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A Nonlinear Filtering Approach for the Attitude
and Dynamic Body Acceleration Estimation

Based on Inertial and Magnetic Sensors:
Bio-Logging Application

Hassen Fourati, Student Member, IEEE, Noureddine Manamanni, Lissan Afilal, and Yves Handrich

Abstract—This paper addresses the problem of rigid body
orientation and Dynamic Body Acceleration (DBA) estimation.
This work is applied in bio-logging, an interdisciplinary research
area at the intersection of animal behavior and bioengineering.
The proposed approach combines a quaternion-based nonlinear
filter with the Levenberg Marquardt Algorithm (LMA). The
algorithm has a complementary structure design that exploits
measurements from a three-axis accelerometer, a three-axis mag-
netometer, and a three-axis gyroscope. Attitude information is
necessary to calculate the animal’s DBA in order to evaluate its
energy expenditure. Some numerical simulations illustrate the
nonlinear filter performance. Some quantitative assessments prove
this efficiency such as the time constant of the filter ( � � s)
and the rms magnitude of the quaternion error (rms � � ����).
Moreover, the effectiveness of the algorithm is experimentally
demonstrated. In the experiments a domestic animal is equipped
with an Inertial Measurement Unit (MTi-G), which provides a
truth attitude for comparison with the complementary nonlinear
filter. The rms difference between the filter and MTi-G outputs
in the free movement experiments is within 0.392 rms on roll,
0.577 rms on pitch, and 2.521 rms on yaw.

Index Terms—Attitude, bio-logging, complementary nonlinear
filter, dynamic body acceleration (DBA), inertial measurement unit
(MTi-G), MEMS inertial/magnetic sensors.

I. INTRODUCTION

N
OWADAYS, the attitude estimation of a moving rigid
body is involved in several fields. For example, in aerial

and marine vehicles [1]–[3], the attitude is used to achieve a
stable controller. In rehabilitation and biomedical engineering
[4], the orientation is necessary to record patient movements
and providing adequate feedback for the therapist.
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Recently, the problem of attitude and orientation tracking are
treated in bio-logging. This scientific field involves both bio-
engineering and animal behavior and aims to obtain new infor-
mation on the natural world, which provides new insights into
the hidden lives of animal species [5], [6]. Generally, bio-log-
ging involves attaching an electronic device to a free-ranging
animal in order to record different aspects of the animal’s bi-
ology [7] (e.g., 3-D movements, behavior, physiology, and en-
ergy expenditure) and environment.

The main goal of this paper is to suggest an option concerning
a body motion estimation method [body attitude and dynamic
body acceleration (DBA)]. The latter is suitably used for marine
mammals or birds. Marine animals are particularly hard to study
during their long foraging trips at sea. However, their need to re-
turn periodically to the breeding colony gives us the opportunity
to measure these different parameters using bio-logger devices.
Note that the use of inertial and magnetic sensors is relatively
recent, due to the difficulty to develop miniaturized technolo-
gies adapted to high rate record sampling (over 12–50 Hz). The
obvious advantage of this new approach is that we gain access
to the third dimension space, which is the key to a good un-
derstanding of the diving strategies observed in these predators
[8], [9]. The principle, proposed in those papers for tracking the
animal’s posture estimates in the aforementioned studies, con-
sists of using a three-axis accelerometer and a three-axis magne-
tometer, with the reductive assumption that all movements are
static or quasi-static. This assumption made, we can consider
that the accelerometer outputs correspond to the gravity mea-
surements in body coordinates, and it therefore becomes pos-
sible to estimate the attitude by the resolution of well known
Wahba’s problem [8]. However, the assumption made above is
not valid in all dynamic situations observed underwater in free-
ranging animals, e.g., the phases of prey pursuit. Thus, the per-
formance of attitude estimation is significantly degraded. Other
work as [10] is focused on the use of a low-pass filter to ex-
tract the gravity projection from accelerometer outputs. In our
knowledge, the tune of this filter is not easy, which introduces
some errors on the attitude in many cases. In [11], the authors
assumed that the running means over a one second interval of
total acceleration time is a good estimator of the gravity vector
projection. However, this approximation may not be valid over
time and depends on other parameters such as animal species
and the type of movement it makes.

In this paper, we propose the addition of a three-axis gy-
roscope measurement to the sensors already used (accelerom-
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eter and magnetometer) in order to overcome the drawbacks of
aforementioned papers in this area [8]–[11]. Indeed, the estima-
tion of attitude using fusion technologies with low-cost sensors
such as gyroscopes, accelerometers, and magnetometers has al-
ready been used in other fields. Micro Air Vehicles [1], [3] and
biomedical engineering [4] are examples using either Kalman
filters (KFs) [12], extended Kalman filters (EKFs) [13], or non-
linear observers [14]. It is important to note that the rigid body
attitude estimation using MEMS inertial and magnetic sensors
is useful for calculating the DBA of the moving body, although
the proposed methodology based on the use of these sensors in
not a new one. Nevertheless, we propose another way to com-
bine these measurements and the developed approach still the
first applied work, in our knowledge, in bio-logging.

The main idea of the algorithm is to use a complementary
nonlinear filter coupled with a Levenberg Marquardt Algorithm
(LMA) to process the measurements from a three-axis gyro-
scope, a three-axis magnetometer, and a three-axis accelerom-
eter. The proposed approach combines a strap-down system,
based on the time integral of the angular velocity, with the LMA
that uses the earth’s magnetic field and gravity vector to com-
pensate the attitude predicted by the gyroscope. It is important
to note that the resulting structure is complementary: high-band-
width-rate gyro measurements are combined with low-band-
width vector observations (gravity and earth’s magnetic field)
to provide an accurate attitude estimate. Furthermore, the esti-
mated attitude is used to calculate three components of DBA,
which provides important information about the energy budgets
of free-living animals.

This paper is organized as follows. Section II describes the
prototype design for the bio-logging application. Moreover, the
attitude parameterization, the rigid body kinematic model, and
sensor measurement models are presented. Section III details
the structure of the proposed complementary nonlinear filter for
the attitude and DBA estimation. Sections IV and V are devoted
to simulation and experimental results to illustrate the effective-
ness of the proposed algorithm. Finally, Section VI summarizes
the main conclusions of the paper.

II. MATERIALS AND METHODS

The prototype “logger,” the attitude representation, and
sensor models are described here.

A. Bio-Logging Application: Case Study and Logger Concept

Bio-logging refers to the use of electronic devices (logger)
attached to the animal. The King penguin is one of the
major models of diving birds studied at Strasbourg Uni-
versity thanks to the bio-logging technology [7]. A future
generation of loggers should be equipped with a kinematic
sensing unit (ADIS16405 from Analog Device [15]) that inte-
grates a three-axis accelerometer, a three-axis magnetometer,
and a three-axis gyroscope. It is a micro-fabricated device
that provides digital signals ( g, s, Gauss,
and 23 mm 23 mm 23 mm). The core of the hardware
would be an ATMEGA 644-QFN ultra low-power microcon-
troller [16] including several on-ship peripherals. It should read
digital signals from the ADIS16405 via SPI bus. Other kinds
of sensors need to be implemented in the prototype, such as

a pressure transducer (Keller-3L from KELLER [17]) and a
temperature sensor (TC77 from Microchip [18]) to obtain in-
formation about the animal’s environment. These sensors have
to be periodically sampled with different frequencies, filtered,
corrected from errors and temperature effects, and stored for
postprocessing. The main storage of data is provided by a flash
memory (Micro SD from San Disk [19]). A prototype would be
protected from the effect of low temperature and high-pressure
data by a special material called resin [20] and powered by a
3.6-V lithium battery. To maximize battery life time, the system
should be automatically started for periodically moments of
the day. With these unit and sensors, the power consumption
of the prototype is estimated around 350 mW of which most is
consumed by the sensors. Once the bird returns from a foraging
trip at sea, the logger should be recovered, and all recorded
measurements on the memory are downloaded and used into
the nonlinear filter. Note that the loggers are autonomous and
do not use a satellite or RF transmission.

Before deploying such a logger, the goal in this paper is to
be able to convert the raw data (acceleration, angular rate, and
earth’s magnetic field) into relevant information: attitude and
energy expenditure (DBA). The algorithms that will exploit the
measurements from this prototype are the main concerns of
this work. It is important to note that during preliminary ex-
perimental tests in the paper, equivalent devices available on
the market are used to evaluate the performance of the attitude
estimation algorithm. Then, Inertial Measurement Units were
used, namely, the MTi and MTi-G from Xsens technologies
[21]. These units integrate the main sensors for attitude esti-
mation such as a three-axis accelerometer, a three-axis magne-
tometer, and a three-axis gyroscope.

B. Rigid Body Attitude Description

The rigid body attitude in space is determined when the axis
orientation of the body frame is specified with
respect to the navigation frame . The naviga-
tion frame is attached to the earth and tangent on its surface
(N-E-D: : Magnetic North, : East, : Down) [22].

In this paper, we consider the unit quaternion as the mathe-
matical representation of rigid body attitude between the men-
tioned frames. The unit quaternion, denoted by , is a hyper-
complex number of rank 4 such that

(1)

where is the scalar part and is the vector
part of the quaternion. We invite the reader to refer to the
Appendix and [23] for more details about quaternion algebra.

C. Sensor Measurement Models

The sensors configuration consists of a three-axis gyroscope,
a three-axis accelerometer, and a three-axis magnetometer con-
taining MEMS technologies [24], [25]. Their theoretical outputs
can be written, respectively, as follows:

(2)

(3)

(4)
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where is the unknown gyro-bias vector and , ,
and are assumed white Gaussian noises. repre-
sents the real angular velocity, is the gravity vector, denotes
the DBA, and describes the direction of the earth’s mag-
netic field. is the rotation matrix defined in (18) (see
the Appendix).

III. FILTER DESIGN FOR ATTITUDE AND DBA ESTIMATION

In this paper, the objective is to design a rigid body attitude es-

timation algorithm based on inertial and magnetic MEMS sen-

sors. The proposed approach will subsequently be used to track

the orientation and DBA during several motions in free-ranging

animals. This work is proposed in order to improve the attitude

estimation approaches developed in [8]–[11] and limited to the

static and quasi-static cases of animal’s movements. We pro-

pose an approach based on a nonlinear filter to gain the most

accurate attitude estimation using the advantages of accelerom-

eters, magnetometers and gyroscopes. It is important to note that

the resulting approach structure is complementary: high-band-

width-rate gyro measurements are combined with low-band-

width vector observations to provide an accurate attitude esti-

mate [26].

A. Attitude Filter Description

To achieve our goal, (20) is developed to form the nonlinear

system ( ) given by (5), shown at the bottom of the page, where

is the state vector, is the identity matrix, and

is defined in (17) (see the Appendix). The output of this

system is built by stacking the accelerometer and magnetometer

measurements such as

(6)

In order to estimate the attitude, the following nonlinear filter is

proposed [based on (5) and (6)]:

(7)

where and denote the

estimated states (attitude) and the filter gain, respectively. Note

that is the modeling error which represents the

Fig. 1. Block diagram for the attitude estimation algorithm.

difference between real measurements , as defined in (6), and

estimated values , given by

(8)

The components of are calculated using (21) and (22) (see

the Appendix). The filter gain in (7) is used to correct the

modeling error . This can be done if we are able to locate the

minimum of the scalar squared error criterion function defined

such as

(9)

In this paper, the LMA is used to minimize the nonlinear func-

tion [27]. Then, the unique minimum can be written in the

following form [28], [29]:

(10)

where guarantees that the inverted term will be nonsin-

gular. is the Jacobian matrix defined in (23) (see the

Appendix).

B. Nonlinear Filter Performance Analysis

The scheme of the attitude estimation algorithm is summa-

rized in Fig. 1. A frequency analysis of accelerometer signals

[see (3)] shows that gravity components ( ) tend to lie towards

the low end of the frequency spectrum while the DBA ( ) has

higher frequencies components [26]. The frequency analysis of

magnetometer measurements shows also that the magnetic field

tends to lie towards the low end of the frequency spectrum [see

(4)] [26]. The gyroscope signals analysis shows that the drift ,

which is a slow-moving process [see (2)], tends to lie towards

(5)
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the low end of the spectrum, and the angular velocity tends

to have higher frequency components [26]. Therefore, signals

coming from the accelerometer–magnetometer pair and signals

from the gyroscope have a complementary frequency spectrum

[26]. The resulting structure of the nonlinear filter is comple-

mentary: it blends the low-frequency region (low bandwidth) of

the accelerometer and magnetometer data, where the attitude is

typically more accurate, with the high-frequency region (high

bandwidth) of the gyroscope data, where the integration of the

angular velocity yields better attitude estimates. Indeed, the fil-

tering approach can perform a low-pass filtering on the signals

from the accelerometer–magnetometer pair and a high-pass fil-

tering on the signals from the rate gyroscope. By filtering the

high-frequency components of the signals from the accelerom-

eter (DBA) and the low-frequency components of the gyroscope

signal (slow-moving drift), the nonlinear filter produces an ac-

curate estimate of the attitude. More details on the filter perfor-

mance are given in the Appendix.

IV. SIMULATION RESULTS

This section aims to illustrate the performance and accuracy

of the designed complementary nonlinear filter. Some numer-

ical simulations were carried out under MATLAB to estimate a

rigid body attitude based on theoretical inertial and magnetic

measurements. We consider an attitude variation example taken

from angular velocity data over 50 s. The following angular rate

values are simulated:

for s for s s

(11)

Then, the kinematic equation (5) is solved to obtain the con-

tinuous time motion in quaternion representation using the an-

gular velocity measurements in (11). The obtained quaternion is

used as a reference to compare it with the estimated quaternion

from the proposed nonlinear filter. Moreover, the specific force

and magnetic field measurements are created using (3) and (4).

The rotation matrix in (18) (see the Appendix) is com-

puted using the theoretical quaternion (reference). To represent

the sensor imperfections, an additive random zero-mean white

Gaussian noise and disturbance was considered for all measure-

ments, with a large standard deviation (see Table I). The angular

velocity measurements are also assumed to be corrupted by the-

oretical bias given by

rad

s
(12)

Note that the bias is very common and is an undesirable char-

acteristic of low-cost rate gyros. The sampling rate was chosen

as 100 Hz for all measurements.

The theoretical components of the quaternion (reference mo-

tion) as well as those of the nonlinear filter are initialized with

different random values. These conditions are summarized in

Table II. Notice that this choice allows us to illustrate the conver-

gence of the filter even though it was initialized far from the ac-

tual states. At each integration step, (5) is resolved to obtain the

theoretical quaternion . Thereafter, accelerometer and magne-

TABLE I
CHARACTERISTICS OF THE VARIOUS NOISES FOR SENSOR MEASUREMENTS

TABLE II
INITIAL CONDITIONS

tometer measurements are used in the LMA to calculate the cor-

rection term (see (24) and (25) in the Appendix). Finally, (7)

is solved to obtain the estimated quaternion . The filter gain ,

from (10), guarantees convergent estimates and is set according

to the considered sensor noise levels as . The constant

in (10) is chosen as . Notice that the integration loop

of the algorithm has the length .

Fig. 2 shows the flowchart representation of the estimation

algorithm. It gives a step-by-step solution to the given problem

(attitude estimation) using a simulation experiment.

The time histories of the quaternion (reference) as well

as filter estimates are shown in Fig. 3. Despite the fact that

the nonlinear filter and theoretical model of quaternion were

initialized with different initial conditions, one can note that

the estimated quaternion rapidly converges towards the theoret-

ical values. The filter converges quite fast with a time constant

. It is important to note that the rate gyro bias and

noises in the accelerometer and magnetometer measurements

are rejected by the filter. In order to evaluate the overall per-

formance of the attitude estimation, we plotted the time history

evolution of the quaternion estimation error. This error is com-

puted using (19) (see the Appendix). Fig. 4 depicts the conver-

gence of this error towards zero during the simulated motion.

Moreover, the filter performance is shown quantitatively using

the root mean square error (rmse) in (31) (see the Appendix). So,

the orientation estimates are accurate within 0.0156 RMS on the

estimation error (19). In conclusion, the obtained results show

that the complementary nonlinear filter is an efficient method to

improve the quality of sensor measurements and attitude esti-

mation.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

In order to evaluate the efficiency of the proposed approach

in real-world applications, an experimental setup was devel-

oped. Two inertial measurement units were used, namely the

MTi and MTi-G from Xsens Technologies [21], which output

data at a rate of 100 Hz. The Xsens devices are miniature, light-

weight, and 3-D digital output sensors. They output a 3-D ac-

celeration from accelerometer, a 3-D angular rate from gyro-

scope, and a 3-D magnetic field data from magnetometer with a



FOURATI et al.: NONLINEAR FILTERING APPROACH FOR THE ATTITUDE AND DYNAMIC BODY ACCELERATION ESTIMATION: BIO-LOGGING APPLICATION 237

Fig. 2. Flowchart representing the estimation algorithm.

built-in bias, sensitivity, and temperature compensation. Note

that the MTi-G is a GPS-enhanced attitude and heading ref-

erence system (AHRS). The Xsens MT devices can track the

attitude in Euler angles, quaternion, and rotation matrix repre-

sentations. Table III summarizes the sensor specifications of the

Xsens MT devices (see the Appendix). It is important to note

that MT devices serve as tools for the evaluation of the nonlinear

filter efficiency and cannot be suitable for use in free-ranging

animals due to their dependences on an energy source as well

as their heavy weights. In the following set of experiments, the

calibrated data from the MTi and MTi-G are used as inputs to

the proposed filter.

B. Attitude Estimation by the MTi and MTi-G

The orientation determined by the MTi is computed using a

KF. It uses the gravity and earth’s magnetic field in order to

compensate the slowly increasing drift from the time integral of

angular velocity. The KF uses the assumption that on average

Fig. 3. Four components of the quaternion: Theoretical model (solid line) and
estimated quaternion from the nonlinear filter (dashed line).

Fig. 4. Estimation error � � ��� � ���� ��.

TABLE III
CALIBRATED DATA PERFORMANCE SPECIFICATION

the acceleration due to the movement (linear acceleration) is

zero [21]. Then, during the time of this assumption, the gravity

direction can be estimated and used to stabilize the attitude ob-

tained from the gyroscope (roll and pitch angles). The heading

angle is stabilized by using the local magnetic field from the

magnetometer.

The attitude given by the MTi-G is computed using an EKF.

In the prediction step, the gyroscope data are integrated over

time to obtain an orientation estimates (by a dead-reckoning

technique). The accelerometer calculates attitude estimations by

using the gravity vector projection. So, it leads to improve the

orientation estimates from the gyroscope. Due to small errors in

the gyroscope and transient accelerations (linear accelerations

coming from the movement), the attitude estimates suffer from
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Fig. 5. Whole system. The frame axes of the plate, MTi, and MTi-G are aligned.

Fig. 6. Motions performed during the evaluation test; the dashed arrow de-
scribes the direction of the motion.

some drifts. In the correction step, these drifts are corrected by

removing transient accelerations (using a mathematical deriva-

tion of velocity measurements coming from GPS receiver) and

then the estimation of gravity vector projection is enhanced [21].

The heading is estimated based on GPS and earth’s magnetic

field measurements.

C. First Experiment: Improvement of the MTi Shortcomings

In this first experiment, the performance of the nonlinear filter

in estimating the 3-D orientation during a simple motion is com-

pared to the accuracy of the Xsens MT devices. Before starting

the motion, the MTi and MTi-G are attached to a plate using an

adhesive tape and their frame axes are aligned (see Fig. 5). The

experiments were chosen to cover a wide part of the 3-D mo-

tions. The subject was asked to perform the four motions out-

lined in Fig. 6. Thus, the whole system is manipulated to move

with up-and-down moving acceleration as follows.

1) Move along the -axis of the plate in the level plane

[Fig. 6(a)].

2) Move along the -axis of the plate [Fig. 6(b)].

3) Move along the -axis of the plate in the level plane

[Fig. 6(c)].

4) Move around -, -, and -axes of the plate (free motion)

[Fig. 6(d)].

The nonlinear filter is fed with calibrated data from the MTi-G

to estimate the quaternion describing the orientation in each mo-

tion. We chose to express the orientation in Euler angles rep-

resentation because it is more intuitive than quaternion for the

reader. The mathematical transformation between the quater-

nion and Euler angles is given in [30]. Fig. 7 shows the time

Fig. 7. Attitude estimation with the MTi, MTi-G, and nonlinear filter.

Fig. 8. Zoom of the interval (76–95 s).

history evolution of the Euler angles (roll, pitch and yaw) cal-

culated by the MTi, MTi-G and nonlinear filter. It is important to

note that during the intervals (17–34 s), (37–42 s), and (76–95 s),

the motion is performed with high linear acceleration (DBA).

One of these intervals (76–95 s) is zoomed in Fig. 8 for more

clarity. This figure shows the effectiveness of the nonlinear filter

in estimating the 3-D orientation during the motion since the

differences between the MTi-G and nonlinear filter outputs are

small (about 2 on roll, 2 on pitch and 3 on yaw). In conclu-

sion, this experiment shows the drawbacks of the MTi Kalman

Filter in estimating orientation and confirms data already pub-

lished about its shortcoming [31].

D. Second Experiment: Human Segment Motion Evaluation

An experimental trial was designed to evaluate the body mo-

tion of one subject. The MTi-G is attached to the hand using an

adhesive tape (see Fig. 9). Some efforts are carried out to align

the axes frame of the MTi-G with those of the hand to represent

the ongoing orientation of the subject. To show the nonlinear

filter effectiveness, the experiments were chosen to cover a wide

part of 3D hand motion. Then, the subject was asked to perform
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Fig. 9. Subject with the MTi-G attached to the hand.

Fig. 10. Exercises performed during the hand motion. (a) Clockwise and anti-
clockwise shoulder rotation. (b) Elbow extension. (c) Clockwise and anti-clock-
wise rotation around the dashed line axis defined along the forearm segment.

the three exercises outlined in Fig. 10. The three investigated

experiments are carried out with low and high moving acceler-

ation as follows.

1) Clockwise and anti-clockwise shoulder rotation

[Fig. 10(a)].

2) Elbow extension [Fig. 10(b)].

3) Clockwise and anti-clockwise rotation around the dashed

line axis defined along the forearm segment [Fig. 10(c)].

While the number of subjects used was limited to one, the range

of movement over which the technique is evaluated is large and

comprehensive. The quaternion errors are shown in Fig. 11 to

provide an overview of the overall performance of the non-

linear filter. These errors are computed as the difference be-

tween quaternion estimates produced by the nonlinear filter and

the MTi-G. The performance level consistency of the comple-

mentary filter may be observed in this figure, even in dynamic

situations. These estimation errors are very small and the con-

vergence rate is very fast (around 2 s). This performance is also

proved by using the rmse criterion. So, the orientation estimates

of are accurate within 0.008 rms on , 0.0065 rms on ,

0.009 rms on , and 0.0104 rms on . It is important to note

that, although our approach did not exploit GPS data, it is able

to reconstruct the orientation of the hand (given by the MTi-G)

with a small error.

E. Third Experiment: Free Movement of Animal

In this set of experiments, the accuracy of the nonlinear filter

is evaluated during the free motion of a domestic animal [29].

Then we chose to carry out tests on a horse. Before starting ex-

periments, the MTi-G is attached to the head of the horse [see

Fig. 11. Differences between quaternion estimates produced by the comple-
mentary nonlinear filter and the MTi-G.

Fig. 12. (a) MTi-G attached to the head of the horse. (b) Schematic diagram of
how the horse performed its motion.

Fig. 13. Gaits of the horse and the movement performed by the head. (a) Walk.
(b) Trot. (c) Gallop.

Fig. 12(a)]. The choice of this body limb stems from our biolo-

gist colleagues’ need to evaluate the head motions and the DBA

of the horse during its course. So, this information helps them

to study its behavior during the high level competitions.

During the movement, the circular course of the horse (see

Fig. 12(b)) is composed of natural gaits such as a walk, trot,

and gallop. The experiment is started by a walk where the horse

moves its head and neck in a slight up and down motion. During

the trot, the horse made small balancing motions with its head.

The movement of the horse is finished by a gallop. In this gait,

the horse moves its head faster in up/down and right/left mo-

tions. The three gaits and head motions of the horse are depicted

in Fig. 13.

Fig. 14 plots the evolution of the difference between quater-

nion estimates produced by the nonlinear filter and the MTi-G.

This figure illustrates the performance of the complementary

nonlinear filter in estimating the orientation of the horse’s head

even in dynamic situations (gallop). The orientation estimates of

the quaternion are accurate within 0.0201 rms on , 0.0074 rms

on , 0.0062 rms on , and 0.0203 rms on . Fig. 15 shows

the time history evolution of the Euler angles calculated by the

nonlinear filter and the MTi-G, plotted on different scales. The
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Fig. 14. Differences between quaternion estimates produced by the comple-
mentary nonlinear filter and the MTi-G.

Fig. 15. Euler angles estimates calculated by the nonlinear filter (dashed line)
and the MTi-G (solid line).

Euler angles estimation errors are shown in Fig. 16 to provide

an overview of the overall performance of the nonlinear filter.

These errors are computed as the difference between Euler an-

gles estimates produced by the nonlinear filter and the MTi-G.

Note that this difference is always smaller than 3 on roll, 3

on pitch and 5 on yaw, even during fast motions. In static and

quasi-static situations (walk and trot), the difference is smaller

than 2 . The rms differences between filter and MTi-G outputs

during the free movement experiments are within 0.392 rms

on roll, 0.577 rms on pitch, and 2.521 rms on yaw. This mis-

match is still acceptable in our application and allows imple-

menting the filter in the final prototype.

In our opinion, the differences between the quaternion out-

puts of the MTi-G Kalman filter and the nonlinear filter are due

to different reasons. First, the MTi-G technical documentation

[21] indicates that the orientation errors committed by the Xsens

Kalman filter in dynamic situations are as follows: pitch/roll: 1

and yaw: 3 . Second, the internal algorithm of the MTi-G uses

GPS measurements such as the velocity to calculate transient ac-

celerations (moving accelerations). This information is used to

correct the attitude estimated by the gyroscope. The GPS signal

Fig. 16. Differences between Euler angles calculated by the nonlinear filter and
the MTi-G.

Fig. 17. Differences between the DBA calculated using the complementary
nonlinear filter and the MTi-G.

is not always good during the motion, because of the lack of

satellites in view, presence of obstructions to line-of-sight to the

satellites and atmospheric conditions. Then the transient accel-

eration calculation is degraded and consequently the precision

of the KF is less accurate for short time.

To represent more accurately the ongoing orientation of the

subject (the head of the horse or body limb), some efforts are

made to align the three axes of the body frame (the subject)

with respect to the sensor frame so that the estimated orientation

by the filter or by the MTi-G represents the real attitude of the

subject. To be sure that the algorithm represents the ongoing

orientation of the subject, a manual step can be done after the

attitude estimation of by the filter or the MTi-G. This step is

given in the Appendix.

The DBA performed by the head of the horse can be deter-

mined using the following equation:

(13)

where is the rotation matrix defined in (18), is the

gravity vector, and is the accelerometer readings.

Fig. 17 plots the evolution of the difference between the DBA

estimates produced by the nonlinear filter and the MTi-G. The

performance level consistency of the complementary filter may

be observed in this figure since the difference is very small. In-

deed, the corresponding rms difference is within 0.18 m s on

, 0.19 m s on , and 0.03 m s on . Such information

on the DBA will be necessary in the future to assess energy ex-

penditure of the studied animal species.
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VI. CONCLUSION

This paper proposes a quaternion-based nonlinear filter for

the rigid body motion tracking. The filter was designed with

the goal of being able to produce highly accurate orientation

and DBA estimates over wide motion range in free-ranging an-

imals (bio-logging). We have proposed a state estimation algo-

rithm that adds to the data from a three-axis accelerometer and a

three-axis magnetometer the one provided by a three-axis gyro-

scope. The main idea is to combine a strap-down system, based

on the time integral of angular velocity, with the LMA. The es-

timated attitude is then exploited to calculate the DBA of the

moving body (the animal in our case). The performance of the

filter is demonstrated by some simulations and quantitative as-

sessments. Moreover, the efficiency of the proposed approach is

shown with a set of experiments on a domestic animal through

sensor measurements provided by an Inertial Measurement Unit

(MTi-G). The experimental results point out that the algorithm

is able to track the accurate orientation and DBA under several

motions. Indeed, the rms difference on DBA is within 0.18 m s

on , 0.19 m s on , and 0.03 m s on .

APPENDIX

Quaternion: The unit quaternion, denoted by , is ex-

pressed as

(14)

where represents the imaginary vector,

is the scalar element, and can be written such as

(15)

The quaternion product of and

is defined such as

(16)

where is the identity matrix and the operator repre-

sents the standard vector cross product which is defined as

(17)

The rotation matrix in term of quaternion can be written as

(18)

The estimation error on the quaternion is denoted by

(19)

Rigid Body Kinematic Model: The kinematic differential

equation, in terms of the unit quaternion, that describes the re-

lationship between the rigid body attitude variation and the an-

gular velocity in the body frame is represented by [32]

(20)

where is the equivalent update quaternion rel-

ative to the angular velocity of the rigid body measured

in and relative to . denotes the quaternion multiplication

(16).

Sensor Measurement Notations: We give some notations

of the sensor measurements.

Real angular velocity.

Linear acceleration (DBA).

Gravity vector.

Earth’s magnetic field .

The theoretical model of the magnetic field nearest to reality is

given in [33] and considers a magnetic field vector with a dip

angle and a norm vector Gauss, so that:

.

Usually, the magnetometer error is described by taking into

account the effects of external magnetic interferences. These er-

rors can be detected and minimized using an automatic proce-

dure of in-line calibration [34].

Bias in the gyroscope which

is function of environmental

conditions.

Levenberg Marquardt Algorithm Details: The components

of are calculated by

(21)

(22)

where is the quater-

nion representation of the gravity vector and

is the

quaternion representation of the earth’s magnetic field.

The Jacobian matrix is defined in [35] as

(23)

The gain factor in (10) is used to tune the balance be-

tween measurement noises suppression and response time of

the filter. Generally, it combines low bandwidth accelerom-

eter/ magnetometer readings with high bandwidth gyroscope

measurements. Notice that the nonlinear filter has a better

convergence when is chosen somewhere between 0.1 and 1

[1].

The gain takes the following form:

(24)
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Fig. 18. Complementary filter.

Fig. 19. Transform-domain block diagram (Laplace) of the linearized quater-
nion estimation filter.

The correction term is computed using the gain such as

(25)

Complementary Filter Performance: Complementary fil-

tering is a theory that is based upon the use and availability of

multiple independent noisy data of the same signal. This tech-

nique has been deeply rooted in many papers and books such

as [26], [36]. An unknown signal can be estimated using cor-

rupted measurements from one or more sensors whose informa-

tion naturally stands in distinct and complementary frequency

bands [37]. Complementary filtering explores the sensor redun-

dancy to successfully reject measurements disturbances in com-

plementary frequency regions without distorting the signal. If

the measurements have complementary spectral characteristics,

transfer functions may be chosen in such a way as to mini-

mize estimation error. The general requirement is that one of

the transfer functions complements the sum of the others. Thus

for measurements of a signal

(26)

where is the time integration Laplace operator.

The simplest complementary filter involves two noise con-

taminated measurements of a signal. This situation is shown in

Fig. 18.

If is predominantly high-frequency noise and is low-fre-

quency noise, the two noise sources have complementary spec-

tral characteristics. If is chosen as a low-pass filter, then

is a high-pass filter and both noise signals are atten-

uated. Since both high and low frequency data are utilized, the

filter output will not suffer from any delay in dynamic response

due to low-pass filtering.

Indeed, the complementary filtering theory is used in the

paper. To study the performance of the nonlinear filter let us

show the transform domain block diagram of the linearized

quaternion estimation filter. This diagram (see Fig. 19) is

obtained from Fig. 1.

The transform of the quaternion from accelerometer and mag-

netometer readings is , while is the quaternion ob-

tained by integrating gyroscope signals. is the Laplace

transform of [see (5)]. In our case, the accelerometer is noisy

and sensed both gravitational acceleration and DBA. The gyro-

scope suffers from bias. Therefore, and are both

perturbed.

From Fig. 18, the filter transfer function based on accelerom-

eter and magnetometer inputs is given by

(27)

Equation (27) has the form of a first-order low-pass filter. This

proves that the LMA optimization is integrated into the quater-

nion estimation filter to help obtaining a low-pass filter on

with respect to the output . So, the perturbations due to

high-frequency components of accelerometer signal (DBA) are

filtered from .

Similarly, from Fig. 18, the filter transfer function based on

gyroscope input is given by

(28)

Equation (28) has the form of first-order high-pass filter. The gy-

roscope measurements are high-pass filtered with respect to the

output . So, the perturbations due to low frequency compo-

nents of gyroscope signal (the biases) are filtered from .

Finally, (26) can be verified as

(29)

This equation confirms the complementary aspect of the filter.

The global transfer function of the filter is written as

(30)

One can conclude from (30) that the complementary filter

blends low-pass filtering on the signals from the accelerom-

eter-magnetometer pair, and high-pass filtering on the signals

from rate gyroscope.

RMSE:

(31)

where is the time interval and is the computed error.

Arbitrary Alignment: Since the attitude is estimated by

the nonlinear filter or the MTi-G, one can calculate the rotation

matrix . After that, one considers the coordinate system

of the subject (the body limb or the head of the horse) and

the rotation matrix can be measured directly based on the

difference between two frames and . Finally, the 3-D orien-

tation that expresses the ongoing attitude of the subject is given

by the rotation matrix .

Some methods are presented in literature to calculate the rota-

tion matrix that describes the orientation of the subject with

respect to the sensor frame attached to it. For example, in the

case of the horse, we can apply the method proposed in [9]. In
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the case of human limb motion, we can apply the method pro-

posed in [38].
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