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Abstract The long range objective of this work is to develop a cartilage growth finite element model (CGFEM),
based on the theories of growing mixtures that has the capability to depict the evolution of the anisotropic and inho-
mogeneous mechanical properties, residual stresses, and nonhomogeneities that are attained by native adult cartilage.
The CGFEM developed here simulates isotropic in vitro growth of cartilage with and without mechanical stimulation.
To accomplish this analysis a commercial finite element code (ABAQUS) is combined with an external program (MAT-
LAB) to solve an incremental equilibrium boundary value problem representing one increment of growth. This proce-
dure is repeated for as many increments as needed to simulate the desired growth protocol. A case study is presented
utilizing a growth law dependent on the magnitude of the diffusive fluid velocity to simulate an in vitro dynamic confined
compression loading protocol run for 2 weeks. The results include changes in tissue size and shape, nonhomogeneities
that develop in the tissue, as well as the variation that occurs in the tissue constitutive behavior from growth.

1 Introduction

Articular cartilage (AC) is a thin layer of connective tissue located within joints and on the ends of the long bones
(Buckwalter and Mankin 1997) functioning as a low friction, wear-resistant,load-bearing material that facilitatesjoint
motion (Maroudas and Venn 1977; Mow and Ratcliffe 1997). Adult cartilage is composed of a relatively small fraction of
cells, called chondrocytes, within an extracellular matrix. The extracellular matrix is composed of water (60–90%)
and a solid matrix consisting mostly of a crosslinked collagen (COL) network and proteoglycans (PGs). AC has a
poor intrinsic healing capacity that is likely related to its relatively low cellularity, metabolic activity, and avascula-
rity (Buckwalter and Mankin 1998). Current clinical repair strategies for treating AC defects include tissue grafting and
tissue engineering (Hunziker 2001; Smith et al. 2005). The attainment of a number of specific design goals related to
tissue composition, structure, and function are likely to be critical to the development of a consistently successful stra-
tegy for the repair of AC defects.
 
The ultimate goal of this work is to develop an analytical model for growth of native and tissue engineered constructs
of cartilage, especially to facilitate cartilage repair and regeneration. Growth as referred to in this work encompasses the
phenomena of both growth, defined as the accretion of material similar to that already present, and remodeling, defined
as the alteration of the endogenous or the overall material, leading to a change in the mechanical properties of the tis-
sue. Differential growth of several tissue constituents can thus lead to growth and remodeling of the tissue as the mechanical
properties will evolve during growth. The growth of an individual constituent can also include remodeling. For example,
the crosslink density of the COL network may change as this constituent grows leading to a change in the mechanical pro-
perties of the COL constituent.
 
It has been shown that cartilage growth is dependent on biomechanical factors that are directly affected by local
conditions such as stress, strain, or fluid velocities. These conditions themselves are in turn affected by the material



properties which are evolving with growth. Continuum
mechanics growth models attempt to close this “feedback
loop”. Since a stimulus is filtered by various tissue pro-
perties before signaling the cell nucleus to initiate mRNA
production, continuum growth models attempt to model the
temporal evolution of tissue composition and, consequently,
biomechanical properties. For many years, bone-remodeling
theories have been used to describe how a scalar measure of
bone density and, consequently, the tissue’s mechanical pro-
perties change in response to mechanical stimuli (Cowin and
Hegedus 1976; Carter and Wong 1988; Beaupre et al. 1990;
Cowin 1993). More recent theories have instead represented
volumetric growth by a tensor quantity (Skalak et al. 1996,
1997) and were first used to study the growth of vascular
tissues (Rodriguez et al. 1994; Taber and Eggers 1996; Taber
1998). In addition to our work on the development of cartilage
growth mixture models, in recent years there has been much
interest in the development of continuum growth models
for single constituents (Chen and Hoger 2000; Epstein and
Maugin 2000; DiCarlo and Quiligotti 2002; Lubarda and
Hoger 2002; Kuhl and Steinmann 2003; Huang 2004; Volokh
2004; Lappa 2005; Menzel 2005), mixtures (Quiligotti 2002;
Ganghoffer and Haussy 2005) and mixtures that employ a
stress balance hypothesis (Humphrey and Rajagopal 2002;
Preziosi and Farina 2002; Breward et al. 2003; Garikipati
et al. 2004).

Various theories for the volumetric growth of elastic mate-
rials, as well as a cartilage growth mixture model (CGMM),
have been proposed by Klisch and colleagues (Klisch et al.
2000, 2001, 2003, 2005b; Klisch and Hoger 2003). These
theories allow for an elastic material to be composed of an
arbitrary number of constituents that may grow and remodel
independently. Growth for each constituent is described in
terms of deformations that can be decomposed into growth
deformations that model mass deposition and mechanical
(elastic) deformations that ensure compatibility in the case
of differential growth among the constituents. The notion
of locally differential growth giving rise to residual stresses
was suggested early by Skalak (1981), and then later by
Chuong and Fung (1986), as an important feature of soft
tissue growth.

Since the time scale for in vitro growth is several orders of
magnitude greater than the time scale for applied mechanical
loading, numerical approaches may be based on the solution
to an incremental equilibrium growth boundary-value pro-
blem. This assumption is supported by our solution to the
dynamic growth problem presented in Klisch et al. (2005b).
We first proposed the incremental growth boundary-value
problem in Klisch et al. (2001) and later modified it in Klisch
(2006b) to be compatible with the finite element method.

Experiments with cartilage explants have quantified
the metabolic response to mechanical stimuli such as
hydrostatic pressure, fluid shear, and dynamic compression

(Hall et al. 1988; Sah et al. 1989; Guilak et al. 1997).
A common testing protocol includes cyclic compression due
to its effect of stimulating metabolism; in particular, cyclic
compression of cartilage explants results in a frequency-
dependent stimulation of PG synthesis (Sah et al. 1989).
Theoretical finite element model results suggest that PG syn-
thesis in dynamic compression is best correlated with fluid
diffusion velocity (fluid velocity relative to the solid matrix)
(Kim et al. 1995; Buschmann et al. 1999). Due to its proven
ability to stimulate synthesis in explants, dynamic compres-
sion has been a common in vitro protocol for mechanical sti-
mulation of tissue-engineered constructs. Furthermore, PG
and COL synthesis and accumulation have been positively
correlated with fluid diffusion velocity in perfusion experi-
ments with tissue engineered constructs grown in bioreactors
in vitro (Pazzano et al. 2000; Davisson et al. 2002).

Biphasic models (Mow et al. 1980) have been derived
from mixture theories (Atkin and Craine 1976), and represent
the tissue as a permeable solid matrix (SM) and an invis-
cid fluid phase. For both phases, intrinsic incompressibility
is assumed. Nonlinear biphasic models allow the permea-
bility to depend on the strain of the tissue (Lai et al. 1981).
Due to the nonhomogeneous structure of the tissue, relatively
small physiological deformations of the type experienced in
vivo may produce local large deformations within the tissue.
Therefore, various finite deformation biphasic models have
been proposed to account for the high levels of strain that
may develop within the tissue. These models utilize a finite
deformation constitutive law for the SM and apply them to
the nonlinear biphasic model (Ateshian et al. 1997; Klisch
et al. 2000). Poroelastic formulations are commonly inclu-
ded as a standard feature of commercial finite element ana-
lysis packages and have been successfully used for modeling
soft tissues (Simon 1992). It has been shown that poroelas-
tic models and biphasic models are equivalent if the fluid
phase is considered inviscid (Simon 1992). Evaluations of
the commercial finite element analysis package ABAQUS
have shown that biphasic cartilage models can be success-
fully implemented using the soils consolidation feature of
the software (Simon 1992; Wu et al. 1998).

The specific goal of the current research is to develop a
CGFEM that has the capability to model the evolution of bio-
mechanical properties during growth. Our current hypothesis
is that the CGFEM is able to predict parameters that change
during growth that are difficult to measure such as depth-
dependent biomechanical properties, which may then be used
to identify specific parameters that should be measured expe-
rimentally, leading to the design of experiments that quantify
tissue growth. The specific aims at this stage of the research
were: (1) to solve the growth boundary value problem for
an initially unstressed, homogeneous, isotropic specimen in
confined compression for a 2 week period of growth, and
(2) to analyze the model’s ability to predict development of



nonhomogeneity throughout the specimen, including consti-
tuent volume fractions for COL and PG, residual stresses and
deformations, and the changing constitutive behavior as the
tissue composition evolves.

2 Methods

The CGFEM is made up of two computational tools: an
elemental growth routine (EGR) and a total specimen finite
element model. These two tools interactively solve the equi-
librium growth boundary value problem (BVP) as proposed
in (Klisch et al. 2001; Klisch 2006b), subject to the growth
theories presented in the CGMM (Klisch et al. 2000, 2003;
Klisch and Hoger 2003). Since the time scale for each
increment of in vitro growth is assumed to be 2–3 orders
of magnitude greater than the time scale for in vitro loa-
ding, the dynamic effects of growth can be neglected (Klisch
et al. 2005b), Thus, the dynamic BVP that characterizes the
mechanical response to loading and the growth equilibrium
BVP that characterizes the growth of individual elements are
solved independently.

Some of the simplifying assumptions made in the CGMM
are presented below, as they are also used in the CGFEM.
Recall that the cartilage is modeled as a porous elastic SM that
is composed of multiple constituents. The SM is saturated in
an inviscid fluid that may flow through the SM. Based on
this model of cartilage, the following assumptions are made
regarding the growth of the material:

(i) The CGMM allows for an arbitrary number of SM
constituents that are allowed to grow and remodel;
however, the current work is limited to two growing
constituents, PG and COL, and a third non-growing

constituent referred to as “other” that describes the
non-collagenous proteins.

(ii) All constituents are bound to the SM, and therefore
the constituent deformation gradient tensors are equal
to the SM deformation gradient tensor [this constraint
can be relaxed to allow for mobile constituents (Klisch
et al. 2003)].

(iii) The SM stress is equal to the sum of the PG and COL
stresses.

(iv) Constituent stress constitutive equations are defined
relative to reference configurations and only depend
on mechanical (elastic) deformations.

(v) All growth is defined relative to a SM stress free confi-
guration and can be decomposed into mechanical (elas-
tic) and non-mechanical (growth) parts.

(vi) Growth occurs at constant stress and density for each
constituent.

Several of the CGFEM’s key capabilities are that it can
predict the mechanical response due to in vitro loading,
prescribe load-driven (stimulated) as well as non load-driven
(unstimulated) growth, redefine the cartilage stress equation
relative to any intermediate material configuration, and simu-
late in vitro growth for an arbitrary number of time incre-
ments (e.g., hours, days, weeks).

A diagrammatic representation of the equilibrium growth
BVP over a specified time increment, n, is shown in Fig. 1.
See Appendix A for details on the incremental growth pro-
blem. The time scale for n is arbitrary; however, it is typically
defined to be several orders of magnitude greater than the
time scale of the applied biomechanical factors. For example,
if n is set to 1 day, during which a cartilage specimen may be
cyclically loaded for part of that increment at a rate of 1 Hz,
the dynamic effects of loading (e.g., diffusive fluid velocity)

Fig. 1 A diagrammatic
representation of the
equilibrium growth BVP
corresponding to increment n.
The growth deformation during
increment n for the unstressed
solid matrix is given by nδF
and the deformation required to
equilibrate the entire specimen
is given by nFc
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occur over a time period of 1 s as compared to the growth
increment of 1 day. Also note that both stimulated and unsti-
mulated growth are assumed to occur uniformly in an element
with respect to time during n, and represent only a small
change in the specimen’s mass. Likewise, during growth,
only small changes in the tissue’s composition occur over a
relatively large timescale, so it is reasonable to assume that
dynamic effects like the strain rate of the growing tissue are
also negligible (Klisch et al. 2005b). For these reasons, the
growth BVP is treated as an equilibrium problem.

The overall growth BVP describes the tissue adaptation
of the specimen from an initial configuration nκR to a grown
configuration nκG. The specimen is discretized into elements
over which the mechanical properties are assumed to be
homogeneous, although the specimen may be nonhomoge-
nous. For the purposes of this description, assume that all
biomechanical factors affecting growth for increment n have
already been determined.

The convention for specifying stress in a particular confi-
guration, and stress functions relative to that configuration,
are described with reference to Fig. 2. For example, the SM
stress in configuration κ is given as Ts

κ , and the SM stress
function relative to the configuration κo is given as T̂s

κo
. The

SM stress can be defined by the stress function through the
elastic deformation Fs as,

Ts
κ = T̂s

κo
(Fs). (1)

The material properties and the stress constitutive equa-
tions for the COL and PG are originally defined relative to
their respective initial reference configurations (κc

o, κ
p
o ). For a

constituent α, the stress function relative to any configuration

nκβ , defined in the BVP, must be mapped to the constituent’s
initial reference configuration κα

o where the material proper-
ties have been defined. For the BVP in Fig. 1, β can represent
R, r, G, and g, and α can represent c (COL) or p (PG). Since
the stress constitutive equations only depend on elastic defor-
mations, the stress function relative to nκβ will be a function
of the residual elastic deformations and the elastic deforma-
tions that occur relative to nκβ . Referring to Fig. 1, the PG
stress in configuration nκg can be described as

Tp
nκg = T̂p

nκr

(
nFp

o, nδFp
e
)
, (2)

where nFp
o is the residual elastic deformation that maps κ

p
o

to nκr, and nδFp
e is the incremental elastic deformation that

o

sF

Fig. 2 Multiple configurations of a body described by the deformation
Fs

maps nκr to nκg. Appendix A describes this concept in more
detail. Note that nδFp

g is a non-elastic incremental growth
tensor and does not directly affect the PG stress.

Using the assumptions listed above, the following para-
graphs will describe the general procedure for solving the
equilibrium growth BVP of Fig. 1 for an increment n.
A generally stressed SM element in the pre-growth nκR confi-
guration is unloaded to the element stress free configuration

nκr through the deformation nFu. For the initial increment,

nFu = I, where I is the identity tensor, as the element is
assumed to be stress free at the start of the simulation. For
future increments, nFu is known from the history of the past
increments.

Continuing with the description of the growth BVP
solution from the SM stress free configuration nκr, the
element undergoes an incremental deformation nδF to the
grown stress free configuration, nκg. Both the COL and PG
can experience unique incremental growth deformations(

nδFc
g, nδFp

g

)
, also referred to as growth tensors. Therefore,

in order to maintain the compatibility requirements imposed
by assumption (ii), incremental constituent elastic deforma-
tions

(
nδFc

e, nδFp
e
)

may develop, which are also referred to
as compatibility tensors. Using assumptions (ii)–(vi), we can
express the following relation,

nδF = nδFc
e nδFc

g = nδFp
e nδFp

g, (3)

where the total incremental growth deformation, nδF, is unk-
nown as are the constituent compatibility tensors. The consti-
tuent growth tensors are determined from the growth laws.
The CGFEM solves for all of the unknowns in Eq. (3) by first
solving for the compatibility tensors in terms of nδF,

nδFc
e = nδFnδFc−1

g and nδFp
e = nδFnδFp−1

g . (4)

The constituent stresses in configuration nκ g can then be
determined from their stress functions relative to nκ r and are
given as

Tc
nκg

= T̂c
nκr

(
nFc

o, nδFnδFc−1

g

)
and

Tp
nκg = T̂p

nκr

(
nFp

o, nδFnδFp−1

g

)
. (5)

Recalling assumption (iii) and also noting that the SM stress,
Ts

nκg
, is equal to zero, we obtain:

Tc
nκg

+ Tp
nκg = 0, (6)

which can be solved for the incremental growth deforma-
tion nδF. It can be seen from Fig. 1 that growth in the cur-
rent model defines the evolution of the solid matrix stress-
free configuration, as proposed in Rodriguez et al. (1994),
which leads to experimental prescriptions for the elastic and
growth tensors via destructive experiments that relieve resi-
dual stress, as discussed in Klisch et al. (Klisch et al. 2003,
2006). The solution to these equations is accomplished inside



MATLAB. With this result and Eqs. (4), the constituent com-
patibility tensors are solved for.

The final stages of solving the growth BVP involve defor-
ming the grown SM element in configuration nκg to the stres-
sed post-growth configuration nκR through the deformation
(nδFnFu)

−1. Note that the pre-growth and post-growth nκR

configurations are equivalent in the sense that every mate-
rial point occupies the same location in each configuration.
The difference between the configurations is the stress state
of the element, and the SM stress constitutive equation for
deformations out of this configuration.

This procedure is carried out for each element of the entire
tissue specimen. Generally, the growth of each element will
vary based on the growth laws and variations of the biome-
chanical factors throughout the entire specimen. Therefore,
in general, the elements of the specimen will not be in equili-
brium in the post-growth configuration nκR. The final step in
solving the growth BVP is to solve for the nonhomogeneous
deformation nFc, which ensures equilibrium throughout the
specimen for the grown configuration nκG. This solution is
accomplished with the finite element model (ABAQUS).

Subsequent increments are handled the same as the first
with the exception that the initial unloading deformation is
no longer trivial. However, it can be seen from Fig. 1 that the
deformation required to unload the element is known from
the previous increments, nFu = n−1δF n−1Fu n−1F−1

c .

3 Analysis

This section presents a growth simulation case study using
the CGFEM. One of the long-term goals of this work includes
determining the constituent growth laws and other material
and growth parameters for cartilage. Since these parameters
are currently unknown, they are assumed for the analyses pre-
sented below. This case study will consider small and equal
amounts of unstimulated COL and PG growth, with increased
amounts of stimulated PG growth. All assumed parameters
are based on physically relevant values and/or observations,
but their absolute validity is unknown. Therefore, the results

from these analyses should be physically relevant; however,
the accuracy of the results will have no basis for comparison,
and will not be investigated quantitatively.

3.1 Modeling parameters

The simulation modeled stimulated and unstimulated in vitro
growth of a cartilage disk specimen subjected to a confined
compression loading protocol as shown in Fig. 3. The spe-
cimen was modeled as an initially stress-free homogenous
bovine cartilage explant 1 mm thick and 3 mm in diameter.
The specimen is modeled as bovine due to the availability
of bovine material properties in the literature, and because
future growth experiments are planned using bovine speci-
mens. Only one quarter of the top half of the specimen was
modeled in the simulation taking advantage of the symmetry
of the problem.

Growth and loading was simulated for a 2-week period,
divided into fourteen 1-day increments. Therefore, the equili-
brium growth BVP was solved 14 times for each element (the
model presented here utilized 3,000 elements), once for each
daily growth increment. At the end of the 2-week growth per-
iod the specimen was released from the confining chamber
to determine the new configuration of the grown specimen
without the presence of the radial confinement.

3.2 Material characterization and parameters

An isotropic nonlinear bimodular constitutive equation with
five material constants was used for the SM in this analysis.
Several different models of this type have been investiga-
ted and found to provide reasonably accurate predictions of
cartilage in confined compression, unconfined compression,
and tension (Klisch 2006a). The current model is a simplified
version of those studied previously with the collagen mode-
led as a compressible Neo-Hookean material (Schroder and
Neff 2003) (see Appendix B for more details on bimodular
materials). For example, the SM stress equation that des-
cribes the constitutive behavior of the specimen as growth

Fig. 3 Schematic of confined
compression apparatus for tissue
growth and loading experiments
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and remodeling occur during the first day of growth is

T̂s
1κ r

= 1

J c

[
µ

(
Bc − I

) + 1

2
λ[J c]

((
J c)2 − 1

)
I
]

−
[
α1(det Fp

e)
−1 + α2(det Fp

e)
−2

]
I. (7)

In this relation, Bc is the left Cauchy-Green deformation ten-
sor for the collagen (Bc = Fc

eFcT

e ), J c is the determinant
of the collagen deformation gradient (J c = det(Fc

e)), and
µ, λ, α1, and α2, are material constants. Note that for this
first day 1κr =1κR since the specimen was initially stress free.
The values for the material constants are given in Table 1.
These values are based on bovine data found in the literature
(Klisch et al. 2005a,b).

The compatibility tensors Fc
e and Fp

e are defined relative
to the stress free pre-growth reference configuration nκr, but
recall that the total stress also requires the history of the
deformations relative to the reference configurations κc

o and
κ

p
o (see Appendix A).

The initial constituent residual elastic deformation tensors
required to put the solid matrix in equilibrium (Ts

1κr
= 0) are

given as:

1Fc
o = (1.05)I,

1Fp
o = I.

(8)

Recall that these residual elastic deformations are combined
with the SM elastic deformations that develop as growth and
loading occur to calculate the total COL and PG deformation
gradients, Fc

e and Fp
e , used in Eq. (7).

The model is run in ABAQUS using the poroelastic for-
mulation which allows for variable permeability throughout
the loading. The material permeability function is given as
(Argoubi and Shirazi-Adl 1996; Ateshian et al. 1997)

k = ko

[
e

eo

]2

exp

[
M

2

({
1 + e

1 + eo

}2

− 1

)]

, (9)

with ko the permeability in the absence of strain, e the void
ratio, eo the initial void ratio, and M the non-dimensional
permeability coefficient. Listed in Table 2 are the constant
value parameters found in Eq. (9). These values were also
determined or compiled from bovine data in the literature.
Note that the permeability is listed in the form required by
ABAQUS which is derived from

ko = k̄oρwg, (10)

Table 1 Material properties for five parameter material model

λ+ (MPa) λ− (MPa) µ (MPa) α1 (MPa) α2 (MPa)

0.35 0.02 0.04 0.01 0.045

Note: λ[J c] = λ+ if J c ≥ 1, λ[J c] = λ− if J c < 1

Table 2 Permeability parameters

M k̄o m4/Ns ko mm/s eo

2.2 2.7 × 10−15 2.64 × 10−8 7.13

Table 3 Initial volume fractions

ϕc
o ϕ

p
o ϕo

o ϕs
o ϕf

o

0.072 0.013 0.038 0.123 0.877

where k̄o is the permeability in m4

N s , ρw, is the density of the
wetting liquid, and g is the acceleration of gravity.

The initial void ratio, eo, is given as

eo = φf
o

φs
o
. (11)

Note that φs
o is the sum of initial SM constituent volume

fractions and φf
o is the fluid volume fraction. The initial

fluid volume fraction is derived from the incompressibility
constraint

φs
o + φf

o = 1. (12)

The assumed initial volume fractions including PG, COL,
and other (o) are listed in Table 3.

3.3 FE loading and stimulated growth trigger

For the considered growth case, stimulated growth for each
constituent was assumed to depend on the magnitude of the
diffusive fluid velocity. Based on work by Buschmann et al.
(1999), growth appears to be stimulated in regions of the
specimen where the magnitude of the diffusive fluid velocity
exceeds the value 2.5 × 10−4mm/s. Therefore, this value
was defined in the CGFEM such that if, during loading, any
element in the specimen experienced a diffusive fluid velo-
city above this value, that element was subject to stimulated
growth as defined by the growth laws.

Obviously the loading and boundary conditions, coupled
with the permeability, regionally affects the magnitude of
the diffusive fluid velocity throughout the specimen. Since
only confined compression loading was considered for this
case study, variations in this parameter only occurred axially,
with zero velocity at the mid-plane, and maximum velocity
occurring symmetrically at the top and bottom surfaces.

To achieve a diffusive velocity distribution that stimulated
nonhomogeneous axial growth, the specimen was loaded in
confined compression by applying a 0.1 mm displacement
to the top surface at the rate of 2.5 × 10−3mm/s. Note that
relative to the specimen mid-plane, where the diffusive fluid
velocity is zero, the top and bottom surfaces were displaced
at the rate 1.25×10−3mm/s, which equals the magnitude of



Table 4 Growth tensors for
case study

Collagen Collagen Proteoglycan Proteoglycan
unstimulated stimulated unstimulated stimulated

nδFc
g = (1.01)1/3I nδFc

g = (1.01)1/3I nδFp
g = (1.01)1/3I nδFp

g = (1.03)1/3I

the diffusive fluid velocity at these surfaces. This loading rate
ensured that the outer regions of the specimen experienced
stimulated growth, since the diffusive fluid velocity in these
regions always exceeded the minimum trigger value, and the
middle of the specimen experienced no stimulated growth
since the diffusive fluid velocity was zero in this region. This
method was chosen to demonstrate the capabilities of the
model, not to attempt to match experimental protocols.

Each element in the specimen experienced unstimulated
COL and PG mass deposition (growth), at the rate of 1% per
day. For elements where stimulated growth was triggered, an
additional 2% stimulated PG growth occurred. The growth
tensors associated with this case study are shown in Table 4.

The reader should note that the growth laws for stimulated
growth do not account for the excess magnitude of the diffu-
sive velocity above the trigger value, or the time duration of
the trigger event. For example, if an element experienced a
maximum diffusive fluid velocity value equal to the trigger
value for just one instant in time, it was prescribed the same
amount of stimulated growth as an element that experien-
ced a maximum diffusive fluid velocity equal to five times
the trigger value for the entire loading duration. This off–on
nature of the growth law can be easily modified in this model
as more data become available.

4 Results

This section describes the tissue configuration resulting from
the simulation in several ways. The physical change in the
dimensions of the tissue is tracked by monitoring the height
of the specimen throughout the simulation and observing the
final variation in the radius of the tissue after removal of
the radial confinement at the end of the 14 days of growth.
The composition of the tissue is expressed as the variation
in the volume fractions of the PGs and COL through the
height of the specimen. The stresses generated due to the dif-
ferential growth of the constituents are also reported. Finally,
the constitutive behavior of elements in the center and on the
surface of the specimen is compared at the end of the simu-
lation. All these characteristics are factors that may help to
design future protocols for controling the growth of cartilage.

The daily change in height of the specimen inside the
confining chamber can be seen in Fig. 4. The daily growth
increases as we would expect since the growth law is based
on a percentage increase of the existing mass. It can be seen
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Fig. 4 Daily change in specimen height inside the confining chamber

from Fig. 4 that there is acceleration in the growth in the early
stages of the simulation. This occurs due to the off–on nature
of the stimulated growth law used for this study. Between
days 2 and 5 enough growth has occurred so that an additio-
nal row of elements reaches the threshold fluid velocity and
begins to see stimulated growth, therefore accelerating the
daily growth rate. The shape of the released specimen can be
used to help establish and verify appropriate growth laws by
comparing to experimental results. The varying radius of the
released specimen is shown in Fig. 5. The top surface where
more PG deposition was occurring has an increased radius
relative to the center of the specimen.
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confining chamber

As differential growth occurs between the constituents,
non-homogeneity begins to be seen in the model. Fig. 6 shows
the constituent volume fractions after 14-days of growth,
before and after release from the confining chamber, nor-
malized by their initial values. As would be expected, the
regions seeing stimulated growth now have a higher volume
fraction of PG.

Residual stresses can also be investigated in the confined
and released configurations as shown in Fig. 7. In the confi-
ning chamber the areas of increased PG deposition near the
surface show increased radial compressive stresses compared
to the areas of the tissue near the centerline of the specimen
that underwent less overall growth. When released the entire
disk expands but the regions near the mid-plane, which did
not see as much PG deposition, do not want to expand as
much as the surface regions, leading to the residual stress
state seen in Fig. 7. Notice that the material near the mid-
plane is now in tension holding back the material near the
surface. It can also be seen that the stresses are an order of
magnitude lower after release from the confining chamber.

As the constituents grow differentially throughout the
simulation the constitutive behavior of the tissue is changing.

The ability of the model to capture this behavior is evident in
Fig. 8 where the stress strain behavior in the axial direction is
compared for an element on the top surface of the specimen
with an element on the specimen mid-plane. The area on the
top surface with more PG growth throughout the simulation
now exhibits stiffer behavior in compression. Also note the
bimodular nature of the material is evident as the material
softens when the collagen network goes into compression.

The computational resources for this simulation were
fairly modest. The current model (Fig. 7) has ∼15,000
degrees of freedom, which for the current material model
takes approximately 25 min per growth increment with a
single 1.8 GHz processor and 1 GB of Ram.

Studies were done to validate the independence of the
results presented to the choice of the growth increment. Simu-
lations were repeated with a half day growth increment and
the appropriately scaled growth tensors and no difference
was seen in the final composition or stress state of the grown
models.

5 Discussion

The case study presented above demonstrates the ability of
the CGFEM to predict evolving nonhomogeneous composi-
tion of a cartilage explant during in vitro growth in a confining
chamber subject to dynamic compression. This result is signi-
ficant due to the fact that adult native cartilage displays just
such a highly nonhomogenous structure that may be neces-
sary to ensure a successful repair strategy using tissue engi-
neered constructs. The volume fractions are one measure of
the nonhomogenous nature of the grown specimen but the
CGFEM also predicts the evolution of the stress strain res-
ponse as the solid matrix grows and remodels. The mate-
rial response curves depicted in Fig. 8 demonstrate how the
material stiffens in compression as the PG volume fraction
increases. This ability is essential to achieve the goal of simu-
lating the evolution of cartilage constructs since the growth
is believed to be dependent on the material’s mechanical res-
ponse to loading.

The confined compression protocol has several advanta-
geous qualities that made it a good choice for the case study

Fig. 7 Distribution of the solid
matrix Cauchy stress in the 1
direction after 14 days of growth
before and after release from the
confining chamber. The residual
stresses and nonuniform radial
expansion demonstrate the
effect of differential growth
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Fig. 8 Comparison of the SM unconfined compressive stiffness at the
surface and mid-plane of the specimen on day-14 demonstrating the
evolution of the material elastic behavior with growth

presented in this work. The fluid velocity profile for this
protocol is quite simple in that the fluid velocity only has
a component in the axial direction and the velocity is known
to be zero at the mid-plane due to the symmetry of the pro-
blem. This ensures that if the rate of compression is chosen
carefully the outer layers of tissue are guaranteed to see sti-
mulated growth whereas the tissue on the mid-plane will
not. Also the tissue deformations in this test protocol do not
include any rotations until the tissue is released from the
confining chamber. This allowed for several simple material
models to be evaluated against closed form solutions before
more complex models were implemented.

This initial work has demonstrated many of the capabili-
ties of the CGFEM but the study was intentionally limited
at this stage of the research. There are no material rotations
until the specimen is released which simplifies the solution of
the boundary value problem for the growth deformations. As
deformations become more complex, solving for the growth
deformation tensor may become more difficult. As can be
seen by the selection of the material model, currently the
material is assumed to be isotropic. This limitation does not
reflect the true nature of native cartilage which has been found
to display anisotropic behavior (Wang et al. 2003; Ficklin
et al. 2006). Future work will extend the bimodular stress–
strain equation for the collagen constituent to include ani-
sotropic behavior (Klisch 2006a). Also, it has been sugges-
ted that to accurately model specific growth experiments a
collagen remodeling parameter (related to collagen-specific
crosslink or fibril binding molecules) should be included that
changes the mechanical properties of the collagen constituent
(Klisch et al. 2005a).

One area of great promise for the CGFEM is the abi-
lity of the model to simulate experimental protocols. Such
simulations experiments can be specifically designed to give
needed results with much less trial and error in the lab. It is

emphasized that accurate growth laws are required for this
model to mature into a truly useful tool for simulating expe-
rimental protocols for cartilage growth. Currently, experi-
ments are being planned to accomplish this aim. Specifically
steady-state perfusion experiments are being designed to help
quantify the growth tensors.

Although no attempt is presently made to compare the
predicted growth to experimental data, available data have
been used wherever possible to calibrate the model. The fluid
velocity used to trigger stimulated growth is based on expe-
rimental observations (Buschmann et al. 1999). The off–on
nature of the stimulated growth trigger can be easily modi-
fied to account for dose dependence if future experiments
display such behavior. Although fluid velocity was chosen
as the trigger for the current case study, the model is gene-
ral enough to allow for many different mechanical stimuli
to be used. The material constants were all chosen based on
available data (Klisch et al. 2003; Chahine et al. 2004).

The capabilities of the CGFEM evident in the results pre-
sented above illustrate that this model may be capable of
predicting nonhomogeneous growth of cartilage constructs
for use in tissue engineering applications. One advantage of
the CGFEM is that the analytical modeling will be less time-
consuming, and consequently less expensive, than experi-
mentation. Currently, these types of quantitative growth
models are sparse in the field of cartilage tissue engineering.
As a specific example of the clinical significance of this work,
consider the difficulty in the engineering of target constructs
that meet specific compositional, structural, and functional
requirements with the aim of repairing cartilage defects. It is
possible that, in future, a construct’s requirements for a spe-
cific anatomic site may be identified by noninvasive methods
such as MRI or ultrasound. Indeed, quantitative MRI para-
meters have been shown to explain up to 87% of the variation
in specific mechanical properties (Nieminen et al. 2004) and
the structural, compositional, and mechanical variations in
degenerate and normal cartilage (Nissi et al. 2004). If the
CGFEM can be calibrated for a tissue engineering protocol
within a range of in vitro biochemical and biomechanical
stimuli for a specific cell population, then it may be used to
predict the in vitro protocol needed to produce a construct
from a nearly homogenous state to one that more closely
resembles the native tissue state with its depth-dependent
nonhomogeneties.
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Appendix A: Incremental growth analysis

In this appendix, we discuss the derivation of an equation
(see A4) that describes how the total and incremental
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Fig. 9 Schematic of the incremental growth boundary-value-problem

elastic deformation gradient tensors are related for a growing
elastic material which serves as the foundation for the com-
putational solution. This result was first presented in Klisch
(2006b). Consider a subset of the body that is unloaded
and stress-free in a reference configuration κo(P) at time to
(Fig. 9). The subset represents a finite element in the compu-
tational setting. Suppose that the deformation gradient tensor
F1 = F1eF1g maps κo(P) to the configuration κ1(P) and is
known at time t1. Also, let the incremental deformation gra-
dient tensor δF that maps κ1(P) to κ2(P) at time t2 obey the
decomposition

δF=δFeδFg, (A1)

where δFe and δFg are the incremental elastic and growth
tensors. The tensor δFg quantifies the amount and orienta-
tion of mass deposition relative to κ1(P) and the tensor δFe

ensures compatibility of the body. Finally, suppose that the
deformation gradient tensor F2 = F2eF2g maps κo(P) to
κ2(P) at time t2. Using the chain rule, we obtain

F2 = δF F1 ⇒ F2 = δFeδFgF1e F1g. (A2)

The solution to the incremental growth problem involves
determining δFg and δFe.

The biological aspects of growth suggest that a growth law
should be defined relative to κ1(P), which is considered as
the reference configuration for the incremental growth pro-
blem. The growth law corresponds to the time rate of change
of the incremental growth tensor δFg. In Klisch (2006b), we
derived an equation for determining δFg from the growth
law using a first-order Taylor series expansion. Once δFg is
known, the equilibrium equation divTs = 0 and the stress
constitutive equation are used to determine δFe for P while
satisfying the boundary conditions on the body B. Howe-
ver, determining the manner in which the stress constitutive
equation evolves is not trivial, since the stress is assumed to
depend only on the elastic deformations. Suppose that the
stress constitutive functions for deformations out of κo(P)

and κ1(P) are of the general forms T̂κ0(F2e) and T̂κ1(δFe),
respectively. Usually, the function T̂κ0(F2e) will be known;
consequently, we need to determine T̂κ1(δFe). The physical

idea that must be satisfied is that the stress in κ2(P), Tκ2 ,
must be the same when evaluated using either of these stress
constitutive functions:

Tκ2 = T̂κ0(F2e) = T̂κ1(δFe). (A3)

For orthotropic, transversely isotropic, and isotropic mate-
rials, if F2e and T̂κ1(δFe) satisfy

F2e = δFeF1e, T̂κ1(δFe) = T̂κ0(δFeF1e), (A4)

then these are sufficient conditions for (A3) to hold Klisch
(2006b).

Appendix B: Polyconvex collagen and proteoglycan strain
energy functions

In this appendix, we briefly outline the constitutive theory
used in this paper to derive stress–strain functions for the
collagen and proteoglycan constituents. Due to the observed
tension–compression asymmetry in cartilage, we use a bimo-
dular stress constitutive equation for the collagen constituent.
For infinitesimal strains, Ateshian and colleagues (Soltz and
Ateshian 2000; Wang et al. 2003) have employed bimodular
stress constitutive equations that allow for different mecha-
nical properties in tension and compression. Those models
were based on a bimodular theory for infinitesimal strains
(Curnier et al. 1995) in which the material constants may be
discontinuous (or jump) across a surface of discontinuity in
strain space, provided that stress continuity conditions are
satisfied at the surface. Recently, the theory of Curnier et al.
(1995) was generalized to second-order elasticity by Klisch
(2006a). Here, we briefly describe the extension of these
theories to the present application. In order to satisfy mate-
rial stability restrictions, the strain energy functions used are
polyconvex; see, for example, Itskov (2004) and Schroder
et al. (2005).

The Cauchy and second Piola–Kirchhoff stress tensors
(denoted as T and S, respectively) are related by

JT = FSFT, (B1)

where J = detF. The stress constitutive equations for a Green-
elastic material may be expressed as

S = 2
∂W

∂C
, (B2)

where C = FTF is the right Cauchy–Green deformation
tensor and W is a scalar strain energy function that depends
on a set of invariants of C corresponding to the material
symmetry group. The fourth-order elasticity tensor is defined
as

C = ∂S
∂C

. (B3)



A scalar valued function of C that identifies a surface of dis-
continuity in the six-dimensional strain space of C is defined
as

g(C) = 0, (B4)

and is restricted to be a function of the invariants correspon-
ding to the material symmetry group. The stress function S
may be different on either side of the surface of discontinuity;
here we define

S = S+ if g(C) > 0, S = S− if g(C) < 0. (B5)

In a similar fashion, we can define (W+, W−, C+, C−) on dif-
ferent sides of the surface of discontinuity. In order to ensure
that the stress–strain equation will be continuous across the
surface of discontinuity, we must satisfy the following (neces-
sary and sufficient) conditions (Curnier et al. 1995; Klisch
2006a):

S = S+ = S−, [[C]] = C+−C− = s(C)M(C) ⊗ ∂g

∂C
,

(B6)

for all C that satisfy g(C) = 0, where [[C]] represents the
jump in the elasticity tensor, s(C) is a scalar valued function
of C, and M(C) is an arbitrary second-order tensor function
of C.

In this paper, we assume that the collagen constituent
is a bimodular isotropic material with a compressible Neo-
Hookean strain energy function:

W c = 1

2
µI1 + 1

4
λI3 −

(
µ + 1

2
λ

)
ln

√
I3 (B7)

where I1 = trC, I3 = det C, and µ and λ are material
constants. The bracketed term in Eq. (B7) is chosen to ensure
a stress-free reference configuration. Also, we use the follo-
wing surface of discontinuity:

g(C) = I3 − 1 = 0, (B8)

so that the collagen constituent is bimodular with respect to
volume change from the reference configuration. Conside-
ration of the continuity conditions (B6) and straightforward
calculations reveals that the only material constant that may
jump across the surface (B8) is λ; we adopt the notation

λ[I3] = λ+ if I3 > 1, λ[I3] = λ− if I3 < 1. (B9)

Note that this correlates with the definition given in the body
of the paper since I3 = (J )2. Consequently, the bimodular
Cauchy stress constitutive equation for the collagen consti-
tuent becomes

Tc = 1

J

{
µ(B − I) + 1

2
λ[I3](J 2 − 1)I

}
, (B10)

where C = FTF is the right Cauchy–Green deformation
tensor.

For the proteoglycan constituent, we assume the strain
energy function

W p = −1

2
α1 ln I3 + α2(I3)

−1/2, (B11)

where α1 and α2 are material constants. Consequently, the
Cauchy stress constitutive equation for the proteoglycan
constituent becomes

Tp =
{
−α1

J
− α2

J 2

}
I. (B12)

The material constants were chosen based on an earlier study
(Klisch et al. 2003) and are listed in Table 1. In the solid
matrix stress-free reference configuration (i.e., Ts = Tc +
Tp = 0), these material constants correspond to constituent
pre-stresses of Tc = 0.055I MPa and Tp = −0.055I MPa,
a spherical collagen pre-strain (i.e., Fc

o = 1.05I), and coin-
cides with the reference configuration for the proteoglycan
constituent (i.e., Fp

o = I). Furthermore, the proteoglycan
stress becomes unbounded as J approaches 0 and approaches
0 as J approaches infinity, based on the assumption that the
proteoglycan stress is always compressive.
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