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Abstract

A nonlinear fourth-order parabolic equation in one space dimension with periodic
boundary conditions is studied. This equation arises in the context of fluctuations of
a stationary nonequilibrium interface and in the modeling of quantum semiconductor
devices. The existence of global-in-time non-negative weak solutions is shown. A
criterion for the uniqueness of non-negative weak solutions is given. We prove that
the solution converges exponentially fast to its mean value in the “entropy norm”
using a new optimal logarithmic Sobolev inequality for higher derivatives. The rate
is therefore independent of the solution and the constant depends only on the initial
value of the entropy.
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1 Introduction

This paper is concerned with the study of some properties of weak solutions to a nonlinear
fourth-order equation with periodic boundary conditions and related logarithmic Sobolev
inequalities. More precisely, we consider the problem

uy + (u(logu)rp) e = 0,  u(-,0) =ug >0 in S, (1)
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where S is the one-dimensional torus parametrized by a variable = € [0, L].

Recently equation (1) has attracted the interest of many mathematicians since it pos-
sesses some remarkable properties. For instance, it is a one-homogeneous equation which
is a simple example of a generalization of the heat equation to higher order operators.
The solutions are non-negative and there are several Lyapunov functionals. For instance,
a formal calculation shows that the entropy is non-increasing;:

d
dt Jo

u(logu — 1)dx + /

u |(log ) ge| dz = 0. (2)
S1

Another example of a Lyapunov functional is |, s1(u — log u)dx which formally yields

d
— | (u—logu)dzr + / |(log ) 4a|” dz = 0. (3)
S1

dt Js:
This last estimate is used to prove that solutions to (1) are non-negative. Indeed, a
Poincaré inequality shows that logu is bounded in H?(S') and hence in L*(S'), which
implies that u > 0 in S x (0, 00). We prove this result rigorously in section 2. Notice that
the equation is of higher order and no maximum principle argument can be employed. For
more comments on Lyapunov functionals of (1) we refer to [4, 5].

Equation (1) has been first derived in the context of fluctuations of a stationary non-
equilibrium interface [8]. Tt also appears as a zero-temperature zero-field approximation
of the so-called quantum drift-diffusion model for semiconductors [1] which can be derived
by a quantum moment method from a Wigner-BGK equation [7]. The first analytical
result has been presented in [4]; there the existence of local-in-time classical solutions
with periodic boundary conditions has been proved. A global-in-time existence result with
homogeneous Dirichlet-Neumann boundary conditions has been obtained in [11]. However,
up to now, no global-in-time existence result is available for the problem (1). Although it
is essentially an adaptation of the method of [11], we give a proof for completeness.

The long-time behavior of solutions has been studied in [5] using periodic boundary con-
ditions under restrictive regularity conditions on the initial data, in [13] with homogeneous
Dirichlet-Neumann boundary conditions and finally, in [10] employing non-homogeneous
Dirichlet-Neumann boundary conditions. In particular, it has been shown that the solu-
tions converge exponentially fast to their steady state in various norms and even, in [11],
in terms of the entropy. The decay rate has been numerically computed in [6]. We also
mention the work [12] in which a positivity-preserving numerical scheme for the quantum
drift-diffusion model has been proposed.

In the last years the question of non-negative or positive solutions of fourth-order
parabolic equations has also been investigated in the context of lubrication-type equations,
like the thin film equation

up + (f (U)tUzzz)e = 0

(see, e.g., [2, 3]), where typically, f(u) = u® for some o > 0. This equation is of degen-
erate type which makes the analysis easier than for (1), at least concerning the positivity

property.



In this paper we show the following results. First, the existence of global-in-time weak
solutions is shown under a rather weak condition on the initial datum u,. We only assume
that uy > 0 is measurable and such that [ (ug — logug)dz < oo. Compared to [4], we
do not impose any smallness condition on uy. We are able to prove that the solution is
non-negative. Compared to [5], the H! regularity of the initial data is not required, which
is consistent with the type of a priori asymptotic estimates we obtain later.

Our second result is concerned with uniqueness issues. If u; and us are two non-negative
solutions to (1) satisfying some regularity assumptions (see Theorem 5) then u; = uy. A
uniqueness result has already been obtained in [4] in the class of mild positive solutions;
however, our result allows for all non-negative solutions satisfying only a few additional
assumptions. It is slightly stronger than the one stated in [11].

The third and main result of this paper is the exponential time decay of the solutions,
i.e., we show that the solution constructed in Theorem 1 converges exponentially fast to
its mean value @ = [ u(x,t)dx/L:

/ u(z,t)log (u(x, t>) dx < G_Mt/ ug log (u—f]> dx Vt>0, (4)
g1 u g1 u

where M = 327*/L*. This constant is easily obtained by linearization in the asymptotic
regime. It shows up in [5], but in the by far more restrictive context of the H' setting.
Our proof is based on the entropy—entropy production method. For this, we show that
the entropy production term [ |(log)..|” dz in (2) can be bounded from below by the
entropy itself yielding

d U
e 1 (—)d M
@ Jo toe\g)

ulog (g) dr < 0.

g1 u

Then Gronwall’s inequality gives (4). This argument is formal since we only have weak
solutions; we refer to Theorem 9 for details of the rigorous proof. Notice that an exponential
convergence rate in the LP norm is given in [5], but it involves a (p—1) factor which vanishes
in the limit p = 1 corresponding to the entropy setting. In [13], the exponential decay of
the relative entropy is established, but with a rate which depends on the initial data. Here
M is independent of the solution and the constant in the right hand side of (4) is optimal:
it is simply the initial value of the relative entropy.

The lower bound for the entropy production is obtained through a logarithmic Sobolev
inequality in S'. We show (see Theorem 6) that any function u € H"(S') (n € N) satisfies

u? L\ 2
/ u’log | 75— | dz <2 <—) ’u(")} dz, (5)
st ||u||L2(sl) 27 S1

where ||ul|72q1) = [u’dz/L, and the constant is optimal. As already mentioned in the
case n = 2, the proof of this result uses the entropy—entropy production method.

Entropy estimates are interesting for the following reason. The L' norm of a solution
u to (1) is preserved by the evolution. It is therefore natural to look for a convergence of
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u to its average © measured in L! rather than in LP, p > 1. As noted in many papers,
the limit of such LP estimates as p — 1, p > 1, is the entropy rather than the L' norm
itself. The convergence of u to u is then a consequence of the standard Csiszar-Kullback
inequality. Exactly as for the heat equation, p = 1 looks as a threshold from the point
of view of the existence theory and for the optimality of the estimates on the asymptotic
behaviour. This work is a step towards a deeper understanding of both entropy methods
and higher order equations.

The paper is organized as follows. In section 2 the existence of solutions is proved.
Section 3 is concerned with the uniqueness result. Then section 4 is devoted to the proof
of the optimal logarithmic Sobolev inequality (5). Finally, in section 5, the exponential
time decay (4) is shown.

2 Existence of solutions

Theorem 1. Let ug : S' — R be a nonnegative measurable function such that fsl (uo —
logug)dx < oco. Then there exists a global weak solution u of (1) satisfying

u € Ly2(0, 00, WHH(SY) N W(0, 005 H2(SY)),

loc loc

u>0 inS'x(0,00), logué€ Li (0,00, H*(SY)),

loc

and for oll T' > 0 and all smooth test functions ¢,

T T
/ (ug, @) g2 predt + / / u(log ) yy@rrdrdt = 0.
0 0 St

The initial datum is satisfied in the sense of H2(S') := (H?*(S"))*.

Proof. We first transform (1) by introducing the new variable u = e¥ as in [11]. Then (1)
becomes

(ey)t + (eyy:m:):m: = 07 y(; O) = %Yo in Slu (6)

where yy = log ug. In order to prove the existence of solutions to this equation, we semi-
discretize (6) in time. For this, let 7> 0, and let 0 =t) < t; < --- <ty =T with t, = k7
be a partition of [0,7]. Furthermore, let y,_, € H*(S') with [ exp(yx—1)dz = [updz and
[ (exp(ys—1) — yx—1)dz < [(uo — logug)dx be given. Then we solve recursively the elliptic
equations

1
—(e¥ — e 1) + (e (Yg) g )ee = 0 in S™. (7)
-

Lemma 2. There exists a solution y, € H*(S') to (7).

Proof. Set z = y,_1. We consider first for given € > 0 the equation

1
(eyymm):m — &Yz + ey = ;(62 — ey) in Sl. (8)



In order to prove the existence of a solution to this approximate problem we employ the
Leray-Schauder theorem. For this, let w € H'(S') and o € [0,1] be given, and consider

aly,¢) = F(¢) forall ¢ € H*(S"), (9)

where

a(y,¢) = /5 1 (6" Yoz Pre + EY2Pe + cy@)de,

o

o) = 2 [ (@ eodn, .o S
Sl

Clearly, af(-, ) is bilinear, continuous and coercive on H?(S') and F is linear and continuous

on H?(S'). (Here we need the additional e-terms.) Therefore, the Lax-Milgram lemma

provides the existence of a solution y € H*(S') to (9). This defines a fixed-point operator

S HYSY) x [0,1] — HYSY), (w,0) — y. It holds S(w,0) = 0 for all w € H'(S?).

Moreover, the functional S is continuous and compact (since the embedding H?(S') C

H'(S') is compact). We need to prove a uniform bound for all fixed points of S(-, ).
Let y be a fixed point of S(-,0), i.e., y € H?(S) solves for all ¢ € H?(S!)

/ (Ypatha + Eson + cyd)da = / (& — V). (10)
st T

Sl
Using the test function ¢ =1 — e™¥ yields

g

/ y2 dr — / Yeoyodz + 8/ e Yyidr + 8/ y(l —e ¥)de = —/ (e —e¥)(1 — e ¥)dx.
S1 S1 S1 S1 T Js1

The second term on the left-hand side vanishes since y,,y2 = (y2)./3. The third and fourth
term on the left-hand side are non-negative. Furthermore, with the inequality e* > 1+ x
for all x € R,

(" —e)(1—e) < (" —2) = (¢! —y).

g/ (eY —y)dx +/ Y2 dr < g/ (e* — z)dz.
T Jst S1 T Js1

As z is given, this provides a uniform bound for y,, in L*(S'). Moreover, the inequality
e” —x > |z| for all z € R implies a (uniform) bound for y in L'(S*) and for [ ydz. Now
we use the Poincaré inequality

b= fos

Recall that [|u[|721) = [g u?dz/L. Then the above estimates provide a (uniform in ¢)
bound for y and y, in L?*(S') and thus for y in H?(S'). This shows that all fixed points
of the operator S(-, o) are uniformly bounded in H'(S'). We notice that we even obtain a

We obtain

L

L 2
o 3o 5 (52) s ol A"
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uniform bound for y in H?(S*) which is independent of . The Leray-Schauder fixed-point
theorem finally ensures the existence of a fixed point of S(-, 1), i.e., of a solution y € H?(S*)
to (8).

It remains to show that the limit ¢ — 0 can be performed in (8) and that the limit
function satisfies (7). Let y. be a solution to (8). The above estimate shows that y. is
bounded in H?(S') uniformly in €. Thus there exists a subsequence (not relabeled) such
that, as ¢ — 0,

y. —y  weakly in H*(S"),
y. — vy  strongly in H'(S') and in L>(S").

We conclude that e¥ — ¢¥ in L?(S') as ¢ — 0. In particular, €% (y.)ze — €YYur weakly in
L*(S"). The limit € — 0 in (10) can be performed proving that y solves (7). Moreover,
using the test function ¢ = 1 in the weak formulation of (7) shows that [exp(yy)dz =
[ exp(yr—1)dz = [ updz. O

For the proof of Theorem 1 we need further uniform estimates for the finite sequence
(y™)). For this, let y™ be defined by y™(z,t) = yp(z) for # € S, t € (tp_1,ts],
1 < k < N. Then we have shown in the proof of Lemma 2 that there exists a constant
¢ > 0 depending neither on 7 nor on N such that

Y™

||y(N)||L2(0,T;H2(51)) + ||y(N)||L°°(0,T;L1(Sl)) + [le ||L°°(0,T;L1(Sl)) <c (11)

To pass to the limit in the approximating equation, we need further compactness estimates
on e¥". Here we proceed similarly as in [10].

Lemma 3. The following estimates hold:

(™)
Hy(N)”L5/2(0,T;W1’°°(Sl)) + [|e ”L5/2(0,T;W1’1(5’1)) <c (12)
where ¢ > 0 does not depend on 7 and N.
Proof. We obtain from the Gagliardo-Nirenberg inequality and (11):
(N) ||3/5 2/5

LOO(O,T;Ll(Sl))Hy ||L1 (0,T;H2(S1)) S

1/5 4/5
”y:v ”L5/2 (0,T;L>°(S1)) < C”y )”L/OO(QT;LI(Sl))”y HL/2 (0,T;H2(S1)) <c

||?J(N)||L5/2 0,750 (SY)) = clly G,

This implies the first bound in (12). The second bound follows from the first one and (11):

ey)

(N) (N)
e/ Nsrzoavasy < e (e moraesn) + 1 allwe oz )
) (W)
< cfle? ||L5/2(0,T;L1(SI))+C||6y ||L°°(0,T;L1(Sl))||yg(cN)||L5/2(O,T;L°°(S1))
< c
The lemma is proved. O



We also need an estimate for the discrete time derivative. We introduce the shift
operator oy by (on(y™)))(2,t) = yp_1(x) for x € S, t € (tp_1, ts).

Lemma 4. The following estimate holds:

||ey(N> . eaN(yUV))HLlO/g(O,T;H_Q(O’l)) <ecrT, (13)

where ¢ > 0 does not depend on T and N.

Proof. From (7) and Hélder’s inequality we obtain

) ) ™ (N
Lev™ — eI Liojo o pr—2(s1y) < Ile¥ ya(:x)||L10/9(o,T;L2(SI))

(V) N
<|le¥ ”L5/2(0,T;L°°(Sl))”y:SJJB)HLQ(O,T;LQ(Sl))a

and the right-hand side is uniformly bounded by (11) and (12) since W1(0,1) < L°°(0, 1).
U

Now we are able to prove Theorem 1, i.e. to perform the limit 7 — 0 in (7). From
estimate (11) the existence of a subsequence of y™ (not relabeled) follows such that, as
N — oo or, equivalently, 7 — 0,

y™ —~y weakly in L2(0,T; H*(SY)). (14)

Since the embedding W1(S') C L!(S!) is compact it follows from the second bound in (12)

and from (13) by an application of Aubin’s lemma [15, Thm. 5] that, up to the extraction of

a subsequence, ¥’ — ¢ strongly in L*(0,T; L*(S1)) and hence also in L*(0, T; H~2(S")).
We claim that g = e¥. For this, we observe that, by (11),

€ - gHLl(O,T;H—Q(Sl))

(N) (N)
e _gH%%O,T;H*?(S’l)) < [le*"" = gllL~rm-2(51)
(V)
< ¢ (I|€y o075 (51)) + ||9||L°°<0,T;L1<SI>>>
y(N)
x e = gllwrorm—2s1)
< C||6y(N) — gllzrorm-—2s51) — 0 as N — oo.

Now let z be a smooth function. Since ¥’ — g strongly in L*(0,T; H2(S")) and yN) — 4
weakly in L?(0,T; H*(S')), we can pass to the limit N — oo in

T
0< / (ey(N) — %,y — 2) -2 p2dt
0

0< /OT/Sl(g—ez)(y—z)dmdt.

The monotonicity of x — e finally yields g = €.

to obtain the inequality



In particular, e — ¥ strongly in L*(0, T; L*(S1)). The second uniform bound in (12)
implies that, up to the possible extraction of a subsequence again, ey s ey weakly*
L°2(0,T; L>(S")). Thus, Lebesgue’s convergence theorem gives

v s e strongly in L*(0,T; L*(SY)). (15)

Furthermore, the uniform estimate (13) implies, for a subsequence,

1
< (ey(N) _ eoN(y(N))> — (e¥); weakly in LIO/Q(O,T; H72(Sl))- (16)

T

We can pass to the limit 7 — 0 in (7), using the convergence results (14)-(16), which
concludes the proof of Theorem 1. O

3 Uniqueness of solutions

To get a uniqueness result, we need an additional regularity assumption.

Theorem 5. Let uy, uy be two weak solutions to (1) in the sense of Theorem 1 with the
same initial data such that uy,uy € C°([0,T]; LY(SY)) and \/u1/ua, \/us/u; € L*(0,T;
H?(S?)) for some T > 0. Then uy = uy in S* x (0,7T).

Bleher et al. have showed the uniqueness of solutions to (1) in the class of mild solutions,
ie. C°[0,T); HY(S")), which are positive. We allow for the more general class of non-
negative solutions satisfying the above regularity assumptions.

Proof. We use a similar idea as in [11]. Employing the test function 1 — y/us/u; in equa-

tion (1) for w; and the test function \/uj/us — 1 in equation (1) for u, and taking the
difference of both equations yields

t t
/<(u1)t,1— %> dt—/ <(u2)t,1/ﬂ—1> dt
0 Uy H_Q,HQ 0 U2 H_Q,HQ

t Us t Uy
= (ul (10g ul)mm):m:u - dt + <u2 (10g u2):m:)mm7 — dt
0 Uq H_Q,HQ 0 U2 H_Q,HQ
= L1+ L.

The left-hand side can be formally written as

- Z—?>H2,H2dt—/$<< Vi) s

- //S (T — Vi) — (i) (i — /i) drdt

_ /S (V) - \/ug(t))de




As the first and the last equation hold rigorously, it is possible to make the computation
rigorous by approximating u; and us by suitable smooth functions and then passing to the
limit in the first and the last equation by a standard procedure.

We claim now that I; + I5 is non-positive. For this we compute formally as follows.

ho= 2 /t<<¢u—1>m—%u_l|<¢u—1>m|2,¢u—z>H_27H2dt

= =2 [ [ e+ il 2 | i

A similar result can be obtained for /5. Thus

hth— —2/; [ - 2 m.

This calculation can be made rigorous again by an approximation argument. We conclude
that

2
<0.

— \/u2(t)’2dx <0,

which gives uy(t) = ug(t) in S* for all ¢ < T. O

4 Optimal logarithmic Sobolev inequality on S

The main goal of this section is the proof of a logarithmic Sobolev inequality for periodic
functions. The following theorem is due to Weissler and Rothaus (see [9, 14, 16]). We give a
simple proof using the entropy—entropy production method. Recall that S is parametrized
by 0 <x < L.

Theorem 6. Let Hy = {u € H'(S") 1 u, # 0 a.e.} and |[ul|]251) = [ u?dz/L. Then
S usdx 272

inf = ——. 17
ueHs [ u? log;(u2/||u||L2(S1 )dxr L2 (17)

We recall that the optimal constant in the usual Poincaré inequality is L/27, i.e.

[ v2dx A2

f —5 2 - 18

UIGI']Hl fSl v — ’U)QdSC L2 ’ ( )
where 0 = [, vdz/L.

Proof. Let I denote the value of the infimum in (17). Let u € H; and define v by setting
u=1+4¢e(v—0). Then, if we can prove that

—_

f L vidr
I <= inf 25 % 19
2 eI%il Jo1 (v —0)%dx’ (19)
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we obtain the upper bound I < 27%/L? from (18) Without loss of generality, we may
replace v — v by v such that fsl vdz = 0. Then u? = 1 + 2zv + £%0? and the expansion
log(1 4 ) =z + 2%/2 4 O(a®) for z — 0 yield for e — 0

/ u?log(u?)dr = / (14 2ev + e®v?) log(1 + 2ev + £*v?)dx
51 51

= 352/ vidr + O(e?),
Sl

1 1
/ u?dxr log —/ uidr ) = /(1+52v2)dazlog —/ (1+ &*?)dx
S1 L Ja S1 L Ja

= 52/ vidz + O(eh).
S1

Taking the difference of the two expansions gives

2
2l0g [—2 4 :22/ 24 3.

: 2 2 2
Therefore, using fsl uzdr = ¢ fsl vidz,

fSl uldx 1 fsl vidr
fsl u? log.3;(u2/|]7,LHL2 sh) Ydx ) fsl v2dx
In the limit ¢ — 0 we obtain (19).

In order to prove the lower bound for the infimum we use the entropy—entropy produc-
tion method. For this we consider the heat equation

O(e).

vy = Upp in S' x (0,00), v(-,0)=u® in S

for some function u € H'(S'). We assume for simplicity that ||u||L2 s1) = [quPdz/L = 1.

Then
d

7 . vlogvdr = —4 /Sl wide,

where the function w := /v solves the equation w; = w,,+w?/w. Now, the time derivative
of

2 2 2 2
fit)= | widr — — [ wlog(w)dz
Sl L Sl

U)
"(t) = =2 der < —= —dx <0,
f() [91<xx 3w2 L2 ).T /S‘lw2x

where we have used the Poincaré inequality

equals

T2

L2
/ wide < — [ w? dx. (20)
st 4n® J s

10



This shows that f(t) is non-increasing and moreover, for any u € H(S?!),
2 2’ 2 2 2
[ e =T [ P los(ul fulfgen ) = £(0) = 1)

As the solution v(+,t) of the above heat equation and hence w(-,t) converges to zero in
appropriate Sobolev norms as ¢ — 400, we conclude that f(t) — 0 as ¢t — +oo. This
implies I > 272/ L2 O

Remark 7. Similar results as in Theorem 6 can be obtained for the so-called convex
Sobolev inequalities. Let o(v) = (v” — ") /(p—1), where 0 = [, vdz/L for 1 < p < 2. We

claim that
- Jor 0" (v)vidz 87
inf 22— " *  —

vety  [o o(v)dz N

As in the logarithmic case, the lower bound is achieved by an expansion around 1 and the
usual Poincaré inequality. On the other hand, let v be a solution of the heat equation.

Then p A
— | o(v)dr = ——/ wide
dt g1 P

where w = vP/2 solves

and, using (20),

d ,  2mp ,  Am? 2 w?
i Jo <w$ - cr(v)) dr = =2 /S1 <wm ~ 7 Wa + P 1 W dx
w

I

|

Wl N
/N
hS NS
|

—_
N~
T
%l

[SRESTN
Q

A

o

This proves the upper bound

2 2
2/ a”(v)vidx:/ wdr > ZQP/ o(v)dz.
st st st

With the notation v = u2/? this result takes the more familiar form

1 1 P L?
— / u*dr — L —/ u*Pdx < / uidr for all u € H'(SY). (22)
P — 1 g1 L g1 27T2p g1

The logarithmic case corresponds to the limit p — 1 whereas the case p = 2 gives the usual
Poincaré inequality.

We may notice that the method gives more than what is stated in Theorem 6 since
there is an integral remainder term. Namely, for any p € [1,2], for any v € H*(S!), we
have

2 2
]—)/ o"(v)vidz + R[v] > 7Tp/ o(v)dx
4 S1 L2 S1

11



with

2 4
—2/ / ( ——wiJr(——l) wm)dxdt,
g1 P 3w?

where w = w(x, t) is the solution to (21) with initial datum ug/2. Inequality (22) can also
be improved with an integral remainder term for any p € [1,2], where in the limit case
p =1, one has to take o(v) = vlog(v/v). As a consequence, the only optimal functions in
(17) or in (22) are the constants.

Corollary 8. Letn € N, n > 0 and let H, = {u € H"(S') : u, #0 a.e.}. Then
IR
inf Jis Ju] dv -3 <2_7T) : (23)
ueHn g uzlog(u2/||u||L2(sl))dx 2\ L

Proof. We obtain a lower bound by applying successively Theorem 6 and the Poincaré
inequality:

2 L2 L 2n
/ u? log v dr < —/ uidw <2 <—) }u(”)fdx
S1 ||U||L2 (S1) 272 S1 2T S1

The upper bound is achieved as in the proof of Theorem 6 by expanding the quotient
for u =1+ ev with [, vdz = 0 in powers of ¢,

Joi [0 d R A R I
fsl u? log(uz/HuH%Q(Sl))daz 2 fsl v2dx

+ O(e),

and using the Poincaré inequality

yp Al _ i)
u€EHn fSl |U — U‘ dx L
The best constant w = (2r/L)*" in such an inequality is easily recovered by looking for

the smallest positive value of w for which there exists a nontrivial periodic solution of
(=)™ + vy = 0. O

5 Exponential time decay of the solutions

We show the exponential time decay of the solutions of (1). Our main result is contained
in the following theorem.

Theorem 9. Assume that ug is a nonnegative measurable function such that fsl (ug —
log ug)dz and fsl uglog ugdx are finite. Let u be the weak solution of (1) constructed in
Theorem 1 and set & = [g, ug(x)dx/L. Then

/51< )log(%)dx<e t/gluolog<%>dx,

12



where
327

L*
Proof. Since we do not have enough regularity of the solutions to (1) we need to regularize
the equation first. For this we consider the semi-discrete problem

M=

1
;(uk —up_1) + (ur(1og Ug) gz )ae = 0 in S* (24)

as in the proof of Theorem 1. The solution u; € H?*(S') of this problem for given uy_; is
strictly positive and we can use loguy as a test function in the weak formulation of (24).
In order to simplify the presentation we set v := uy and z := ug_;. Then we obtain as
n [13]

1

—/ (ulogu — zlog z)dx +/ w |(log 1) ge|* dz < 0. (25)
T Jgs1 g1

From integration by parts it follows

:B:B 2
/ u U / _l, d.
S1 3 g1 U3
This identity gives

ve |, Uy 0 2 1t
S1 S1 u u U g1 u 3 U

u? 1wt ugeu? 1 ul
_ Tz e e P PN o 24 _ Zdx.
/Sl < + U/Q ) v g1 |(\/E) | T 12 g1 u3 v

Thus, (25) becomes

L G (E) s (ot [ Warso

Now we use Corollary 8 with n = 2:

/Slulog<u>dx<— (V1) | d

From this inequality and (26) we conclude

%/sl (ulog(%)—zlog( ))daz+3i44/51ulog< )daz<0

This is a difference inequality for the sequence

E, = / uy, log (u—f> dx,
S1 u

13



yielding
(1+7M)E, < E,_, or E,<FEy1+7M)7F,

where M is as in the statement of the theorem. For ¢ € ((k — 1)7, k7] we obtain further
E, < Ey(1+7M)7Y".

Now the proof as exactly as in [13]. Indeed, the functions ug(z) converge a.e. to u(x,t)
and (1 4+ 7M)~/7 — =Mt as 7 — 0. This implies the assertion. O

Remark 10. The decay rate M is not optimal since in the estimate (26) we have neglected

the term & [ (ul/u®)dzx .
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