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A NONLINEAR GENERALIZATION OF
BIHARI'S INEQUALITY

U. D. DHONGADE AND S. G. DEO

Abstract. The aim of the present note is to prove a nonlinear generaliza-

tion of the well-known integral inequality due to Bihari. This generalization

is useful in obtaining pointwise estimates of solutions of nonlinear Volterra

integral equations.

1. Introduction. It is widely recognized today, that the integral inequalities

furnish a very general comparison principle not only in the study of stability

but in studying many other qualitative as well as quantitative properties of

solutions of differential equations. The well-known Gronwall inequality and

its generalization due to Bihari [1] have been frequently employed in this

direction. Such types of inequalities are profitably used by Brauer [2] to study

the asymptotic behaviour of the solutions of differential systems. Recently [3],

[4] linear and nonlinear generalizations of these inequalities have been ob-

tained while studying the pointwise estimates of linear and nonlinear Volterra

integral equations. Analogous to the linear generalization of Gronwall's

inequality due to Willett [5] we aim in obtaining a nonlinear generalization of

Bihari's inequality under suitable conditions and illustrates its usefulness.

2. Preliminaries. In the sequel, let / denote the set of positive real numbers

0 < x < oo and C0 the class of continuous functions defined on /. Further

we need the class of functions & defined below.

Definition. A function <J> is said to belong to a class 3F if it satisfies the

following conditions:

(i) <3>(tz) > 0 is nondecreasing and $ £ C0 for u > 0,

(ii) (l/u)$(w) < wiu/v) for all u and v > 1, where w is a positive,

nondecreasing function defined and continuous on /. This class of functions

has been widely employed in Theorem 9 [1]. One of the functions belonging

to 3f is the function $ defined as $(«) = S"=1wa', «, < 1, / = 1,2,3, ...,«.

The main theorem is based on the following lemma.

Lemma. Suppose

(i) gix), hix) e C0 and gix) > 1,

(ii) $ e f,
(iii) / > 0 is nondecreasing on I, f G C0, and

(1) yix) < fix) + g(x) (Xh(s)9(y(s)) ds,       x G /.
■'o
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Then

(2) y(x) < f(x)g(x)G-1   C(l)+ fXh(s)g(s)ds],      0<x<b,
0

where

(3) G(tt)=r"-^-,        0<zz0, zz > 0,
Ju0   W(J)

zz/W C7 _1 z'i z7ze inverse of G and x is in the subinterval (0,b] of I so that

G(\) + (Xh(s)g(s) dsEDom(G-1).

Proof. Since/(x) is nondecreasing, $£lF and g(x) > 1, we have from

(1)

y(x) fX h(s)*(y(s))
——   < 1 + g(x) /    -—- ds
/(-*) Jo f(s)

\ r h(s)$(y(s))       ■

Hence

, , .H*) z-* /    y(s)    \
(4) 77^-TT  < 1 + /  K*)g(s)A 77VTT    *■

Now we apply the integral inequality due to Bihari [1] to obtain the estimate

given in (2). If g(x) = 1 in (1) then Theorem 3 proved in [3] follows.

3. Main result. It is natural to think of a nonlinear generalization of Bihari's

integral inequality analogous to that considered by Willett [5]. The following

theorem, proved under some conditions answers this question.

Theorem 1. Suppose

(i) f(x) be defined as in the lemma,

(ii) ht(x) G C0for i = 1,2,. . ., n,

(iii) $, £f,i= 1,2, ...,«,
and the following integral inequality holds

y(x) < /(*) + £ ("hMHyW) *>    * E '•
i=\J0

Then

n

(5) y(x) < f(x)J[Ei(x),        0 < x < b,0 < b < oo,
z= l

where the functions Gk are defined as

r"    ds
Gk(u) = I    —TT >       0 < uQ, u > 0,

and
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£,(*)= G1-1\g1(1) + [Xhxis)ds],

(6) ,r /t-i

£■*(» = CV'   Gt(l) + f\(*) II E,(s) ds ,       k = 2,3, .. ., n,

G^-' zbe/zjg z*/je inverse of Gk and x is in the subinterval (0,6] of I so that

G,(l) + fXhxis) ds(E Dom(Gf1)
•'o

and

k-\

G*0) + ('hk(s) II E,(s) dsG DomiGf1),       k = 2,3,...,n.

Proof. The proof is by mathematical induction. Note that for n = 1 the

Theorem 1 is a special case of the lemma and hence is true. Let us assume

that (5) is true for some integer k, 1 < k < n — 1, that is

k

yix) < f(x) II E,(x) = f(x)R(x)   (say)
i=\

where Rix) = n*= ,£■,(.*). Hence

yix) < R(x)\f(x) + ['hk+l(s)9k+l(y(s)) ds .

Now in view of the assumption on / and 4>, we obtain

yix) rx (    y(s)    \

f(x)R(x)   <W0 *+'<'>*<*>W*^ /«*«]*■

This inequality is of the form (4) and hence by the lemma, proved earlier, we

have

yix) < f(x)R(x)Gk-+\\Gk+Al) + f"hk + l(s)R(s) ds],
(7) L Jo J

0 < x < b < oo.

Substituting the value of R ix) and using (6) it is easy to write (7) as

k + \

yix) < fix) II £,(*).
i=i

This proves that (5) is true for k + 1. The proof is complete.

Example. The following example illustrates Theorem 1. Let

y(x)<f(x)+ 2  [Xhiis)y«<is)ds,
i~lJ0

where a,. < 1, / = 1,2,3. We note thaty^ £ J on / and/, ht ii = 1,2,3) are as

defined in Theorem 1. It is easy to observe

and
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G,-» =[(1 - «,)" + "o"^]170""''.       ' = U,3.

Similarly we obtain

r rx ]i/d-«,)
Ex(x) =   1 + (1 - <xx) \  hx(s)ds

V °

r rx ]i/(i-«2>
E2(x)=   1 + (1 - a2)     h2(s)Ex(s)ds

0

r rx -|i/a-«3)
E3(x) =   1 + (1 - a3) j   h3(s)E2(s) ds

[ Jo

We conclude that^(x) < f(x)U3i=xEi(x).
■

4. Applications. Consider a nonlinear Volterra integral equation

(8) y(x)=f(x)+ (Xk(x,s)*(y(s))ds,
Jo

where k(x,s) is a nonnegative function and the function O is as given in the

lemma. We show that the above theorem can be profitably employed to

obtain the pointwise estimates of the solutions of the equation (8). While

considering nonlinear integral equations, generally linearization techniques

are exploited, however below we attempt to obtain a genuine upper bound for

the solution of the equation (8) by using the inequality proved in Theorem 1.

Theorem 2. Suppose

(i)f(x) and $(«) be defined as in the lemma and $ be subadditive,

(ii) k(x,s) (x > s) be defined and continuous on I x I,

(iii) k(x,x) < hx(x), (dk/dx)(x,s) < g(x)h2(s),

where g(x), hx(s), h2(s) are continuous on I andy(x) satisfies(S) on I. Then

(9) \y(x)\ < f(x) + p(x)Ex(x)E2(x)

where

Ex(x) = G~l  G(l) + (Xhx(s)ds ,
0

E2(x) = G"1   G(l) + fXh2(s)m(s)Ex(s) ds ,
[ Jo

p(x) = (Xhx(s)t>(f(s)) ds + m(x) fXh2(s)^(f(s)) ds,
Jo Jo

and

m(x) = f  g(s) ds.
Jo

G ~' being the inverse of G, which is defined as in the lemma, and x is so that

G(l) + (Xhx(s)ds<E Dom(G_l),
•'o

and

G(l) + fXh2(s)m(s)Ex(s) dsG Dom(G"').
•'o
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Proof. Since yix) satisfies (8) we have

(10) \y(x)\ < fix) + [Xk(x,s)<l>i\yis)\) ds.

Define

R(x) = f'k(x,symy(s)\) ds,        x E /,
•'o

then it is easy to note that

rx dkix,s)
R\x) = kix,x)myix)\) +Jo   —^—<l>(\y(s)\)ds.

Further using the subadditivity property of <I> and condition (iii) we obtain

R\x) < hx{x)<S>ifix)) + g(x) \\{s)<b{f{s)) ds
Jo

+ h2(x)*(R ix)) + gix) (\(s)<b{R is)) ds.

Integrating from 0 to x, we get

R(x) <fXhxis)$ifis)) ds+ £g(s)(f\(t)*(f(t)) dt} ds

+ £hxis)$iR(s)) ds+£gis)(£h2(t)t>iRit)) dt} ds.

Now replacing the limits V by 'x' the inequality still holds and becomes the

product of two integrals.

In view of the definitions of mix) and^(x) one can rewrite this inequality

as

Rix) < pix) + (Xhxis)<&iRis)) ds+ mix) f\(i)«J)(/? (j)) ds.

By applying Theorem 1 for n = 2, we obtain

(11) Rix) < p(x)Exix)E2ix).

On substituting this bound in (10) the estimate (9) is obtained. For more

general applications, one may replace the condition (iii) by

dkix,s)       »
—g—"  < 2   gMh,(s).

i= 1

We obtain below, as an illustration, pointwise estimates of the solution of the

nonlinear integral equation (8) when fix) = x2, kix,s) = e-*(l/(l + es))2

and <&iy) = Vy . Note that / satisfies the condition in Theorem 2, <J> e §

and is subadditive. Further

kix,x) = g*( 1 +* gX )  < ex = hx{x)    (say),

dkix,s) i       i       \2
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Assume that

g(x) = e\    h2(s) = e-2s,

\u + 2\/V0 1
G(«) = 2[V«-V«0],    G-'(M)=1-4-~,

(1 + ex)2                       (ex - x + I)2

£i(*) = -4- >    E2(x) = -64-

and

p(x) = xex + \e~2x(\ - ex)[3e2x + x + l].

Substituting these values in (9) the bound of y(x) is computed.
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