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Abstract. A benchmark change detection problem is considered which involves the detection of a 

change of unknown size at an unknown time. Both unknown quantities are modeled 

by stochastic variables, which allows the problem to be formulated within a Bayesian 

framework. It turns out that the resulting nonlinear filtering problem is much harder than 
the well-known detection problem for known sizes of the change, and in particular that it 

can no longer be solved in a recursive manner. An approximating recursive filter is therefore 

proposed, which is designed using differential-geometric methods in a suitably chosen space 
of unnormalized probability densities. The new nonlinear filter can be interpreted as 

an adaptive version of the celebrated Shiryayev-Wonham equation for the detection of 

a priori known changes, combined with a modified Kalman filter structure to generate 
estimates of the unknown size of the change. This intuitively appealing interpretation of 

the nonlinear filter and its excellent performance in simulation studies indicates that it 
may be of practical use in realistic change detection problems. 
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1. Introduction. Many problems in engineering necessitate the quick and accu 
rate detection of sudden changes in dynamical systems. When one tries to track a 
certain object (such as an airplane) on radar, there may be a change of flight path, 
and quick detection of such a change is crucial if one wants to filter out noise from the 
radar observations. When analyzing seismic data to predict earthquakes or to locate 
possible oil wells, it is of obvious importance to detect whether certain changes in the 
collected data are significant or not. Complex biomedical signals, such as the EEG, 
can be analyzed only by segmentation, which requires change detection procedures 
that can be applied automatically to the large quantities of data that are generated 
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in the process. And in chemical plants, a safe operation environment can often only 
be guaranteed by close monitoring of many signals since immediate action is required 
once an undesired change in operation conditions has been detected. 

The problem of detecting parameter changes in dynamical systems on the basis 

of noisy observations has therefore attracted a lot of attention in the last thirty years, 
and the literature dealing with it is extensive. For good surveys of the field and 

further references, the reader is referred to the papers by Basseville [2], Iserman [13], 
Lai [21], and Willsky [26], and the excellent book by Basseville and Nikiforov [3]. As 
is pointed out in [2], the basic method proposed in most of the literature on change 
detection consists of two steps. First, the problem is transformed into a standard 
problem by generating certain residuals: change indicating signals which are ideally 
close to zero when no change occurs. Then, in a separate second step, sophisticated 

statistical methods are developed to solve the resulting detection problem in terms 
of these residuals. In this paper we will provide a contribution to the second step; 
the first step will very much depend on the particular application that one wishes to 
consider, and it is therefore not treated here. 

The statistical tools used in this second step usually originate in the field of 

sequential hypothesis testing, and a wide variety of results concerning their use in 
change detection problems is now available [21]. Typically these tests compare a 
certain functional of the observations with a threshold, and an alarm is raised as 
soon as this threshold is reached. Important examples of such schemes include the 
celebrated CUSUM and generalized likelihood ratio (GLR) schemes. 

In this paper we want to propose a different approach, in which change detection 
is considered to be an on-line estimation problem in which a dynamical system pos 
sesses certain parameters which may exhibit sudden changes that need to be detected 

[8]. In our Bayesian formulation of the problem we assume that both the time and the 
size of the change are unknown a priori, thus acknowledging the fact that in many 
practical situations the behavior of the residual after the change is not completely 
known and detection is thus necessarily linked to estimation. In many practical de 
tection problems, one does not only want to know that a change has occurred; one 
also wants to obtain on-line estimates of relevant statistics after the change. 

We do not consider the problem in which one tries to detect changes off-line, or 
where one tries to estimate the tzme of the change. GLR methods and maximum like 
lihood estimators have been defined for such problems; see, for example, the analysis 
in [20]. Results concerning such off-line methods have been derived [6] under the as 

sumption that one does not exactly know the correct model after the change (although 
the assumed model should be "close" to the correct model in a predescribed sense). 
Those results on the off-line detection problem are in that sense complementary to 

the methods we will propose here, but since their goal and assumptions differ from 

ours, we redirect the reader to the reference given above for further information. 
In a continuous time framework, we can define a basic change detection problem 

concerning a simple jump process, which is equal to zero up to a certain random time 

I, then jumps to a random value X, after which it stays constant again. We assume 

that such a signal can be observed in white noise, and the purpose is to study the 

conditional distribution of the signal given all the observations up to the current time 

t and relevant statistics generated by this conditional distribution. 
If the value after the change X is known a priori, one can find an explicit stochas 

tic differential equation for the Bayesian a posteriori probability that a change has 

occurred the celebrated Shiryayev-Wonham equation [22, 28]. In fact, this statistic 

http://www.jstor.org/page/info/about/policies/terms.jsp


CHANGE DETECTION USING NONLINEAR FILTERS 331 

can still be calculated recursively if X is known to belong to a finite set of possible 
values. The problem can then be solved using the theory of hidden Markov models 
[10]. 

However, if there exists an infinity of possible jump sizes X, then the problem be 
comes much harder, since the detection and estimation problems now become closely 
interrelated. The problem of finding on-line estimates for an unknown constant X 

which is observed in Gaussian noise can be solved using a Kalman filter, which consists 
of a finite number of explicit stochastic differential equations in which the observations 
need to be fed to generate the estimates. But this filter will not perform well when 
the value of X suddenly changes. The Kalman filter uses the conditional variance of 
its estimate in the estimation process, and when X changes, the filter will for a long 
time "refuse to believe" that something happened. Where the Shiryayev-Wonham 
filter can be used for known values of X to detect the unknown time of the change T 
and the Kalman filter can be used to estimate X for a known value of T, when both 
X and T are unknown, neither of the schemes will produce good results. 

We need to be a bit more specific about what we mean by "good results" when 
trying to detect sudden changes. In every change detection problem there is a tradeoff 
between detection speed (if a change occurs, how long does it take to notice the 
change?) and the probability of false alarm (if no change occurs, how often will the 
system still raise an alarm?). When the variance of the noise process goes to zero it 
should become easier to detect the jumps, so the detection speed should go to zero. It 
turns out that the rate at which this detection speed goes to zero can be characterized 
explicitly, and this asymptotic detection delay is therefore an important characteristic 
of a change detection scheme. Since we will calculate the conditional probabilities 
that a jump has occurred, we can control the probability of false alarm rather easily 
by choosing our threshold for the alarm appropriately. 

In this paper we will thus formulate and study an approximation to the optimal 
filter for processes containing a jump of unknown size and show its excellent per 
formance in terms of this asymptotic detection delay. The conditional estimates we 
are interested in can be characterized using the nonlinear filtering theory for discon 
tinuous stochastic processes, and the optimal nonlinear filter for this case has been 
derived in [11]. As is often the case in nonlinear filtering problems [7], this filter 
does not admit a finite-dimensional recursive implementation, such as the Kalman 
filter or Shiryayev-Wonham filter we mentioned earlier. However, since the condi 
tional probability distribution of the process based on the noisy observations can be 
derived explicitly, this may be used as a starting point for approximations which are 
suboptimal yet can be implemented recursively. 

Such approximations can be interpreted as a projection of a trajectory in an un 
countably infinite-dimensional space of probability densities onto a finite-dimensional 
manifold in that space. Our approach extends a powerful statistical projection tech 
nique, which was introduced by Brigo, Hanzon, and LeGland in order to filter non 
linear diffusions [4, 5, 12], and which is based on differential-geometric methods in 
statistical information theory [1, 17, 18]. We will show that the resulting filter can 
be parametrized as a modified Kalman filter which feeds an adaptive version of the 
Shiryayev-Wonham filter for known changes that we mentioned earlier. This interpre 
tation may help to explain its excellent performance when compared to other detection 
schemes, as will be illustrated in a number of simulation studies. 

The structure of this paper is as follows. In the next section we introduce the 
stochastic change detection model and derive the nonlinear filter equations for such 
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models. In sections 3 and 4 we formulate two recursive filtering algorithms, which 
are based on information-theoretic approximations and approximation of conditional 
moments, respectively. In section 5 we discuss the relationship between these two 
filters. In section 6 we introduce and analyze a three-dimensional nonlinear filter 
based on the results derived in earlier sections, and we illustrate the performance of 
this filter in some simulation studies in section 7. We finish with conclusions and 
suggestions for further research in the last section. 

2. The Change Detection Model and Optimal Filter Equations. In this section 
we define the optimal filter estimates as generated by the conditional probability 
distributions given all the information in the observations up to the current time t. 
To define a notion of "available information" we will set up the abstract framework 
in terms of cr-algebras generated by observations, since this allows us to characterize 
the conditional distributions explicitly in Theorem 2.1. Readers who are not familiar 

with this setup may find it helpful to take a look at the derivation for the analogous 
discrete time case, which is given directly after the proof of Theorem 2.1. 

Let (Q, Y, P) be the complete canonical probability space for Brownian motion, 
i.e., Q = C([O, oo[), the set of all scalar continuous functions on R+, Y the usual a 

algebra generated by the topology of uniform convergence on compact sets, and P the 
Wiener measure on ?. Let {t, t > O} be a filtration satisfying the usual conditions, 
i.e., an increasing family of cr-algebras which is right-continuous and such that Yo 

contains all P-null sets. We will use IP(A) as a shorter notation for P({w X Q: A(w)}) 
in this paper, where A(w) is a condition on w, and we will denote the expectation 
operator by E, so for a stochastic variable Z we use EZ to denote f0 Z(w)dP(w). 

Consider the signal 

(2.1) St = { 
< 
t < 

T, 

where X C R and T C R+ are two independent finite random variables on Q with 
distribution functions F, G, respectively. We will assume that X and T have prob 
ability densities f and g, so IP(X < x) - F(x) =- f x f(u)du for all x E R and 

IP(- < r) = G(r) f Jorg(u)du for all r R IRi+. We assume that f and g are both 
strictly positive on their domains JR and R+ in this paper, unless we explicitly state 
otherwise. We will use Et = l{t>,l to denote a unit jump process, so St = XEt for 
all t > 0. 

We will suppose that the signal St can be observed in additive white noise. We 
therefore define a scalar observation process {Yt{, t > O} by 

(2.2) dYte = St dt + c dWt, YOe = 0, 

where {(Wt, Ft), t > 0} is a standard Brownian motion process on (Q, P, ), which is 

independent of both X and T, and where c is a real positive parameter representing 
the noise intensity. 

Let St be a second filtration which is contained in Ft and satisfies the usual 

conditions as well, such that both X and l{t>?} are St-measurable for all t > 0, i.e., 
X is So-measurable and T is a stopping time with respect to St. The c-algebra St 
then represents the state information up to time t. Likewise, we define Yt' as the 

cr-algebra generated by the observation process up to time t: 

ye~ d?fcr({(YcnO?<s?<t}) c Fe% 
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We are interested in the analysis of the conditional laws of the signal St, given the 

observations record up to time t. In particular, we would like to estimate the magni 

tude of the jump X at time t and the probability that the jump has already occurred 

before time t: 

E[X I Yt'], P(t > T I Yt6) 

Since such statistics can be calculated from the conditional distribution of St 

given the observation record Yt, we will study this conditional law of the signal on 

a fixed finite time interval [0, T]. Our results concerning the postjump time period 

are therefore conditioned on the set {w C Q: T(w) < T}. We will assume that there 

exists a d > 0 such that 

(2.3) E exp [ 6X2 ]< o 

throughout the rest of the paper, to make sure that certain conditional expectations 

that we wish to calculate do indeed exist. 
THEOREM 2.1. Under the assumptions mentioned above, the conditional proba 

bility density of the signal St, given the observations {WYs O < s < t}, is given by 

(2.4) (pt< [( - G(t)) do (x) + q, (x) ], 

where 

qt, (x) = f (x) g g(r) exp 
- 
(t-Y )22 (t - r) dr, 

Pt= 1-G(t) + jq(x) dx. 

Proof of Theorem 2.1. We derive an expression for the conditional distribution 
of the signal through the Kallianpur-Striebel formula and Girsanov's theorem. One 
may show that the necessary conditions for these methods to be applicable are indeed 

satisfied [14] because of (2.3). We then find for the conditional distribution of St given 

the observations [14, 27] 

(2.5) I ye ( e)-l / 1B(X1{t>rl) e 62dG(r)dF(x), 

where B is a Borel-measurable set, 1B is the indicator function for the set B, pt 
is a normalization factor equal to the double integral of the right-hand side of this 

expression for B = IR, and 

Z(x, r, t) = j 1 X {s>r} dYs8 - j(x 1{s>r})2 ds 

= x Y"-Y)-x( r) 11 <t 

After decomposing the inner integral in (2.5) into the intervals [0, t[ and [t, oo we find 

IP(St E B I Yt ) = (pt) l J e dG(r)dF(x) + (Pt) 1 (1 - G(t)) l B (x) dx. 

Here and in what follows we will allow the slight abuse of notation which represents the 

Dirac measure with its unit mass in the origin as an integral over a Dirac density 60(x), 
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i.e., fB 60(x)dx = 1{OGB}- For B = R we obtain an expression for the normalization 
factor: 

pe =2 dG(r)dF(x) + (1 -G(t)), Pt e 

and this proves the result. a 
Using Ito's differentiation rule, one may easily check that the density qc (x) satisfies 

the following Ito stochastic differential equation: 

(2.6) dq' (x) = f (x)g(t) dt + - qt (x) dYYtE 

with initial value q (x) = 0 for all x C iR. This is the Duncan-Mortensen-Zakai 
equation of nonlinear filtering for the conditional distribution outside the origin, and 
it may be derived directly using the infinitesimal generator of the Markov process 

{St, t > 0}. 
To get some intuition for this continuous time result, we now briefly look at a 

discrete time analogue. Define for n E N 

{ (w), > < r(w). 

with X as before, and where the discrete jump tzme T: Q X N+ is a stochastic variable 
on the positive integers with P(TP = k + 1) 9k > 0 for k c N and IP(T = 0) 0 O. We 
collect discrete observations in the set Yrl {Yne, n 0 O, 1, ... , N} according to 

Yn6 
- 
Ync-1 = Sn + IEWn, o = ?, 

where the {Wn, n > 0} are independent and identically distributed Gaussian variables 
with mean zero and variance one, which we assume to be independent of both X and 
the jump time T. 

We now want to find the conditional distribution of Sn given the observations in 

Yn2. It will be convenient to use the stochastic process defined by 

Zn = Yn' -Yn6-1 = Sn + C Wnv Zo= 0. 

Since the process {Yk, 0 < k < n} can be reconstructed from {Zk, 0 < k < n} and 
vice versa, we have that 

PSn I Yle , y2e . ... v y PSn I Zl, Z2. Zn 

We find 

(2.7) PsnIY; Psn zIl, Z21 ...Zn 
n 

= ZP(T = k I Zl, ... . Zn)PSn Z Z...zn) -=k 
k=1 

+ P(T > n I Zl, ...,Zn)PSnlZ,1Zn,T->nf 

We use the notation 

1>() 1e2 2 / 
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for the Gaussian density with standard deviation e. For the first factor we find that 

(2.8) P( k I Z )n) PZ = 
k)P( k) 

P(Zj .., Zn | = k)9k-1 

PAl , . Zn) 

We now use the fact that conditioned on the event {w E Q: T(w) = k}, the first k 
variables {Zi, i = 1, . . ., k - 1} are independent of {Zi, i = k, . . . ,rn} and N(0,E2) 
distributed: 

P(Z1, I Zn I -T = k) = I| ?)(Zi) P (Zk) .. I Znl I -T = kf), 

and express the distribution of the later stochastic variables {Zi, i = k,..., n} in 
terms of the probability density f: 

P(Zk, 
.. * Zni I Tf = k) = P T(Zki 

.. * :Zn I t = k, X = u) f(u)du 

=J f(u) [U $,(Zi-u) du. 

Substituting all this in (2.8) gives the first probability on the right-hand side of (2.7). 
For the second probability we find 

P(- >n I Z... Z) P>(Z I *I* Zn T71 > n)P(t > n) 

= 
,(z z ) [ 

4(Zi)] gk-1 

1PAZ1,....,Zn) [1_1 /~JJk=-n?19ki 

We must now determine the distribution functions PSn ZI...,Zn, r=k and PsnjZ1, Zni,.rZ n 
in (2.7). The last one is trivial since we know that Sn = 0 if r > n: 

PSnjZi.,Znn,>fn = 60(Sn). 

To find the first one, we note that 

f(Sk) q5E(Zk - S) 
PSkjZl.Zk,T k -frf(k) Zk-)du' 

while for j > k we have, conditioned on T = k, that Sj = Sk so 

_ (S ) _Hn=k q )(Zi_-_Sn) 
PSn|Z1.--Zn,i=k 

- 2, 
f(u) Hn= 7$^5(Za -1l 

u) d 
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We have now determined all terms in (2.7) and find 

n -k-1 n 

Ps,lz. 9k- L H O (Zi) 110c(Zi-Sn)| f(SO)/C 
k=1 i_ 

+ E 9k-i 17 qe(Zi) 10(Sn)/C 
k=n+l _i=_ 

n-Ik 721 n c2l 

E gk9 exp I- E (-) - 
I E Zi Sn 

f (Sn)/c 
k=0 (6 92kn i- [ 1 6( i=k+ilz (~/ 

+ (1-igk) (6 exp [-2 E 0(- 6To(Sn)/c, 

where c is an appropriately chosen normalization constant. Using the fact that 

in=kl Z Yn- Yk and noting that the factor exp [- En ir]/c(f2rcE)n does 
not depend on Sn, we rewrite this as follows: 

r n-i 
Nn = ] q q(x) dx 1-E Ik, 

where qn can now be interpreted as the density of S given that a jnmp has occnrred. 
Bnt after expressing qe+i in terms of q6, we then find the following analogne of the 
Zakai eqnation for the continnons time nonlinear filtering problem (2.6): 

n -1 2~~~~~~~~~~~~~~ 

(2.9) qe+li(x) = ( f (X) 9n +?k )) exp 2 2 ] 

We can interpret this eqnation to npdate qe as the resnlt of two separate steps. Be 
tween observations the term f(x)gn is added to q(nx), and the resnlt is then combined 
in a Bayesian way with the new observation, by mnltiplication with the exponential 
term ex e Y+ Y) e 

The Duncan-Mortensen-Zakai eqnation (2.6) for onr original continnons time 
problem snggests that to calcnlate the optimal filter estimates we have to solve a 
stochastic partial differential eqnation on-line. It can indeed be shown that no finite 
dimensional snificient statistic exists for this problem. Since we need snch a finite 
dimensional statistic, which can be npdated on-line in a recnrsive manner for practical 
implementation, we will propose and analyze finite-dimensional approximations to the 
infinite-dimensional optimal filter objects in the following sections. 

3. Differential-Geometric Approximations. The first finite-dimensional approx 
imation that we wish to consider nses projection operators in a space of nnnormalized 
probability densities to map the infinite-dimensional optimal filtering objects onto 
fixed finite-dimensional strnctnres. The appropriate framework for this approxima 
tion method is given by the differential-geometrical theory of statistical information 

http://www.jstor.org/page/info/about/policies/terms.jsp


CHANGE DETECTION USING NONLINEAR FILTERS 337 

and in particular the theory of statistical manifolds. For an excellent introduction 
to these relatively new fields, the reader is referred to the book by Amari [1] for 
the general theory and to the papers by Kulhavy [17, 18, 19] for its application to 
parameter estimation problems. Most important for the approach we wish to take 
here is the application of differential-geometric methods to the filtering problem for 
nonlinear diffusions [4, 5, 12]. Our analysis forms an extension of the work reported in 
these papers, and we have therefore tried to keep our notation consistent with them 
whenever possible. 

The main idea of our approach will be that we define a finite-dimensional sta 
tistical manifold l1/2 in the infinite-dimensional space of unnormalized probability 
densities. A basis will be derived for the tangent space in every point of this manifold, 
and we can use these to define a local projection operator which maps the infinitesimal 
increments generated by the nonlinear filtering equations onto such tangent spaces. 
The resulting stochastic vector field on 7jl/2 then defines our nonlinear filter. 

It may help the reader to compare l1/2 to a curved manifold in finite-dimensional 
Euclidean space, where the definition of a manifold in terms of its coordinates and 
projection onto tangent planes (such as in Figure 1) are much more intuitive. 

In order to use a Hilbert space structure, we will work in the space of square 
roots of unnormalized probability densities. Let M be the set of all (not necessarily 
normalized) finite nonnegative measures K on R which are absolutely continuous with 
respect to Lebesgue measure and have Radon-Nikodym derivatives p which are strictly 
positive Lebesgue almost everywhere. Then we have that the function 1pi x o-x 

P(x) is an element of ?2, the Hilbert space of Lebesgue-square integrable functions 
from R to ]R+ \ {O}. Denote the subspace of ?2 consisting of such square roots of 
strictly positive densities by R. We define on it a metric diR induced by the norm 

11 LC2, which in turn defines the Hellinger metric dM on the set of measures K we 
started with: 

dM (1, K2) = dR(v'pj, vp) = IIvK1 - V'-IIC2 

\p(X)- p2(X))2dX. 

To find a recursive approximation for the infinite-dimensional optimal filter, we 
have to define finite-dimensional structures in the infinite-dimensional space 1?. We 
will therefore consider an (m + 1)-dimensional manifold N (with m E N), which as a 

Fig. I Manifold coordinates and tangent space in finite-dimensional space. 
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subset of 7Z is imbedded in the larger Hilbert space L2. This means that N is locally 
homeomorphic to Rm+1 and is thus described locally by a chart: if p E N, then there 

exists an open neighborhood 71/2 of p in N and a homeomorphism O: Al/2 : 9 
onto an open and convex subset 0) of Rt1+?. We will assume that there exists in fact 

one global and smooth coordinate chart for the entire manifold, so we will consider 
manifolds '1'2 defined by 

,H1/2 
= 

VF 
: 6 

- 
(001 

U4l, 
l. 

)C(9 P(i) 

where 

{ ayo-1 (O) &(p- 1(0) 0_-I (H)_ l 

l 00 ' a01 ' aomf 

is assumed to be a set of linearly independent vectors in C2 for all 0 C 0. To find the 

differential-geometric structure of such manifolds H1/2 around a point p C -jl/2, we 
consider smooth maps a : ] - vI, v[ X_ H 1/2 (V > 0) such that a(O) p . The Frechet 
derivative of a in zero Da(O), defined by 

lim 1la(t) - a(O) - Da(O) . tL2 lim ~ ~ t0, t-oO t 

can be interpreted as a tangent vector to the curve a on the manifold ll/2. We 
therefore define the tangent vector space T37-t2 in to 1/2 as the set of all 
possible Frechet derivatives Da(O) for all such maps a: 

fT D/ a = {Do(O): Oa smooth map ]-v, v[ X W1/2 with ac(0) = dp}. 

This is a linear subspace of L2, which we may calculate more explicitly. Let a 

,ol oal, where t -X o(t) is a smooth map from ]-v, v[ to e3 with c>(0) = 0 for a fixed 
O E 0. Then we may apply the chain rule to a : t - 4 p(, d(t)) to find 

Da(0) D p(.,7i(t)) _ ~P (., 0) Doz() 
- 

v/p(1a( 
0 t= 80k ak(u) 

k=0O 

Dc aO)= p( E O 0) 

k=E 2 p( O) ( 9k ) 

which shows that 

(3.1) 'T f Q) '/-_ = span U {Bk(., O)} ( 0) 1 p 0) 

k=O 2 Vp (.,O) 130k 

The functions Bk (., 0) are linearly independent since ,p was assumed to be a chart, 
so they form a basis for the (m + 1)-dimensional tangent space in the point p/(, 0) 
on the manifold. The inner products of the basis elements in LJ2 generate a matrix 
function H(H): 

(Bit(. 0), B3 ( , ON)2 j j 0 8p(x,0) 8p(,0) dx d [ 1HJ (0) 
4px )aoi aog 4 

In all points of the manifold p(/., 0) E jt1/2 where this matrix is invertible, we 
can define an orthogonal projection operator Hlo which maps linear subspaces Of j2 

http://www.jstor.org/page/info/about/policies/terms.jsp


CHANGE DETECTION USING NONLINEAR FILTERS 339 

containing the finite-dimensional tangent vector space (3.1) onto this tangent vector 
space, using the formula 

mn m 

(3.2) v 4 S [4[H(O)]hi- (v, Bj(,I0)) 2 Bi 0) 
'=o 

Li=o 

In this paper we will use a special class of parametrized families of densities, the 
finite-dimensional unnormalized exponential families. An unnormalized exponential 
family is given by 

(3.3) R 1/2 = (, ), o Ee}, p(x,O0) = f(x) exp [OkCk(X)1 

where m is a strictly positive integer, {co... ,cm} is a set of linearly independent 
scalar functions on IR, and f is the probability density of the jump size X, as intro 
duced in the previous section. The parameter vector 0 = (So, 01, ... , Om) is restricted 
to lie in the parameter set 0, which is an open nonempty convex subset of Rm+1 
satisfying 

) C (0 - 0 E R{ +1 f(x) exp [OkCk(x)1 dx < x}. 

Throughout this paper we will use the manifold generated by ck(x) = xk for k 
0,1,... ,m, with m an even strictly positive integer, and 0= {O E Im+l, Hm < 0}. 
On such manifolds, the differential-geometric structure turns out to be a particularly 
transparent one. The basis vectors of the tangent space in Vp+( 0) are given by 

1 Op(x,O) I 1 
(3.4) Bk(x,0) -= _- kp(x f0) 2 p(x,0) 00k 2 
for k = 0,1, ...,m, and if we define 

?](O) - j Ck (X)p(X, 0) dx - x p(x, 0) dx, 

we find that the earlier defined inner product matrix H(O) for the basis elements of 
the tangent space in a point p(., 0) on the manifold is equal to 

(3.5) Hij () - 4 (Bi(.,O), Bj (., 0)2 = L i?(0) 

The matrix H(0) will be differentiable with respect to 0 for all 0 C 0 if all finite order 
moments of the jump size X exist, since 

(3.6) ' - x Op(x,0) dx - j x3p(x, 0) dx - (i?i() Hi33(0). 

For 0 E e the matrix H(0) will also be invertible, because if H(0)y = 0 for some 
vector y E Rm+1, then 

m m m m 

0 _ E E yiHij(0)yj = E E y|ixi+iyjp(x, 0) dx 
i=O j=O i=o j=o 

- I (EYi xi) p(x2 )dx, 
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which implies that y is the zero vector in R'+1 since p is strictly positive Lebesgue 
almost everywhere. We remark that the matrix H(0) coincides with the Fisher infor 
mation matrix for our class of problems, since we can write it as 

Hi.(0) = &lp(,) &lp',) p(x,O)dx. 

The most important structural property is (3.6). It is exploited repeatedly in 
[4, 5], and it will play a central role in our analysis as well. A density from the 
exponential family may be characterized in terms of the 0-coordinate system, or the 

Ti-coordinate system, and on e the two are related by a diffeomorphism r1 = rq(o)) 
which has the Fisher information matrix H as its Jacobian. In terms of Amari [1], 
the pair (0, Tj) forms a dual coordinate system. However, our particular choice for 
this exponential family is not just motivated by this important property but also by 
other information-theoretic considerations, since it may be shown that it is in fact the 
class of densities which maximize the entropy of a density with respect to Lebesgue 
measure once its m + 1 moments {rll, .. . , 71m} have been specified. 

The difference between our problem and the nonlinear filtering problem for dif 
fusions treated in [5] lies mainly in the fact that our state equation does not evolve 
smoothly (in fact, not even continuously) and that its evolution depends on two 
stochastic variables (the jump size X and the jump time T). We have seen in the 
previous section that the conditional distribution of the signal {St, t > 0} consists 
of a Dirac measure in the origin and a smooth density outside the origin, and for 
reasons which will become clear later, we do not want to project that part of the 
conditional distribution which is represented by the Dirac measure. It will therefore 
be more convenient to apply the projection method to the Duncan-Mortensen-Zakai 
equation (2.6) for the absolutely continuous part of the density q' (x) which we defined 
in Theorem 2.1: 

(3.7) dqt(x) = f (x)g(t) dt + - 
qt(x) dYt7 

with initial condition qo (x) = 0 for all x E R. Note that we will suppress the e 

dependency of this conditional density in our notation from now on. 
Our definition of the exponential family also differs from the manifolds used for 

diffusion processes in the sense that the densities in our manifold are not normalized. 
In fact the differential-geometric structure takes the form of a cone: all scalar multiples 
of a certain density on the manifold also lie on the manifold because of the introduction 
of the extra parameter 00. This is important, since the Duncan-Mortensen-Zakai 
equation (3.7) provides an unnormalized version of the conditional density outside 
the origin, and the normalization constant turns out to have a particular significance 
in our case. Indeed, 

(3.8) P(t > T Iyte) = PD(St 54 ? 1 Yt6) = 
fR qt (x dx -Gt 

so the normalization constant is linked to the probability that a jump has occurred, 
and estimation of its value using the parameter 00 will thus be essential. 

Note that alternatively we could have directly defined a projection filter with 

out these modifications, when using projections on measures consisting of convex 

combinations of the Dirac delta measnre and members of the family of exponential 
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distributions 

f (X) e?1 Cl (X) + +Ok Ck (X) 
p(dx ,0) =Y3o(dx) + (1 - y) fA f(U)CCl (U) +OkCk(u) du dx 

where the parameter -y replaces the old parameter 00: 

1- G(t) + eO 1-G(t) c [0, 1]. 

1- G(t) + COO fR f(U)eOlCl(u)+ +Okck(u)du 

However, our present formulation involves only measures which are absolutely con 
tinuous with respect to Lebesgue measures, and since this allows us to work directly 
with density functions, it is slightly more convenient. 

To simplify the calculations on our statistical manifold we will work with the 
Stratonovich form of the Duncan-Mortensen-Zakai equation: 

F ~~~x21 x 
dqt (x) L f(x)g(t)-22 t(x)J dt + - qt (x) o dYt, 

and the differential equation for qt E ?2 thus becomes 

d = qt ()x) - [f(t)x() -dtXjdt+ 2X2 qt(x) o dYte. 

To simplify notation we rewrite this as 

d,i q= Pi (A/) dt + P2(t) o dYt 

with the nonlinear operators Pi (i = 1, 2) on '2 defined in an obvious way. To make 
sure that these operators do indeed map back into L:2 when we apply them to our 
approximate densities p(., 0), we need the following condition: 

For all 0 C 0 we have that 

(A) jx4p(xz,0)dx < oc and j f()2 dx < oc. 
R R ~~~~~~~~~p(x,0) 

The first part of this condition is rather mild, and the second part will be satisfied 
if the tails of the density f vanish rapidly enough. We will see that both parts of 
condition (A) are not necessary to formulate our approximate filter, but they are 
needed if one wants to interpret the filter as the result of a projection in L2. 

The operators I-Io o Pi, with HIo as defined in (3.2), now generate a stochastic 
vector field on the manifold 7jl/2: 

(3.9) dVF~- )= [Ho, ? 'Pi Vp(, O)) dt+ I-Io, ? P2(VF_~- ~)) o dYt. 

Note that we will always use the notation q for the real unnormalized conditional 
density outside the origin, and p for its projection. 

Our aim is now to describe the evolution of the density in terms of our parameter 
vector Ot; i.e., we want to find a stochastic differential equation for the result of the 
inverse mapping from the trajectory of projected densities on the manifold 1/2 into 
our parameter set On c + m?1 It turns out that we can easily extend the analysis that 
was carried out in [4] for diffusion processes. 
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THEOREM 3.1. Let the conditions of the previous section and condition (A) be 
satisfied. Then the parameter vector Ot describing the filter (3.9) on the manifold 
generated by the exponential family (3.3) with ck(x) xk satisfies the Stratonovich 
stochastic differential equation 

(3.10) 

dOt = g(t) [H(Ot)]-l EX | dt -2 2 I' dt + 2 |' ? dYte, 

9 EXm, 9 O, 2 O, 

with the matrix function H defined as before by 

Hij(0t) - j x p(x, Ot) dx = Hi+j. 

This stochastic differential equation has a unique solution up to the (possibly infinite) 
almost surely strictly positive exit time inf{t > 0O t 0e}. 

Proof of Theorem 3.1. We deal with the two terms in (3.9) separately. For the 
first one we find, using (3.2), 

ot ? 'P ( P,Ot)) 
m m 

4 [ 4[ H(0t) ]h9 [jPl(vlp3)(x) Bj(x, Ot) dx Bi(., Ut) 
i=O j=-O 

4 [H(Ot)]1. ( f(x)g(t) _ xpxt Bi(,St) L/ikj [f\ (,t - VP (x ~Ot)) ~ pxO)x ~. 
i=O j=O PxIO 

m m j+2 
= E E [H(Ot )] i- 1 9g(t)EXj- 2Te Bi (., ot). 

i=O j=-O 

Analogously, the second vector field can be shown to satisfy 
m SM j+l 

10, 
? P2 ( = E [(t)i1 rt Bi( Ot) 

i=O j=O 

But since 

M= I 1 -100 M=0 dp(. ti=o [2 ) | o d(Ot)i =Z Bi(, Ot) o d(Ot)i 

equating the coefficients in front of the basis vectors Bj(., Ot) of the tangent space in 

p(O, Ot) then gives that 

(dOt)i = g(t) ,3 [H((0)]t1 EXj dt - 21 E [H(t)]1i<j+2 dt 
.=o j=o 

m 

+ ? E Z OL(Ot)]I9j+1 o dYtE 
j=O 

= g(t) , [H(Ot)]-j1 IEXi dt-2 2e l{i=2} dt + -2 l{i=1} o Yt 
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because of (3.5). Existence and uniqueness of a solution of this equation up to the 

almost surely positive exit time inf{t > 0: Ot V O} is guaranteed since we showed 
before that [H(0)]-1 exists for all 0 E e), and since H(0) is infinitely many times dif 
ferentiable with respect to 0 on this set, its inverse certainly satisfies a local Lipschitz 
condition. [ 

Some care must be taken when defining the initial conditions for the stochastic 
differential equation for Ot. At time t = 0 the density outside the origin is equal to 

qo(x) = 0 for all x, which would mean that 0o = -oc and that the other values in 
the 0-vector can be chosen arbitrarily. We can overcome this problem by looking at 
the moments vector r1 instead of 0. We have remarked before that on the domain e 
the 0-vectors and ri-vectors are related by a diffeomorphism. If we look at a small 
time 6 > 0, we see from the Duncan-Mortensen-Zakai equation (3.7) that q6(x) 
approximately equals f(x)g(0)6. By (3.6), we have H(0t) o dOt = dqt, so rewriting 
(3.10) in terms of moments gives 

1 ~~~~~~~~~0 N 0[[i 
dqt = g(t) EX2 dt -2 dt+2H(0)] o dYt, 

EXM, 0 O,0O 

so the moments r1 at time 6 are approximately equal to g(0)6 times the moments of 

X, as the expression for q6 confirms. These moments will then uniquely determine the 
value of the parameter vector 06, which may then be used as the initial condition for 
the stochastic differential equation for Ot. Note that this is the only place where our 
assumption that g(O) be strictly positive is explicitly needed, and if one is prepared 
to formulate alternative initial conditions for the approximate filter, this assumption 
can be weakened. 

Equation (3.10) for the evolution of Ot has a remarkably simple structure. In 
particular, since it has a constant diffusion coefficient, the Stratonovich and Ito forms 
of the stochastic differential equation coincide, and every Euler scheme to find numer 
ical approximations to its solution will coincide with a Milstein scheme, guaranteeing 
strong convergence of order 1 [16]. Moreover, it is quite easy to give a clear interpre 
tation of the stochastic differential equation. Since qt approximates the conditional 
density of St outside the origin, i.e., the conditional density of X, we can interpret 
the stochastic differential equation for Ot as the sum of two separate vector fields. 
The first one keeps the conditional density of X close to the prior density of X: 
since dr1t = H(0t) o d0t, the solution of d0t = g(t) [H(0t)]-1 [1 EX ... EXm ]T dt 
would simply be G(t) = P(t < T) times that density on the manifold which has the 
same first m moments as X. The second vector field d0t =- 12 [0 0 1 ... O]T dt + 
2 [0 1 0 ... o dYt' describes the evolution of the Kalman filter for a Gaussian 

distributed random variable X observed in white noise of intensity c2. Before the 
jump, Yt' = cWt, and the influence of the stochastic increment dYtf will be small, 
while after the jump it will become significant due to the nonzero drift in Yt. 

The fact that the diffusion coefficient vector in the stochastic differential equa 
tion for Ot is a constant vector is a consequence of our choice of the basis func 
tions {co(x),..., cm(x)} which generate the exponential family. The diffusion coef 
ficient vector will always be constant if the function j in the observation equation 

dYtE = j(St) dt + c dWt (in our case simply j(x) = x) and its square (in our case 
xr)2 =x2) are both in the linear space spanned by the functions {co(x),. .., cm(x)}. 
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A proof is given in [4] for nonlinear filtering problems where the signal St is a diffusion 
instead of a jump process, and this resnlt carries over directly to our case. 

4. Statistical Approximations. In the previous section, the conditional proba 
bility distribution of our original signal process {St, t > O} was approximated by a 
member of a finite-dimensional family of distributions. Another possible approxima 
tion to the optimal filter can be found by applying the Kushner-Stratonovich equation 
of nonlinear filtering. This equation describes the evolution of conditional statistics 
in time by means of a stochastic differential equation driven by the observation pro 
cess {Ytj, t > 0}. We will use it to find such stochastic differential equations for the 
evolution of the moments of our conditional density and then use these equations to 
define another approximate filter. To do so, we first state the Kushner-Stratonovich 
equation (for the special case where the state noise and observation noise are inde 
pendent) and then derive a stochastic differential equation for the process {St, t > O} 
which makes it possible to apply it to our particular filtering problem. 

Let {Vt, t E [0, T]} be a scalar stochastic process such that Vo is So-measurable, 

withEBVol <oc and 

(4.1) dVt = Dtdt+dMt, 
(4.2) dYtE = St dt + e dWt. 

We assume the following (see section 2 for the definition of the state filtration St): 
* {Mt, t > O} is a right-continuous square integrable St-martingale with left 

hand limits, which is independent of the Wiener process {Wt, t > 0}; 

* {Dt, t > 0} is an St-adapted process with E fT D2 du < oc; and 

* {Vt, t > 0} is such that E r(SUVU)2 du < oo. 
We will use the notation alt = E [at I Yt] for the conditional expectation of 

stochastic processes {at, t > O} with respect to the observations a-algebra Yt. The 
Kushner-Stratonovich equation then states that for t E [0, T] we have [14, 27] 

(4 3) d f t 
= 

D tdt + 2St Vtt- St Vt )dvt, 

with initial condition Vo = EVo. The process 
t 

(4.4) Vt' = YtI-/ Su du 

is called the innovation process, and under the conditions stated, it is a Brownian 
motion with respect to the observations filtration {Yt, t > 01. 

In order to be able to apply the Kushner-Stratonovich equation to our problem, 
we will now derive a description for the signal {St, t > O} of the form (4.1). Let 

Et = lf{t>} denote, as before, the right-continuous St-measurable process which 

jumps from zero to one at time r. The probability that the jump occurs in the time 

interval [t, t + dt] given that it has not occurred before time t equals A(t)dt + o(dt), 
where A(t) is the hazard rate at time t, (lefined by 

A)(t)= 1 g(t) 

Define the process Mt as Et minus the integral of this hazard rate up to time t A T 

(where we introduce the usual notation a A b for the minimum of a and b): 

itAr 
Mt =E E-Ks, t=]/ A(s) ds = -ln(1 -G(t AT)). 
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Tedious but straightforward calculations show that Mt is an St-martingale (for details, 
see, e.g., [9]). But since 

t 
tAT= j (1-Eu)du, 

we have that 

Mt =Et +ln [1-G (J(1 -Eu) du) 

and we thus find the following representation for Et: 

dEt = A(tAr) (1 -Et)dt+dMt 

(4.5) = A(t) (1 - Et) dt + dMt, 

where we have used the fact that A(t A T)(1- Et) = A(t)(1 - Et), since if t A r = , 
then 1 -Et = 0. Our original process may now be represented as St = XEt, so it 
satisfies 

(4.6) dSt = A(t) (X - St) dt + X dMt, 

and in fact for arbitrary k E N \ {0} 

(4.7) d(St)k = A(t) (Xk - (St)k) dt + Xk dMt. 

We can now apply the Kushner-Stratonovich equation to this representation of 
our signal process, but we first prove a lemma that will be used to simplify the 
equations which it generates. 

LEMMA 4.1. For all t E [0, T] and k E N \ {O}, we have that, almost surely, 

(4.8) E [Xk - (St)k I yt] = (1 _ -Et)EXk. 

Proof of Lemma 4.1. Let B be any set in Yt. Then by definition, 

BE [Xk- (St)k I Yt"](w) dP(w) = Xl -(W) (St)k (W) ) dP(w) 

= lB Xk(w) 1{t<T(W,)} dP(w) 

=lf{t< Xk(w) dP(w). 

But we have that the a-algebra generated by sets of the form B n {w t < T(w)} (with 
B E Ytf) is independent of sets in the a-algebra generated by Xk, since Yt" = EWt on 
{w: t < T(w)} and the process {Wt, t > 0} is independent of X, so 

IBXl{t(w Xk)(L) dP(w) = l EXk dP(w) 
Bn{w t<r(w)} B~~nfw:t<-r(w)j 

= (EXk) lB l{t<r(w)} dP(w) 

= (EXk) lBE [1- 11t> Y I Yt] (w) dP(w) 

= (IEXk) lB (-Et (W)) dP(w), 
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and we may now conclude that (4.8) holds by the almost sure uniqueness property of 
conditional expectations. [1 

THEOREM 4.2. Let the random variables X and T and the stochastic processes 
{St) t > O} and {YtEI t > 0} be defined as in section 2, and let X and T satisfy all 
conditions mentioned in that section. Then the optimal filter estimate St - E [St I yf] 
and higher order moments for t C [0, T] are generated by the following Ito stochastic 
differential equations (k e N \ {0}): 

(4.9) dJEt= A(t)(1 - Et) dt + -St (1 - Et) dvt, C2 

(4.10) dE [()k I Yt = A(t) EXk -Et ) dt 

+ (E [(St)k+1 Ye] _ St E [(St)k E]) 
+E2 Ytd\ 

with initial conditions Eo = E [(St)k Y Yte]t=o 0 O for all k C N \ {O}, and where the 
innovation process {vt6, t E [0, T]} is defined by (4.4). 

Proof of Theorem 4.2. The conditions for application of the Kushner-Stratonovich 
equation are obviously satisfied for the process Et since 

T T 

Ej [A(u)(l _ EU,]2du < j A(U)2du < 00 
(note that A(t) is finite for all t > 0 and continuous since we assumed that g(t) is 

continuous and G(t) < 1 for all t > 0) and E Euj ESu Idu < T . EIXX < oo. Here 
and in the rest of the proof we use the fact that all finite order moments of X exist 
because of condition (2.3), which implies that EIXIk < oo for all k > 0. 

Since {Wt, t > 0} was assumed to be independent of X and T, it is independent 
of {Mt, t > 0}. The Kushner-Stratonovich equation applied to (4.5) thus results in 

dEt = A(t) (I -Et) dt + 
- 

StEt -StEt ) dvte 

(4.11) = A(t)(1 - Et) dt + -2St(1 - Et) dvt, 

where we have used the fact that StEt = St. The initial condition is Eo = E(E0) = 0. 
To find the conditional moments E [(St)k I Yte] for k E N \ {0}, we use (4.7). Since X 
is St-measurable and independent of 7, and EIXI2k < oo, the process {XkMt, t > O} 
is again a square integrable St-martingale which is independent of {Wt, t > 0}. The 
two other conditions for the Kushner-Stratonovich formula are satisfied as well, since 

rT rT 

E /(Xk_-(Su)k)2A(U)2dU < EX 2k AX2 (U)2 du < ooI 
rT 

E 
I 
(Su))kSuIdu < T. EIXIk+l < 00. 

We therefore have that for k E N \ {0} 

(4.12) dE [(St)k I Ytf] = A(t) E [Xk _ (St)k I Ytf] dt 

+ 2- ( 1K [(St)k+l I yt]S 1 [(St)k dv, 

with initial condition 1K [(St)k I Yt ]t=0 = 1K[(St)klt=_ = 0. 
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Using the result of Lemma 4.1, we see that (4.12) can be simplified to 

(4.13) dIE [(St)k I Yt2] = A(t) EXk(l -Et) dt 

+-- I (E [(St)k+ I yt] -S E [(S)k YtE]) dv. 62 \t 

This proves Theorem 4.2. [ 
Note that E [(St)k Y Yf1, the conditional moment of order k, depends on the 

conditional moment of order k + 1, E [(St)kll Y Yt], so (4.9)-(4.10) do not form a 
closed set of equations. If we want to use these equations to define a finite-dimensional 
approximation to the optimal filter, we need to use an appropriate closure formula to 
approximate higher order moments in terms of lower order moments. One possible 
closure formula, which was proposed in [11], assumes the third order central moment 

to be zero at all times, i.e., 1E [(St -S)3 SYt)] - 0 for all t C [0, T]. 
This closing of the infinite set of moment equations that has now been generated, 

by expressing higher order moments in terms of lower order moments, means that we 
restrict our densities to belong to a specific family of distributions. As was pointed 
out earlier in [4], the a priori assumption that the conditional density will belong 
to this family at every time instant is often incorrect. But it was shown in the same 
paper that a sound mathematical basis can be given for this so-called assumed density 
principle in some cases which involve the filtering of nonlinear diffusions, by showing 
that the resulting filter is equivalent to a projection in probability density space, like 
the one we described in the preceding section. In the next section we will show that 
this idea can be applied to our change detection problem as well, and that we can 
gain considerable insight into the nature of such problems in doing so. 

5. The Assumed Density Principle. To formulate our differential-geometric ap 
proximate filter of section 3 in terms of the conditional moments it generates, we 
define, bearing in mind the interpretation of the normalization constant given in 

(3.8), the following statistics (where means approximates): 

_ fR p(x, Ot)dx 

fR 
p(x Ot)dx + I- G(t) 

(5.1) 
fxp (x Ot )dx 

E [X I Yt]: 
fR p(x, Ot) dx [XYl 

fxn p(x, Ot)dx 
Stn f>R -(7t G(t.,E[(St)n I yt,], 

-fRp(x, Ot)dx -1 1 - G(t) I[S) 

with n C N, so -to = Et and St' = St. 
We remark that this implies that St i.e., that the conditional estimate 

of the signal St naturally splits into two statistics Et and Xt, which approximate the 
conditional probability of a jump having occurred and the best estimate of the jump 
size, respectively. We have shown in (4.8) that the optimal filter estimates satisfy, for 

Xt = E [X I Yt ] f ?0 

IEX 
St=lXt w 1-(l-Et) s t 

so he ptmalfiteresimaes il ingeera n tsaiftheqtonS= E. 
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However, this does not imply that the estimate St which is generated by the 

differential-geometric approximation is different from the filter estimate St generated 
by closing the Kushner-Stratonovich equations, as we did in the previous section. We 
now show that they are in fact the same if we use (4.9) and (4.10) to calculate the 
first m + 1 moments and then close the equations in an appropriate way, by choosing 

Stn+1 appropriately. 
THEOREM 5.1. Let the conditions of Theorem 3.1 be satisfied, and let the process 

{Ot, t > 0} be defined as in (3. 10). Define Et, St, and St as in (5.1) forn = 0, ... .,m+ 
1. Then Et S,S 

- 
S1 and St (n 

= 2,.. ., m) satisfy 

dStn = A(t) (1 -Et) EXn dt + 
- 

( St +1- St Stn ) ( dYt - St dt ), -~~~~~~ 

with initial conditions SO = 0 for all n = O, .. ., m. 

Proof of Theorem 5.1. To find the stochastic differential equations for the Stn (n 
0, ... , m) we must first find the equations for the approximated conditional moments 
rk (k = 0, ... ., m), but this is relatively simple since (3.6) implies that 

drk = k ,rk+1 ,k+m ]od 

and the result of Theorem 3.1 then gives 

(5.2) drTk = g(t) EXk dt - dt + 2 dYt t ~~2,E2 e2odY 

Using the Ito form of (5.2), 

k+1 

drZqk = g(t) EXk dt + 1lt dYtE 

we find by Ito's differentiation rule that for all k = 0, ... m, 

d-k drdk 1k d(r1? + 1-G(t)) dr1Tk d(rl? + 1-G(t)) 
t ? + 1-G(t) (r? + 1-G(t))2 (t? + 1-G(t))2 

kr7d(7T? + 1-G(t))d(rjo + 1 -G(t)) 
+ (rt ? 1 

(770 + I1- G(t))3 

EXkg(t)dt + r 1tdYt6 /e 2 rk dYte/e2 ki1 rdt/e2 

71 + I1- G(t) (q ? + 1 - G(t)) 2 (T?O + 1 - G(t))2 
k (1)2 dt/,62 

(770 + 1-G(t)) 3 + 

e-G(t) -1 - G + ) _ G(t) m 1Gtdt 

= (t1- Xkd1 ( k1 k ) IdY/ dt) 

which proves the theorem. [1 
These equations are precisely the same as the ones we derived for the filter of 

the previous section, (4.9) and (4.10), if we replace E [Sd Ytj by St. It thus follows 
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that if we close these equations by choosing Stm+ appropriately, then the two filters 
generate the same estimates almost surely. However, some care must be taken in 
finding the appropriate closure formula. For example, in the Gaussian case (m = 2), 
we must not choose the third central moment to be equal to zero, as we proposed at 
the end of section 4. Since p(x, Ot)/ fR p(x, Ot)dx is assumed to be Gaussian, and since 
a Gaussian variable A satisfies EA3 - [EA]. [3EA2 - 2(EA)2], we have 

(5 3) 71? = o(3n- 
t7)) 

= 
Et Et (Et (Et) 

Only when this more complicated closure formula for E [(St)3 I Yf] in terms of the 
lower order moments E [(St)2 Yte], E [St I Yf1, and E [Et Yt] is used will the 
estimates generated by the Kushner-Stratonovich equation be the same, almost surely, 
as those generated by our differential-geometric approximation. 

6. A Three-Dimensional Filter. Although the filter derived in section 3 using 
differential-geometric methods is thus equivalent to the filter derived in section 4 
when the correct closure formula is used, there are certain advantages of the first 
parametrization. We already mentioned the fact that better schemes can be used to 
calculate numerical approximations of (3.10). Another advantage is the much more 
intuitive structure of the filter. If we define the a priori moments of the jump size X 
as pn = E(X -EX)n and the approximate filter estimates 

pn =AfR(X Xt) - np(X,) E[(X-E[X Yfl) IY] 
P; 

- 

fR p(x, Ot) dx 
.dEX-E[XIy 

then one may show by a tedious but straightforward exercise in Stratonovich calculus 
[23] that for n = 2,. .., m, 

-xt 
(6.1) dEt 

- 
Av(t)(1 -Et) dt + Et (I - Et) -t ( dYt' - St dt ), 

(6.2) dX~t =)A(t)IE (EX - 
Q dt + 

t 
(dYtE - -tdt), 1-t p2 

1-iEt n- 1t n1pn dPtn A (t) t t - Pn + n(PT - Pltn-) (EX - Xt) 

n t -2 
n 

E()Pk (EX - t) 
n 

] dt 

- 2 [Pt (n-1) Pt2Pn-2dt 

? - [PlnPt2Pn-l1 ] (dYtE-Xt dt). 
tE Pt tt 

These stochastic differential equations can be interpreted as the sum of vector fields 
which drive the conditional density to the a priori density of X (and these dominate 
before the jump when Et will be close to zero), vector fields which resemble those of 
the Kalman filter for a constant signal (which dominate after the jump when Et will 
be close to one), and some extra terms which make sure we do not leave the manifold 
that we project upon. 
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Note that the terms involving the innovation process in the equations for Pt' (n 
2, ... , m) will all be zero if and only if the central moments satisfy the equation 

Ptn+ 
_ 
nP21Ptn- for n = 0, .. ., m. Since we have that Pt' = l 

and Pt = 0 for all 
t > 0, this will be the case if for all n C N, 

2n = 
(p2)-* 

2-n (2n)! p2n+1 -; 

i.e., the first m + 1 central moments should be the same as those of a Gaussian 
distribution. This suggests that the equations will become even simpler if both X 
and our manifold are Gaussian, which is exactly the exponential family we get if 
we take m = 2 and the parameter set 0 = {(0o,01,02): 02 < 0}. In the rest of this 
section we will analyze the detection and estimation scheme when such a manifold of 
unnormalized Gaussian densities is used. 

If we substitute the relation St XtEt into the stochastic differential equation for 
Et given by (6.1), we see the close connection with the Shiryayev-Wonham detector 
for known jump sizes. As we remarked in section 2, if we assume that the jump size 

X is known a priori, say, X = a, then the conditional probability that the jump has 
occurred, lt = IP(t > T Y Yt), is finite-dimensionally computable. In fact, it follows 
from the Shiryayev-Wonham equation [22, 28] that 

a (6.3) d7rt = A (t)(I - -t) dt + -Ft(I - -t) 
- 

(d Yt' 
- a7t dt), 7ro = O. 

Our estimate of the probability that a jump has occurred satisfies a modified version 
of this Shiryayev-Wonham equation, where a known jump size X = a in the equation 
is replaced by a time-varying estimated jump size Xt. For m = 2 our differential 
geometric approximation thus becomes a mixture of modified Kalman filter equations 
and this adaptive Shiryayev-Wonham equation: 

St = Et Xt, 

dEt = A(t)(1 -Et) dt + Et( -Et) 2t ( dYtE -XEt dt), 

dt= t1)E~ [(EX-x)2+VarX - ] dt _(Pt2)dt, 

dP2-A(t) - ~ ~ P 

with Eo =d0, P= Var X, andk o = tEYX. 
In Figure 2, a block diagram of the filter is given that highlights the decomposition 

of the problem in a detection and an estimation part, which commnnicate throngh 
the jump size estimate 2% and the conditional probability ratio (1 - E)/Et. We 
remark that the original optimal detection and estimation problem as we formulated 
it cannot be solved recursively becanse we want to perform detection and estimation 
simultaneously. If the estimation problem was trivial (i.e., if we knew the jump size 

X immediately after the jump), the detection problem could be solved recursively, 
since we could then use a Shiryayev-Wonham filter tuned at a = X. If the detection 
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A A 

t ~ (: 0)~ Shiryayev-Wonham Detector 

Likelihood Ratio 

t~~~~~~~~~~~~~~x 

A 
. ~ ~~~~~~~ Xt 

Kalman Filter 

Fig. 2 Structure of the three-dimensional approximating filter. 

problem was trivial (i.e., we knew immediately after time T that a jump had occurred), 
then the estimation problem could be solved recursively, since we could simply start 
a Kalman filter at time r. 

In our combined problem, however, we must make sure that the Kalman filter 
does not start filtering too early, since it would then filter the zero signal for some time 
while its conditional variance PJ2 would decrease, making its reaction too slow when 
the jump does indeed occur. The likelihood ratio term in the equation for Pt2, which 
pulls the conditional variance P2 back to the variance of X as long as Et is small, 
prevents this from happening. After the jump has occurred, a good estimate of X 
should quickly become available, and the stochastic differential equation for Et will 
then resemble the Shiryayev-Wonham equation. We therefore expect the estimate 
for the conditional probability that a change has occurred to converge to one quite 
quickly after that. We will see in the simulation studies of the next section that this 
will indeed be the case. 

7. Simulation Results. In this section we will investigate the performance of the 
approximating filters that we defined in previous sections, by means of simulation 
studies. To do so, we first have to establish that there exists a finite, nonexploding 
solution to our filter equations which is unique up to equivalence and almost surely 
continuous. Such a proof can indeed be given using the theory of stochastic Lyapunov 
functions, but we will omit it here and refer the interested reader to the original paper, 
where a full proof is given. 

In the simulation studies performed here we compare the optimal filter and our 
approximations. We can find the optimal filter estimates by solving the Duncan 

Mortensen-Zakai equation (2.6), but this requires a lot of computational time. To 
do this, we used a grid which divided the interval [-3.0,3.0] for possible values of 
X in 1500 equidistant points. In Figure 3 we plot an example of the evolution of 
the conditional density over time, and also of the conditional mean, which represents 
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Fig. 3 Conditional density and optimal estimate. 

the optimal estimate of the signal S at the time. The delta measure in zero (which 
represents most of the probability mass before the jump takes place) has been omitted 
from the plot. We can clearly see the detection delay in this figure and the long tails 
in the distribution before the jump has happened. 

Alternatively, we can use our simple three-dimensional filter to get approxima 
tions for these optimal filter estimates on-line. In the figures in this section we show 
estimates for both the value of the signal, E[St I Yte], and for the conditional proba 
bility that a jump has occurred, IP(t > r I Yty). The top graphs refer to the optimal 
estimates, and the bottom graphs to our approximations in all cases. 

Experiment 1. For the first simulation study we took r to be an exponentially 
distributed stochastic variable with mean 15.0, and the jump size X to be normally 
distributed with zero mean and unit variance. We let the actual jump take place at 
r = 2.0, and the jump size was taken to be X = 0.5 exactly. The noise parameter e 
was taken as 0.10. All filters estimates were calculated on a time interval t E [0.0, 4.0], 
using an Euler scheme with step size 4.0 10-5. 

We first simulated the differential-geometric approximation as formulated in the 
previous section; i.e., we took the dimension of the filter m + 1 = 3, which means 
we project upon a manifold of Gaussian densities. In Figures 4 and 5 the results 
are shown for two different implementations of our filter. In Figure 4 the filter was 
implemented by (3.10), the stochastic differential equation for the parameter vector 
Ot, while in Figure 5 the direct equations for the moments which we derived in the 
previous section were used. There are some small differences between the two, which 
should be attributed to inaccuracies in the calculation of [H(Ot)]-1 in (3.10) and in 
the numerical method we use. However, in both cases the filter estimates show excel 
lent behavior both before and after the change point. Both implementations slightly 
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(a) Estimate of E [St Yt] (b) Estimate of P(t > r I Yt) 

Fig. 4 Comparison between optimal and approximate filter, using (3.10). 
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(a) Estimate of E [St Yt] (b) Estimate of P(t > T Yt) 

Fig. 5 Comparison between optimal and approximate filter, using moments. 

overestimate the conditional probability of a jump having occurred, but only after 
the jump. Around t = 2.6 the approximate and the exact conditional signal estimates 
are already indistinguishable. More importantly, the small delay in detection of the 
optimal filter (seen to be approximately 0.10 here) is the same for the approximate 
filter. For an extensive analysis of such detection delays in the optimal filter and its 
suboptimal approximations, the reader is referred to [11] and [23]. 

For comparison, Figure 6 shows a simulation of the same model setup for the 
approximating filter which we derived in section 4, where conditional moments are 
generated by using the Kushner-Stratonovich equation and the assumption that the 
third order central conditional moment is equal to zero. We showed in (5.3) that this 
filter, which was proposed in [11], is not equivalent to our filter, and its behavior is 
seen to be a lot worse. Although it will estimate both the signal and the conditional 
probability correctly in the long run, its behavior before the change is totally unac 
ceptable. Indeed, the conditional probability is negative most of the time, and the 
estimates of the signal before the change are not close to the true value zero at all. 
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(a) Estimate of E [St Yt]. (b) Estimate of P(t > T Yte). 

Fig. 6 Comparison between optimal filter and filter of section 4. 
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Fig. 7 Comparison between optimal and approximate filter. 

Experiment 2. To show that the excellent results for our differential-geometric 
approximation are not just a consequence of X being Gaussian, we performed a sec 
ond simulation in which X was taken to be uniformly distributed on [0, 2]. The jump 
time was given the same distribution as in the first set of experiments, and the actual 
jump time was again taken to ber T 2.0. The jump size was taken equal to X = 1.0, 
and e = 0.10. 

Figure 7 shows the estimates generated by our approximate filter, implemented by 
(3.10). The detection delay of 0.10 is almost exactly the same as for the optimal filter, 
and good filter estimates are produced almost directly after that. Apparently the 
algorithm works quite well for a jump size X with a uniform distribution, even though 
this distribution cannot be approximated very well on the exponential manifold that 
we project upon. In practice this is not important, since after the jump the behavior 
in the center of the state space can be shown to be asymptotically Gaussian in a large 
deviations sense. We again refer to [11] and [23] where an exact statement of this 
result is given, which helps to explain the good performance of our filter. 
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8. Conclusions. In this paper, we have argued that nonlinear filtering theory can 
be used to characterize and approximate relevant conditional statistics in those change 
detection problems where the size of the change is not known a priori. We have shown 
that a simple three-dimensional nonlinear filter can be defined which may be shown 
to have a global and unique solution under mild conditions and which performs well 
in simulation studies. Apart from an interpretation in terms of information geometry 
and in terms of an assumed density principle, we may view the equations for this filter 
as an adaptive version of the Shiryayev-Wonham equation, fed by estimates from a 
modified Kalman filter. 

Some interesting problems are still open at the moment. These include, for ex 
ample, the design of adaptive change detectors for discrete time problems, the design 
of detectors for more complicated signal changes such as the changing slope process 
[25] 

0 O, 0 < t < T, 

X(t-T), t>T, 

and the derivation of further theoretical properties of the filters that we defined in 
this paper. 
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