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a b s t r a c t 

In this article, we develop a mathematical model considering susceptible, exposed, infected, asymp- 

totic, quarantine/isolation and recovered classes as in case of COVID-19 disease. The facility of quaran- 

tine/isolation have been provided to both exposed and infected classes. Asymptotic individuals either re- 

covered without undergo treatment or moved to infected class after some duration. We have formulated 

the reproduction number for the proposed model. Elasticity and sensitivity analysis indicates that model 

is more sensitive towards the transmission rate from exposed to infected classes rather than transmis- 

sion rate from susceptible to exposed class. Analysis of global stability for the proposed model is studied 

through Lyapunov’s function. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

In December 2019, first case of a new virus named severe acute 

respiratory syndrome novel coronavirus 2 (SARS CoV-2) detected 

in Wuhan, a city of China. The infection of virus prompted a con- 

tinuous flare-up and an exceptional global health emergency. The 

number of contaminated individuals is increasing globally and it is 

likely to be underestimated the actual data of infection worldwide. 

The infections show 5% − 80% likely to asymptotic makes hard to 

detect and combat the infections. The leaders of different countries 

are making strategies to prevent the infections like social distanc- 

ing, lockdown and isolation from world. Such measures cost eco- 

nomically too. Virus acting as double-edged sword as it is threat- 

ening human life and also making worse the remaining people of 

the world. 

The virus identified as zoonotic, similar to SARS and MERS. The 

different studies [1] show the basic reproduction number for the 

disease ranges from 1.4 to 6.49 with a mean of 3.28, a median of 

2.79 and interquartile range of 1.16. However, Zhang and their col- 
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laborators [2] have estimated maximum likelihood value of basic 

reproduction number: 2.28. Another early dynamics of daily repro- 

duction number estimated as 2.35 which is reduced upto 1.05 af- 

ter implementing lockdown [3] . The effect of virus is much severe 

in United States with 1,292,879 infected on 08 May, 2020 [4] . An- 

other study [5] concluded that fatality was highest in persons aged 

85 years, ranging from 10% to 27%, followed by 3% to 11% among 

persons aged 65–84 years in United States from February 21-March 

16, 2020. In the case of Wuhan city in China, incubation period for 

the novel coronavirus estimated as 6.4 days and epidemic doubling 

time 6.4 days [6] . The reproduction number has estimated to 2.56 

with 95% confidence interval when unreported cases for the virus 

has taken into account [7] . In the context of India, Mandal et al. 

[8] and Mishra et al. [9] have found basic reproduction number 

being 1.5 under the situation in March 2020 by considering SEIR 

model. They have also suggested control measures in order to pre- 

vent from the disease. 

A key feature of the disease is significant proportion of asymp- 

totic individuals. A specific study in Japan [10] shows 41.6% of indi- 

viduals are asymptotic. Such high degree of hidden infections iso- 

lates this virus among others. A basic model in epidemiology, SIR 

model, can be used for estimation of total size of infected popu- 

lation. However, these models are not so much accurate to predict 

the prevalence for COVID-19 disease. 

https://doi.org/10.1016/j.chaos.2020.109953 
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Deterministic compartmental models often used to design the 

infectious disease in epidemiology. Wei et al. [11] designed model 

for vector borne disease which has direct method of transmis- 

sion in addition to vector mediated infection. Martcheva and Horst 

[12] presented a model for a disease with an advancing and a 

silent exposed class and variable susceptibility to super-infection. 

Similarly, Kribs et al. [13] designed a model related to acute and 

chronic infective disease. They have discussed the effect of vacci- 

nation upon the spread of non-fatal disease. Nuno et al. [14] mod- 

elled two influenza strains under different degree of obstructions. 

They built up cross resistance and host seclusion lead to inter- 

mittent pandemic outbreak in the multi-strain framework. In par- 

ticular, a mathematical modelling has analysed in Ndaïrou et al. 

[15] using a compartmental model taking hospitalised and asymp- 

tomatic cases as extra compartments for COVID-19 disease. In 

[16] , authors used a new spatiotemporal approach (SBDiEM) to ex- 

plain the phenomenon of the SARS CoV-2 virus. In an advanced 

stage, Khan and Atangana [17] used fractional integral approach 

[18] to describe the epidemiology of COVID-19 disease and esti- 

mated R 0 = 2 . 4829 . Martcheva and Carlos [19] studied Hepatitis C 

with a chronic infectious stage and variable population size. 

Mathematical modelling is one of the significant tools to pro- 

vide valuable insight into the epidemic problems and various other 

real world problems, for instant see recent work [20–25] . This 

work presents a deterministic compartmental model to explain 

SARS CoV-2 virus in some extent. We incorporate asymptotic in- 

fection and quarantine/isolation into SEIR model. 

2. Proposed model 

In the proposed model, S (susceptible) is a healthy population 

which undergo contagion and move to E class (exposed). After in- 

fection from virus, some of them are asymptotic and are cate- 

gorised into A group (asymptotic). Others who shows symptoms 

are moved to I group (infected). Asymptotic are not showing any 

visible symptom of the disease and it is much difficult to identify 

them. As per study available, SARS CoV-2 virus has a key feature 

of asymptotic individuals amounts to 5–80% of the exposed peo- 

ple [10] . We denote this probability to p . Asymptotic people are 

assumed to be infectious with reduced (or enhanced) transmis- 

sion rate q β0 . An individual from asymptotic group either shows 

symptom after some duration and moves to infected group or re- 

main asymptotic and recovers from disease. Let γ denote the re- 

covery rate of asymptotic individuals. The infected may go un- 

der treatment with isolation. In this case, they move to recovered 

group through Q-group (quarantine/isolation). But some of individ- 

uals may not go to isolation and directly move to recovered group. 

Let ν denote the recovery rate from infected group and δ denote 

recovery rate from quarantine/isolation. The quarantine rate from 

infected to isolation group is denoted by α. We are assuming that 

dead are not infectious. Hence the recovered group contains both 

dead and recovered people and separated from susceptible after 

the process. We also assume that once an individual is recovered 

from disease, he develops the immunity from the virus and will 

not undergo the cycle. 

Mathematically the model is expressed as the following au- 

tonomous system: 

dS 

dt 
= � − β0 

S(I + qA ) 

N − Q 
− μS 

dE 

dt 
= β0 

S(I + qA ) 

N − Q 
− (η + θ + μ) E 

dI 

dt 
= pηE − (α + ν + μ) I + ρA 

dQ 

dt 
= αI + θE − (δ + μ) Q 

dA 

dt 
= (1 − p) ηE − (ρ + γ + μ) A 

dR 

dt 
= γ A + δQ + νI − μR (1) 

The total size of population is assumed to be N which are logisti- 

cally increasing at a rate of � and decreasing by natural mortal- 

ity rate μ. β0 denotes transmission rate from susceptible to ex- 

posed compartment. η is infection rate for the model and θ is iso- 

lation rate of individual. Force of infection is related to prevalence 

(I + qA ) with a linear relation as 

λ = 
β0 (I + qA ) 

N − Q 

In order to make relation simple we substitute β = β0 / (N − Q ) . β
is per capita transmission rate. 

2.1. Initial conditions 

The population is disease free until I (0) number of infected 

enter into the population. At the time t = 0 , R (0) = 0 , S(0) = 

N, Q(0) = 0 , A (0) = 0 and E(0) = 0 . The feasible region of the sys- 

tem will be 

{ (S, E, I, Q, A, R ) : S > 0 , E > 0 , I > 0 , Q ≥ 0 , A ≥ 0 , R ≥ 0 } 

2.2. Incubation period 

From the system (1) , S ′ (0) < 0 for all t > 0 implies that S ( t ) 

is positive, monotone and bounded by N . Hence, the final size of 

epidemic is 

lim 
t→∞ 

S(t) = S ∞ . 

In the same way, R ′ is positive, bounded and monotonic which im- 

plies that 

lim 
t→∞ 

R (t) = R ∞ . 

The trivial equilibrium point for the model is ( �/ μ, 0, 0, 0, 0, 0). 

For sufficiently large time, number of infected exponentially decay 

dI 

dt 
= −(α + ν + μ) I (2) 

for t → ∞ . This implies that 

I(t) = I 0 e 
−(α+ ν+ μ) t (3) 

Probability of individuals who recovered from the disease, indicate 

the cumulative distribution function F ( t ): 

F (t) = 1 − e −(α+ ν+ μ) t . (4) 

To find the probability density function P ( t ) from cumulative dis- 

tribution, we must use fundamental theorem of calculus: 

P (t) = 

{ 
(α + ν + μ) e −(α+ ν+ μ) t ; t � 0 

0 ; t < 0 
. (5) 

First moment about the origin gives the expectancy of time spend 

in infectious class: 

E[ t] = 

∫ ∞ 

−∞ 
tP (t) dt = 

1 

(α + ν + μ) 
(6) 

The incubation period is thus, the inverse of sum of transmission 

rates α, ν , μ. 
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Fig. 1. Sketch of population with time. 

Fig. 2. Phase plane. 

2.3. Graph of system 

In this subsection, we sketch a graph of the model. Let us take 

total population be N = 10 0 0 . The birth rate of the population is 

assumed to � = −0 . 2% per year and mortality rate μ = 0 . 87% per 

year. β = 2 . 5 / (N − Q ) where Q is number of quarantine/isolation 

people. Other parameter are assumed as p = 0 . 56 , q = 1 , ν = 

10 / 228 , η = 0 . 32 , θ = 0 . 01 , ρ = 0 . 5 , α = 0 . 9 , δ = 0 . 03 , and γ = 0 . 5 . 

In this scenario, the graph of system can be sketched in Fig. 1 . 

2.4. Equilibrium points 

In Epidemiology, we often interested to know the long term be- 

haviour of system. We assume that population is not open thus 

the quantity we deal in modelling are finite one. A graph between 

S and I with time as parameter is call orbits or trajectories and 

graph is often called Phase plane ( Fig 2 ). If we look the system 

in long term, the system gets steady state equilibrium and at this 

point 

d S/d t = d I/d t = d E/d t = d A/d t = d Q/d t = d R/d t = 0 . 

The system possesses two singular points (equilibria points). 

One, at disease free equilibrium, when I = 0 and then, the point 

is ( �/ μ, 0, 0, 0, 0, 0). Disease free equilibrium is used as bound- 

ary condition for the system so named it boundary equilibrium. 

Other point at equilibrium is endemic equilibrium and represented 

by E 0 = (S ∗, E ∗, I ∗, A ∗, Q ∗, R ∗) . After the infection in the population, 

we show interest in endemic equilibrium. E 0 exists when the basic 

reproduction number is greater than one. 

S ∗ = 
�

μ
−

(η + θ + μ) 

μ
E∗ (7) 

I ∗ = 
1 

α + ν + μ

[ 

pη + 
(1 − p) ηρ

γ + ρ + μ

] 

E∗ (8) 

Q 
∗ = 

1 

δ + μ

[ 

θ + 
α

α + ν + μ

(

pη + 
(1 − p) ηρ

γ + ρ + μ

)] 

E ∗ (9) 
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A ∗ = 
(1 − p) η

γ + ρ + μ
E ∗ (10) 

R ∗ = 

[

(1 − p) η

γ + ρ + μ

(

γ + 
ρν

α + ν + μ
+ 

αδρ

(δ + μ)(α + ν + μ) 

)

+ 
δθ

δ + μ
+ 

γ pη

α + ν + μ
+ 

αδpη

(δ + μ)(α + ν + μ) 

]

E∗

μ
(11) 

where E ∗ is 

E ∗ = 
�

μ(η + θ + μ) 
−

(

p 

α + ν
+ 

(1 − p) q 

γ

)

−1 (12) 

2.5. Reproduction number 

The reproduction number generally defined as number of sec- 

ondary infections appear from one infected individual. It provides a 

threshold condition for the stability of the system. Finding repro- 

duction number through Jacobian approach using linearization of 

the system often does not work for complex system. We use next 

generation approach, known as Van den Driessche and Watmough 

approach [26] , here. 

In this approach, we first decompose system (1) into infected 

compartment: 

dE 

dt 
= βS(I + qA ) − (η + θ + μ) E 

dI 

dt 
= pηE − (α + ν + μ) I + ρA 

dQ 

dt 
= αI + θE − (δ + μ) Q 

dA 

dt 
= (1 − p) ηE − (ρ + γ + μ) A (13) 

and non-infected compartment: 

dS 

dt 
= � − βS(I + qA ) − μS 

dR 

dt 
= γ A + δQ + νI − μR. (14) 

We arrange infected compartment such that 

d 

dt 

⎡ 

⎢ 
⎣ 

E 
I 
Q 

A 

⎤ 

⎥ 
⎦ = F − V (15) 

The matrices F and V chosen such that 

F = 

⎡ 

⎢ 
⎣ 

βS(I + qA ) 
0 
0 
0 

⎤ 

⎥ 
⎦ (16) 

and 

V = 

⎡ 

⎢ 
⎣ 

(η + θ + μ) E 
pηE − ρA + (α + ν + μ) I 

−θE − αI + (δ + μ) Q 

−(1 − p) ηE + (γ + ρ + μ) A 

⎤ 

⎥ 
⎦ . (17) 

Note that various combinations of F and V are possible, however, 

the functions defined in (16) and (17) satisfy the following condi- 

tions: 

• New infections in the populations are secondary infections, that 

is, F = 0 whenever E = I = A = Q = 0 . 

• There is no immigration from susceptible population, that is, 

V = 0 , whenever E = I = A = Q = 0 . 

• Total output from infected compartments is positive. 

Moreover, feasibility condition on F allows only non-negative 

output and feasibility condition on V allows only non-positive 

output. Non-infected compartment provides a unique disease free 

equilibrium at E 0 = (�/μ, 0 , 0 , 0 , 0 , 0) when S = R = 0 . 

Matrices of partial derivatives of F and V are respectively, 

F = 

⎡ 

⎢ 
⎣ 

0 βS ∗ 0 βqS ∗

0 0 0 0 
0 0 0 0 
0 0 0 0 

⎤ 

⎥ 
⎦ (18) 

and 

V = 

⎡ 

⎢ 
⎣ 

η + θ + μ 0 0 0 
−pη α + ν + μ 0 −ρ
−θ −α −δ + μ 0 

−(1 − p) η 0 0 γ + ρ + μ

⎤ 

⎥ 
⎦ . (19) 

Next generation matrix is defined as K = F V −1 . Van den Driess- 

che and Watmough approach suggests the reproduction number 

R 0 = spectral radius of K . 

K = F V −1 = 

⎡ 

⎢ 
⎣ 

a 1 a 2 0 a 3 
0 0 0 0 
0 0 0 0 
0 0 0 0 

⎤ 

⎥ 
⎦ (20) 

with 

a 1 = βS ∗
[ 

pη

(η + θ + μ)(α + ν + μ) 

+ 
(1 − p) η[ ρ + q (α + ν + μ)] 

(η + θ + μ)(α + ν + μ)(γ + ρ + μ) 

] 

(21) 

a 2 = 
βS ∗

(α + ν + μ) 
(22) 

a 3 = βS ∗
[ 

ρ

(α + ν + μ)(γ + ρ + μ) 
+ 

q 

(γ + ρ + μ) 

] 

(23) 

Reproduction number can be defined as 

R 0 = 
(1 − p) ηβS ∗

[

ρ + q (α + ν + μ) 
]

(γ + ρ + μ)(η + θ + μ)(α + ν + μ) 

+ 
pηβS ∗

(α + ν + μ)(η + θ + μ) 
. (24) 

The reproduction number R 0 can be visualised as sum of two 

reproduction numbers. The term 

R 
a 
0 = 

(1 − p) ηβS ∗
[

ρ + q (α + ν + μ) 
]

(γ + ρ + μ)(η + θ + μ)(α + ν + μ) 
(25) 

related to asymptotic class and represents number of secondary in- 

fection because of asymptotic individuals during its life span in the 

susceptible population. This reproduction number R a 
0 is a sum of 

two terms. The term (1 − p) ηβS ∗ρ/ [(γ + ρ + μ)(η + θ + μ)(α + 

ν + μ)] represents the number of secondary infected people due 

to one asymptotic individual. The time unit an asymptotic indi- 

vidual remains in Asymptotic group is 1 / (γ + ρ + μ) . The term 

(1 − p) ηqβS ∗q (α + ν + μ) / [(γ + ρ + μ)(η + θ + μ)] indicates the 

number of secondary infections who get recovered without any 

treatment because of an asymptotic individual. 

Second right side expression of Eq. (24) 

R 
i 
0 = 

pηβS ∗

(α + ν + μ)(η + θ + μ) 
(26) 

represents number of secondary infections caused by an infected 

individual during his life span. The time units spend an individual 

in infected compartment is 1 / (α + ν + μ) . The term βSI in first 

and second equation of the system (1) is the incidence of infected. 

The number of secondary infections that will be produced in the 
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Fig. 3. A graph showing the infection for different reproduction number. 

susceptible population per unit of time is βS ∗. However, the frac- 

tion of the newly infected population produced by an individual is 

pη/ (η + θ + μ) . 

In Fig. 3 , infected population has been plotted for different val- 

ues of reproduction number. Fig. 3 shows higher the value of re- 

production number (from unity), the greater peak of infected pop- 

ulation. 

2.6. Sensitivity analysis 

The proposed model has five transmission rates, namely, β , η, 
θ , ρ , α and three recovery rates δ, ν , γ apart from �, μ and two 

probabilities p, q . One of the primary mandate of the epidemiolog- 

ical model is to provide an effective tool to control the transmis- 

sion. Sensitivity analysis suggests that which transmission rate we 

should control sensitively in order to prevent the transmission. To 

perform global sensitivity analysis we need to grow the framework 

to incorporate all parameter involved in the system. This is a com- 

putationally hard issue, especially for a multi-dimensional model 

[27] . We focus here on local sensitivity analysis first. 

Suppose we need a local sensitivity analysis of infected with 

respect to the transmission rate β . We introduce a new variable 

Z S = 
∂(d S/d t) 

∂β
. 

Other variables Z E , Z I , Z Q , Z A , Z R are defined in the same fashion by 

replacing S to respectively E, I, Q, A, R . Our interest is to simulate Z I 
and for this, we need to solve the following system of differential 

equations 

Z ′ S = −(1 + βZ S )(I + qA ) − βS(Z I + qZ A ) − μZ S (27) 

Z ′ E = S(I + qA ) + βZ S (I + qA ) + βS(Z I + qZ A ) − (η + θ + μ) Z Q 

(28) 

Z ′ I = pηZ E + ρZ A − (α + ν + μ) Z I (29) 

Z ′ Q = θZ E + αZ I − (δ + μ) Z Q (30) 

Z ′ A = (1 − p) ηZ E − (γ + ρ + μ) Z A (31) 

Z ′ R = γ Z A + δZ Q + γ Z I − μZ R (32) 

with initial conditions Z S (0) = Z E (0) = Z Q (0) = Z A (0) = Z R (0) = 0 

and Z I (0) = 1 . The solution of the system (27) –(32) provides local 

sensitivity with respect to β . Same can be performed to find local 

sensitivity with respect to other transmission rates. 

Finding the solution of the system (27) –(32) is rather a compli- 

cated approach, we can observe the local sensitivity of a parameter 

by plotting the infected for different values of the parameter. 

In Fig. 4 , the number of infected have been plotted for differ- 

ent values of β = β0 / (N − Q ) . Graph indicates that decreasing the 

value of β , the number of infected decreases and the curves are 

also shifting towards right. This implies that lowering the value 

of β not only reduces the infection but also delays to attend the 

peak of curve. The sensitivity of η can be viewed in Fig. 5 . Graph 

Fig. 5 shows a decrease of 0.1 value in η affects the highest num- 

ber of infected with an effective manner. This implies that η is a 

better tool to control the transmission. However, a decrease in ρ
does not contribute in the infection as compare to η ( Fig. 6 ). Quar- 

antine rate θ is showing opposite behaviour ( Fig. 7 ). We observe 

that the increase upto the value 0.01 in θ lowers the peak of in- 

fection leaving the position of peak unaltered. 

2.7. Elasticity of reproduction number 

Elasticity of a static quantity with respect to a parameter mea- 

sures the percentage change in the quantity with respect to per- 

centage change in parameter. Positive elasticity represents positive 

correlation in the quantity and parameter and negative elasticity 

shows negative correlation. It is a dimension less quantity. 

From Eq. (24) , elasticity of reproduction number with respect to 

β is 

E 
β
R 0 

= 1 . (33) 

Furthermore, elasticity of reproduction number with respect to η

E 
γ
R 0 

= 
θ + μ

η(η + θ + μ) 
. (34) 

Expression (34) shows reciprocal relation of η, θ and μ. The elas- 

ticity of reproduction number with respect to ρ is the following: 
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Fig. 4. Sensitivity analysis with respect to β . 

Fig. 5. Sensitivity analysis with respect to η. 

E 
ρ
R 0 

= 
γ + μ − q (α + ν + μ) 

(

ρ + q (α + ν + μ) 
)

(γ + ρ + μ) 
. (35) 

Note that Eq. (26) is independent from ρ . This means R 0 and R a 
0 

have same elasticity. Elasticity of reproduction number with re- 

spect to θ and α are respectively 

E 
θ
R 0 

= −
1 

(η + θ + μ) 
. (36) 

and 

E 
α
R 0 

= −
1 + ρ

(α + ν + μ) 
(

1 + ρ + q (α + ν + μ) 
) . (37) 

This investigation reveals that increase in ρ , that is, identification 

of more infected from asymptotic class helps to reduce the repro- 

duction number. The same is with η and θ . 

2.8. Global stability using Lyapunov’s function 

Global stability of the system can be determined using Lya- 

punov’s function. Lyapunov’s stability theorem states that a glob- 

ally positive definite and radially unbounded Lyapunov’s function 

whose derivative is negative on entire feasible region except a 

point x ∗, possesses the globally stable equilibrium at x ∗. Construc- 

tion of suitable Lyapunov’s function is tricky. Krasovkii-LaSalle the- 

orem helps to establish such function for an autonomous system. 

Suppose ( S ∗, E ∗, I ∗, Q ∗, A ∗, R ∗) is an endemic equilibrium point 

stated in Eq. (7) –(12) . We define 

L (t) = k 1 

(

S − S ∗ − S ∗ln 

(

S 

S ∗

))

+ k 2 E + k 3 I + k 4 Q + k 5 A (38) 

It is clear from the definition that function defined in Eq. (38) are 

positive definite and radially unbounded. The values of k 2 , k 4 and 
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Fig. 6. Sensitivity analysis with respect to ρ . 

Fig. 7. Sensitivity analysis with respect to θ . 

k 5 are assumed to be 

k 2 = 
k 3 

η + θ + μ

(

pη + 
θα

α + ν + μ
+ 

(1 − p) ηρ

ρ + γ + μ

)

(39) 

k 4 = k 3 
α

α + ν + μ
(40) 

k 5 = k 3 
ρ

ρ + γ + μ
. (41) 

In order to establish global asymptotic stability, S < S ∗ and k 1 must 

be chosen such that 

k 1 

(

1 −
S ∗

S 

)

> k 2 . 

It is worth mentioning here that this global asymptotic stability 

shall be disease free. 

2.9. Prophylaxis 

Prophylaxis are off-medical control strategies in order to pre- 

vent the spread of the disease. Such measures include social dis- 

tancing, mask wearing, hand-wash, sanitization and lockdown. Pro- 

phylaxis reduces the transmission rates. Lockdown reduces person 

to person contact in susceptible and exposed group which leads to 

reduction of β and η. This we observe reduction of reproduction 

number from Eq. (24) . 

If we see the relationship between reproduction number and 

isolation rate α, we get a graph ( Fig. 8 ). Smaller value of β pro- 

vides the steeper decline in reproduction number. The reproduc- 

tion number is a decreasing function of the isolation rate α. The 
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Fig. 8. The reproduction number as a decreasing, concave up function of α for several values of β . 

Fig. 9. Surface plot of infected I(t) with β and α. 

Fig. 10. Plot of cumulative infected vs. date for Italy. 
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Fig. 11. Plot of reported infection per day vs. date for Italy. 

critical isolation rate that gives R 0 = 1 , is given by 

α∗ = 
ηβS ∗

(

ρ + q (ν + μ) 
)

− (γ + μ)(η + θ + μ)(γ + ρ + μ) 

(η + θ + μ)(γ + ρ + μ) − (1 − p) qηβS ∗
. 

(42) 

The Eq. (42) provides an information that one can control the 

reproduction number by applying the prophylaxis in a proactive 

manner. Variation of infected with respect to β and α is shown in 

Fig. 9 which is a decreasing, concave up function of α. 

In the proposed model, we have considered isolation and quar- 

antine as a separate compartment. Isolation has been studied in 

different disease model and found that it destabilize the dynam- 

ics and lead to oscillations [28,29] and thus, suggested as potential 

intrinsic mechanism to combat the disease. 

3. COVID-19 data from Italy 

In Italy, 228 , 003 confirmed cases and 32 , 486 deaths are re- 

ported for SARS-CoV-2 virus [4] on 22 May 2020 and 134 , 560 peo- 

ples have been recovered. Out of total confirmed cases, 59% have 

been recovered and the fatality rate is estimated to be 14.24%. A 

plot of cumulative infections vs. time is shown in ( Fig. 10 ). The 

Outbreak of epidemic started from 21 February 2020 and accel- 

erated on 14 March 2020. The point of inflation are on 02 April 

2020. The growth of population became steady on 25 April 2020. 

The phase ending of the epidemic is estimated to be third week of 

June 2020 by extrapolating the data. A plot of infection rate with 

dates are shown in ( Fig. 11 ). 

4. Discussion 

Proposed model considers six stages of populations: susceptible 

(S), exposed (E), asymptotic (A), infected (I), quarantine/isolation 

(Q) and recovered (R). The model discriminates between infected 

and asymptotic people depending upon whether infected people 

from virus do not show symptom or otherwise. As per study, trans- 

mission of COVID-19 disease through asymptotic population is an 

evident feature. The quarantine and isolation in the population are 

carrying out from both stages: from exposed and infected. In the 

model, we consider that dead do not transmit the disease and a 

person who recovered from the disease will not undergo again 

through infection. 

However, reproduction number is an effective tool to control 

the disease. From ( Fig. 3 ), it is clear that larger the value of R 0 
invite the disaster in a large amount quickly. 

The sensitivity analysis of the model advocates to reduce the 

value of η in order to control the disease in an efficient way. Trans- 

mission rate β also controls the infection but in less sensitive man- 

ner than η. Changing ρ and θ do not affect in the number of in- 

fected in a large scale. 

If we enhance the isolation rate α as given by Eq. (42) , the dis- 

ease will disappear from population. Thus it provides a threshold 

value of transmission which prevent the spreading of the disease 

using isolation only. 
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