L$(fi) is defined as the linear hull of the Orlicz class
K$(Q), i.e., the smallest vector space containing K$(fi). Equipped with the Luxemburg
norm

ll«l|L4(n) = inf \ k: / (68)

i$(Q) becomes a Banach space.
An important theorem, describing the imbedding of the classical integer-order Sobolev

spaces, into certain Orlicz spaces, is the following result due to Trudinger, [15],
and Adams, [1]. In a sense this theorem can be viewed as a limiting case of the more
well-known Sobolev Imbedding Theorem.
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Theorem. Let f2 be a bounded domain in K" having the cone property. Let m < n be
a positive integer and set p = n/m > 1. Define $ to be the function

$(t) = - 1. (69)

Then one has the continuous imbedding

w™(n) - L*(n).
Remark. A similar result holds for fractional-order Sobolev spaces. Such a result

is for instance found in Theorem 9.1 of [13] with a minor difference being that it is
formulated with a base domain that is all of Rn. We are specifically interested in the
case p = 2, n = 1 and m = \ (and r = 2), in which case this theorem asserts that one
has the continuous imbedding W21//2'2(]R) —> Lj(M) with

j>2 J'

The space W^2"2 is a so-called Besov space, but as established in Theorem 6.4.4 of [3]
this particular one coincides with the classical Sobolev space //l/2. Since the space //1,/2
is also contained in L2 it now follows immediately that one has the continuous imbedding
H^iR) -> L*(E) with

$(t) = et2 - 1.

Composition with natural extension and restriction operators now leads to the validity of
the continuous imbedding Hl'2{I) —> L$(I) for any bounded, open interval I C M. Since
the (one-dimensional) boundary part Ti is smoothly isomorphic to a bounded interval it
follows immediately that one has the imbedding i^1/2(Fi) —> L$(ri). It is the validity
of this imbedding that we have used on several occasions in this paper.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975
[2] R. Baboian, Corrosion—A Problem of International Importance, Corrosion Testing and Evaluation:

Silver Anniversary Volume, ASTM STP 1000, R. Baboian and S. S. Dean, eds., American Society
for Testing and Materials, Philadelphia, 1990, pp. 7-13.

[3] J. Bergh and J. Lofstrom, Interpolation Spaces, Springer-Verlag, Berlin, 1976.
[4] H. Brezis and L. Nirenberg, book in preparation
[5] J. Deconinck, Current Distributions and Electrode Shape Changes in Electrochemical Systems, Lec-

ture Notes in Engineering, Vol. 75, Springer-Verlag, Berlin, 1992
[6] Z.-C. Han, Prescribing Gaussian curvature on S2, Duke Mathematical Journal 61, 679-703 (1990)
[7] L. S. Hou and J. C. Turner, Analysis and finite element approximation of an optimal control problem

in electrochemistry with current density controls, Numer. Math. 71, 289-315 (1995)
[8] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Gronin-

gen, 1961
[9] D. Landolt, Electrochemical and materials science aspects of alloy deposition, Electrochimica Acta

39, 1075-1090 (1994)
[10] M. Matlosz, C. Creton, C. Clerc, and D. Landolt, Secondary current distribution in a Hull cell, J.

Electrochem. Soc. 134, 3015-3021 (1987)
[11] J. Moser, On a nonlinear problem in differential geometry, In Dynamical Systems, M. Peixoto,

Editor, Academic Press, New York, 1973
[12] J. S. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, NJ, 1973



NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM 505

[13] J. Peetre, Espaces d'Interpolation et Theorems de Soboleff, Ann. Inst. Fourier (Grenoble) 16, 279-
317 (1966)

[14] P. Ponthiaux, F. Wenger, and J. Galland, Study of the anodic current-voltage curve of an iron-nickel
alloy in normal sulfuric acid, J. Electrochem. Soc. 142, 2204—2210 (1966)

[15] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17,
473-483 (1967)

[16] H. H. Uhlig and R. W. Revie, Corrosion and Corrosion Control, John Wiley and Sons, New York,
1985

[17] N. G. Zamani, J. F. Porter, and A. A. Mufti, A survey of computational efforts in the field of
corrosion engineering, International Journal for Numerical Methods in Engineering 23, 1295-1311

(1986)


