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An edge detection scheme is developed robust enough to perform well over a wide range of 
signal-to-noise ratios. It is based upon the detection of zero crossings in the output image of a 
nonlinear Laplace filter. Specific characterizations of the nonlinear Laplacian are its adaptive 
orientation to the direction of the gradient and its inherent masks which permit the develop 
ment of approximately circular (isotropic) filters. We have investigated the relation between 
the locally optimal filter parameters, smoothing size, and filter size, and the SNR of the image 
to be processed. A quantitative evaluation shows that our edge detector performs at least as 
well-and in most cases much better-than other edge detectors. At very low signal-to-noise 
ratios, our edge detector is superior to all others tested. Q 1989 Academic press, I D C .  

1. INTRODUCTION 

One of the major problems in digital image processing and scene analysis is the 
extraction of useful and relevant edges. This problem may be approached as either a 
problem in image filtering (producing a binary image with single pixel thick edges 
starting from a grey-level input image) or a problem in image analysis (producing a 
data list-coordinate positions-where edge pixels can be found) starting from the 
same grey-level input image. In the research to be reported here we will take the 
former approach, that of image filtering. To obtain such a result it is necessary 
either to segment an image into regions separated by edges (the region approach) or 
to detect the edges directly (the edge approach). A discussion of the region approach 
is beyond the scope of this article. Surveys with applications have been given by 
Rosenfeld [l], Pratt [2], Duda [3], and Ballard [4]. 

The success of the edge approach to image segmentation is dependent upon the 
quality of the edges in the image itself as well as the specific algorithm used to locate 
them. Thus edge improvement (or enhancement as we shall refer to it here) as well 
as the specific edge detection algorithm is an important component in an edge 
detection system. 

1.1. Edge Enhancemen 

In many applications we are confronted with low-quality images. Improving the 
quality of the image may thus be seen as a first step towards the edge detection 
phase. If we are dealing with motion-blurred or out-of-focus images, we can 
frequently make these more acceptable by image sharpening techniques. This 
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approach is based upon a number of research models including physiological ones 
(Rosenfeld [l], Pratt [2], Ballard [4], Attneave [5], and Gonzalez [6]). 

One example of edge enhancement is to create a small overshoot at the top and a 
small undershoot at the bottom of an edge slope, offering a sharper intensity change 
than actually occurs. This is similar to the Mach-effect in the human visual system 
and has been discussed in detail by Stockham [7]. 

Since edges are “high-frequency phenomena,” edge enhancement can be achieved 
by emphasizing the high spatial frequencies. The Laplacian operator achieves this 
emphasis and is, therefore, frequently used as an edge enhancement operator: 

Subtracting a positive fraction, k, of the Laplace from the blurred image will 
amplify the quality of the edges in the image. The choice of k is dependent upon the 
type of blur and its size. The Laplacian itself is a mathematical operator in 
continuous space and must be represented by an appropriate digital filter. This 
digital approximation, its rotation invariance, and its sensitivity to high-frequency 
noise will be discussed in Section 2. 

1.2. Edge Detection 

During the past two decades the development, implementation, and use of edge 
detection algorithms have been major topics of research. Many algorithms have 
been found that perform well in given applications but poorly in others. We can 
divide these algorithms into roughly two classes: 

(1) Sequential algorithms. The already-detected edge pixels exert an influence 
on both the position of the next potential edge pixel and the result of its acceptance 
test. This is most vividly illustrated in the use of heuristic search algorithms for edge 
tracking (Lester [S], Montanari [9]). The disadvantage of many sequential techniques 
is that it is often necessary to have a considerable body of a priori knowledge about 
the shape or the position of the edges in the image to be processed. Examples of 
edge tracking algorithms have been presented by Rosenfeld [l], Davis [lo], Martelli 
[ll], and Gerbrands [12]. 

(2) Parallel algorithms. The detection of a pixel as an edge element is indepen- 
dent of the results elsewhere in the image. 

The earliest and most popular edge detection schemes begin with the gradient 
operator. They use the fact that the absolute value of the first derivative will be 
maximal near the position of the steepest descent. Seeking the maximum of the 
gradient leads, of course, to a second derivative. A number of parallel edge detectors 
have been developed and they can be partitioned into four major types: 
(1) detectors that approximate the mathematical first derivative (gradient) or the 
second derivative (Laplacian); (2) template matching operators that use multiple 
templates at different orientations, of different sizes, and of different shape; (3) edge 
fitting operators that search for the best fit between the local neighborhood of an 
image and a parametric edge model; (4) morphologic operators that use an ap- 
proach to image processing based upon set theoretic concepts of shape. The first 
three types cover many well-known edge detectors. For extended surveys we refer to 
Rosenfeld [l], Pratt [2], Ballard [4], and Peli [13]. The fourth type, however, is rather 
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new in the field of edge detection. In 1980 Goetcherian [14] proposed using the grey 
level equivalents of the binary erosion and dilation operators for this purpose. 

1.3. Motivation for Study 

It is known that the human visual system uses edge detection techniques in early 
vision. Marr [15, 161 and Hildreth [17] tried to understand and model this process 
and on the basis of neurophysiological studies they developed a computational 
model for edge detection. It has also been shown that human beings are able to 
recognize objects starting from a very crude outline (Attneave [5]). Edge detection 
may be the most important method of feature extraction in low level vision. 

Despite their great importance, most edge detectors perform poorly in images 
with low signal-to-noise ratios. The objective of our research is, therefore, to develop 
an edge detection scheme robust enough to perform well over a wide range of 
signal-to-noise ratios. It is based upon the detection of zero crossings in the output 
of a “Laplace” filtered image. 

In 1986 Beckers [18] proposed a nonlinear Laplace-like operator in a local 3 X 3 
neighborhood which may perform better than a linear Laplace filter. In this project 
we have developed an edge detection scheme based upon the Marr-Hildreth model 
combined with the nonlinear Laplace operator. Further, we have extended the 
nonlinear Laplacian to larger filter sizes. In the following sections both the various 
Laplace filters considered as well as the edge detection model will be presented. 

1.4. Proposal for Evaluation 

What we seek as an edge corresponds in a physical world to an abrupt change in 
intensity. It is often the consequence of a change in some physical property such as 
reflection, illumination, shading, orientation, etc. In this article we will formally 
define an edge as: 

edge-a simply-connected contour, one pixel thick, at the center of the 
slope between two adjacent regions with a considerable difference in grey 
level. 

Detecting edges satisfying this condition is not a trivial task and it will often occur 
that the detected edge has gaps at places where the transition between two adjacent 
regions is not sufficiently abrupt. Clearly the proficiency of our edge detection 
technique-the ability to minimize the number of gaps as well as place the edge 
contours at the “right” position-is a matter of central concern. Further, this 
proficiency must be compared to other techniques that have been proposed in the 
literature. 

The choice of an evaluation (comparison) criteria is difficult and depends upon 
the accuracy requirements for the detected edges. We can, however, distinguish two 
classes of performance measures: quantitative and qualitative. Quantitative perfor- 
mance measures are needed for comparing various edge detectors as objectively as 
possible. In our evaluation we have chosen Pratt’s figure-of-merit (Pratt [2]). A 
detailed description of this evaluation technique will be given in Section 4. The 
qualitative approach, being intrinsically subjective, leaves much to be desired. For 
the purposes of this article qualitative assessments can be performed by comparing 
the resulting figures. 
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2. LAPLACE FILTERS 

When we consider Laplace filters we actually mean a discrete approximation to 
the mathematical Laplace operator: 

Note that the 2-dimensional Laplacian given by Eq. (2) is the second-order partial 
derivative in the orthogonal directions of a continuous space. In this section we 
present several forms of the discrete Laplacian operator designed for image process- 
ing tasks. The extraction of the zero crossings (as the edge position) from the filtered 
image will not be considered in this section. The task of the Laplace filter in the 
final edge detection model will be dealt with in a later phase. 

2.1. Classical Laplace filter 

The Laplace filter of Eq. (3), frequently used in digital image processing, is a 
crude approximation of its mathematical equivalent defined in Eq. (2): 

v21(x, y) = 1(x + 1, y) + 1(x - 1, y) + 1(x, y + 1) 

+1(x, y - 1) - 41(x, y). (3) 

Alternatively, this digital filter can be viewed as the following 3 X 3 set of filter 
coefficients: 

0 1 0 

1 -4 1 

0 1 0 

To understand the nature and effect of this approximation we look at the behavior 
of this linear, shift-invariant operator in the Fourier domain. Taking the Fourier 
transform of the Laplace operator gives 

F 
i 
a*+, Y) + a*+ Y) 

ax* ay2 = i 
4 u: + u:)q ux, UJ' 

where u, and ucY are the spatial frequencies in the x and y directions, respectively. 
Computing the inverse Fourier transform of H(u,, uY) = - {(uX)* + ( u,)~} results 
in an infinite impulse response (IIR) digital filter h(x, y). 

/ 2a2 
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3 
for x 0, y 0 
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Equation (3) represents a specific FIR digital filter approximation to Eq. (6). A 
more general approach minimizes the mean square error between the frequency 
response of an FIR digital filter, HFIR(uX, uy), and the ideal Laplacian frequency 
response, H(u,, uy), by determining the filter HFIR that minimizes 

MSE = 

The Laplace filter in Eq. (3) is produced by applying a square window of 3 x 3 
samples to the IIR filter h(x, y). It can be proven easily that simple truncation gives 
the best mean square error approximation for a fixed filter size (Oppenheim, 
Willsky, and Young [19, p. 4341). The remaining filter coefficients are approximated 
by small integers for computational efficiency with the important constraint that the 
sum of the filter coefficients must be zero. A better approximation to the IIR filter in 
Eq. (5) can be obtained by taking a window size larger than three. 

The Laplacian is rotation invariant. This has the advantage that high spatial 
frequencies in all orientations are equally enhanced. At the same time this may be a 
disadvantage; useful directional information is not available. Another disadvantage 
of the linear Laplace filter, designed in this way, is its sensitivity to high frequency 
noise. The Laplacian is generally a useless tool in images with medium and low 
signal-to-noise ratios [4]. 

In order to avoid these problems, filters can be designed which do not emphasize 
the highest spatial frequencies. Examples of filters based on the Laplacian but with 
a different frequency response are algorithmically designed Laplace filters’ and the 
Marr-Hildreth operator. 

2.2 The Marr-Hildreth Operator 

The Marr-Hildreth operator [15-171 consists of a combination of a band pass 
filter and a high pass filter. The theory behind this filtering technique is based upon 
research in the field of neurophysiology. The digital filter is a “best fit” to DOG 
functions (difference of Gaussians) used in modelling low-level human vision. Marr 
and Hildreth argue that the 2-dimensional Gaussian is the optimal smoothing filter 
because it optimally satisfies two conflicting constraints. The first requires a smooth, 
bandlimited filter in the frequency domain. Thus the width (for Gaussians, standard 
deviation) in this domain should be small. The second constraint, however, requires 
a smooth, but localized filter in the spatial domain in order to preserve a good visual 
interpretation of the scene. This is equivalent to a small standard deviation in the 
spatial domain. A Gaussian filter minimizes the product of these two widths; it is a 
filter with minimum spatial-bandwidth product (Papoulis [21, p. 2731). 

The first step in the Marr-Hildreth formulation is thus the smoothing: 

I smooth(x~ Y> = Go(x, Y) * Iinput(X, Y), (8) 

where G,(x, y) is the Gaussian filter with standard deviation u, and * the 

‘In this research we evaluated an “enhanced” Laplacian based upon the Parks-McClellan [20] filter 

design technique. While the filter itself gave a significantly better Laplacian--second derivative-behav- 

ior, the total performance of the edge detector was not improved. The reason for this was the Gaussian 

filtering (see text) that was used in combination with the Laplacian to achieve the Marr-Hildreth model. 
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convolution operator. The second step is filtering with the classical Laplace filter to 
emphasize the high-spatial frequencies. 

Lgut(x, Y) = v2LKwth(x~ Y>. (9 

Since both filters are linear and shift invariant they can be combined into one filter. 
the Mart--Hildreth operator, the Laplacian of a Gaussian, 

(x2:2y2) !exp[ - ‘x~~~2’]. (10) 

The operator v2G,,(x, y) is often called the “Mexican-hat” operator , due to its 
characteristic shape. This filter has only one parameter u, the standard deviation of 
the Gaussian. From this we can derive the width of the central positive region 
w = 2@a, and the approximate filter size 3 w. 

The advantage of the Mexican-hat approach in the sequential processing of the 
Gaussian and the Laplace filter is the improved accuracy. In Section 2.1 we saw that 
Eq. (3) is only a rough approximation to the ideal Laplacian. Using Eq. (3) and a 
separate filter for the Gaussian smoothing permits a propagation of the Laplacian 
approximation error. By using a single filter based upon Eq. (lo), a significantly 
better approximation to the ideal mathematical Laplace operator in combination 
with the Gaussian can be achieved. The frequency response of the Laplacianj 
Gaussian filter, the Marr-Hildreth operator, is given by 

F{v2G&, r)} = F{vZIF{Go(x~ Y)> 

=- 
( 

where the width of the band and the position of its maximum are determined by the 
parameter u. From the above expression we see that for low frequencies the 
response approximates the Laplacian, especially for small values of u. 

Many articles have pointed out the relationship between the size of the Gaussian 
and the spatial accuracy of detected edge positions obtained with the Marr-Hildreth 
operator. (Marr [15, 161, Hildreth [17], Grimson [22], Huertas [23], Eklundh [24], 
Berzins [25], Zhixian Xu [26].) A large operator-a large Gaussian filter-can be 
used to find the approximate position of strong edges, while a small operator can be 
used to obtain high positional accuracy. In general, we may say that the assigned 
edge position of regions having a size smaller or equal to 201~ are displaced. As 
long as the edge features are smaller than the total size of the operator, the slope of 
the zero crossings will be fused. Berzins [25] has studied the displacement in relation 
to spatial features such as the size of the regions, the curvature of the regions, the 
presence of sharp corners, and the occurrence of nonlinear illumination along the 
edge. The conclusion of his research is to use the smallest possible smoothing filter 
to obtain the highest possible spatial accuracy. 

Canny [27] has distinguished three performance criteria in judging the ability of 
an operator to find edges: (1) Good detection. The error types I and II-false 
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rejection and false detection-should be as low as possible. These probabilities are 
monotonic decreasing functions of the signal to noise ratio. (2) Good localization. 
This has been mentioned above when we discussed the accurate spatial position of 
the detected edge pixels. (3) Only one response to a single edge. 

We can easily understand that the first two criteria are conflicting. A large filter, 
like a large smoothing filter, has a good signal to noise ratio. but a rather poor 
localization ability. This phenomenon is equivalent to the minimal product of the 
variances in both the spatial and the spatial frequency domain. Canny has proven 
that, in the case of step edges disturbed by additive Gaussian white noise with zero 
mean, the derivative of a Gaussian is a very good approximation to the numerically 
optimal edge detector for these edges. It is suboptimal according to the above 
criteria and can be replaced by the zero crossings of the second derivative of a 
Gaussian operator derived from an input image. 

A further disadvantage of a large Marr-Hildreth operator is that the operation is 
slow on a conventional digital computer. Due to its symmetry, however, the 
Marr-Hildreth operator can be decomposed into separate row and column filters 
that permit a significant increase in computational speed. Decomposition is allowed 
when three conditions are satisfied: (1) the sum of the resulting filter coefficients is 
zero, (2) the DOG approximation is not disturbed, and (3) the filter remains 
accurate. The implementation proposed by Huertas fulfills all of the above require- 
ments. First in IQ. (10) the normalization factor is replaced by a proper scale factor 
K, whose value is chosen according to the desired number of bits of accuracy. 
Equation (10) can then be rewritten as the sum of two separable filters: 

v’Go(x, r> = 4,(x, Y) = 4,(x> Y>, 
where 

and with 

h,(5) = a 1 - ;;? ( “)ew[-$I 

h,(t) = @exp - 3 . i 1 

(14 

(13) 
(14 

(15) 

(16) 

With the help of the above expressions it is easy to implement an accurate 
Marr-Hildreth operator with the standard deviation of the Gaussian as the only 
filter parameter. 

2.3. Nonlinear Laplace Filter 

Another approach to removing the disadvantages of the linear Laplace filter is the 
design of a nonlinear Laplacian, a nonlinear combination of neighborhood pixels. 
Just as in the linear case, each of these filters has associated with it, one or more 
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filter parameters. In the case of our nonlinear Laplace filter this might be the size of 
the filter and the effective shape of its 2-dimensional domain. 

In his Ingenieur’s (Master’s) thesis, Beckers [18] proposed a nonlinear Laplace 
operator in a 3 X 3 neighborhood. Given the neighborhood N, the nonlinear 
Laplace filter-NLLAP-is given by 

NLLAP(x, y) = { maximum(N) - b(x, y)} - {b(x, y) - minimum(N)) 

(17a) 

= maximum(N) - 2 l b(x, y) + minimum(N), Wb) 

where 

maximum(N) = the maximum brightness value in N, 

minimum(N) = the minimum brightness value in N ; 

and 

b (x, y ) = the brightness value at central position (x, y ) . 

The first term in Eq. (17a) can be described as a gradient in the direction of the 
maximum, and the second term in Eq. (17a) can be described as a gradient from 
the direction of the minimum. While the classical Laplacian always computes the 
second derivative* along both axes of the grid, this nonlinear Laplacian adapts its 
orientation to the local gradient direction. Due to its flexibility, this operator takes 
the second-order derivative in the most relevant direction-perpendicular to the 
local edge direction. The maximum as well as the minimum gradient can be found 
with the help of a window search or a histogram search algorithm (Huang [28], Duin 

~291). 
Assume we want to develop a circular, more isotropic approximation to this filter. 

With this idea in mind, we draw a conceptual unit circle centered at the central pixel 
of the window. In order to approximate the circular shape all the gradients derived 
from pixels outside the circle have to be normalized by their Euclidean distance to 
the central pixel. 

From the above discussion a formal definition of the nonlinear Laplace operator 
of arbitrary size and shape is 

NLLAP(x, y) = gradmax(x, y) + gradmin(x, y), (18) 

‘Equation (17), describing the nonlinear Laplacian’s raw form, is similar to the filer with second-order 

derivative behavior presented by Bemsen [50, p. 22, Eq. (2.2)]. However, bis resulting edge detection 

scheme is totally different from the one presented in Section 3 of this article. 
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where 

gradmax(x, y) = max{C,(x’, Y’)[l(x’, Y’> - 1(x, Y>I I(X), Y’) E dn(x, -J’)I 
(1% 

gradmin(x, y) = min{C,(x’, Y’)[I(x’, Y’) - 1(x, Y)ll(X’~ Y’) E dn(xy Y)>y 

(20) 

where d,( x, y) is an n X n square centered at (x, Y) and C,( x’, Y’) is a multiplica- 
tion mask consisting of scale coefficients dependent on the filter size and the desired 
filter shape, for example circular or square. 

2.3.1. Square Shaped Filter 

The square shape of the nonlinear Laplace filter can be obtained with the 
multiplication mask 

cJ-6 Y’) = {11(x’, Y’> E 4h Y>>. (21) 

According to Eq. (21) the multiplication mask in Eqs. (19) (20) can now be skipped. 
gradmax and gradmm can be rewritten as 

gradmax(x, y) = max{l(x’, Y’)I(x’, Y’> E d,(x, Y)> - I(x, Y) (22) 

gradmin(x, Y) = min{l(x’, y’)l(x’, Y’) E d,(x, Y)} - 1(x, Y)* (23) 

In the first terms we recognize the formal definition of two simple nonlinear filters 
the local maximum and the local minimum filter with an n x n square window as 
structuring element. Using these definitions Eqs. (22), (23) can be simplified to 

gradmax(x, y) = MAX,{l(x, Y)) - 1(x, Y) 

gradmin(x, Y) = MIN,{ 1(x, Y)> - 1(x, Y>. 

(24) 

(25) 

It is easy to see that this expression is completely consistent with the less formal 
description of Eq. (17a). The appearance of MAX,, and MIN, in the above 
expression offers the possibility of fast algorithms, with a computation time inde- 
pendent of the filter size n. The square max/min filter is separable, i.e., it can be 
obtained by a line filter in the x-direction followed by a line filter in the y-direction. 
These line filters can be implemented in almost size-independent time by updating. 
The filter window is a line interval. Windows at subsequent positions share most of 
their pixels. Thus, in going from one position to the next, it suffices to remove one 
pixel and to add one pixel to update the window. The filter time is thus made 
independent of the filter size. (See Duin [29], Groen [52], and Verbeek [51].) 

2.3.2. Circular Shaped Filter 

Let us now focus our attention on the development of a nonlinear Laplace 
operator with a circular shape and arbitrary filter size. This can be done in one of 
two ways. 
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1 1 1 
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FIG. 1. Design stages of a 3 x 3 nonlinear Laplace operator with quasi-circular shape. (a) A 3 x 3 
neighborhood with the unit circle and arrows indicating the distance to the neighbor pixeis lying 
“partially” outside the superimposed circle. (b) Weight factors for gradients originating from these pixels. 
(c) Integer approximations of the weight factors for faster implementation. 

Technique 1. Circular filter shapes can be approximated by choosing the proper 
multiplication masks C,(x’, y’). The general idea has already been given for the 
smallest filter size. The gradients calculated with comer pixels must be scaled to the 
unit circle. The resulting floating point coefficients are replaced by integers for 
computational speed. Fig. 1 shows the three design stages for the coefficients of the 
3 X 3 multiplication mask. 

Designing larger filters is not a straightforward extension of this idea. For an 
arbitrary filter size n, the conceptual circle becomes a circle with radius (n - 1)/Z. 
In this case all gradients calculated with a grey value from outside the new unit 
circle must be scaled to it. Thus normalization is equivalent to a multiplication by 

Radius of the imaginary circle 

Euclidean distance to the center of the window . 

b 

FIG. 2. Multiplication masks C5(x, y) and C,(x,y) for nonlinear Laplace operator with quasi-cir- 
cular shape. (a) A 5 X 5 neighborhood with a circle of radius 2 and arrows indicating the distance to the 
neighbor pixels lying “partially” outside the superimposed circle. (b) Integer approximations of the 
weight factors for faster implementation. (c) Idem a for a 7 x 7 neighborhood with a circie of radius 3. 
(d) Idem b. 
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q to be added 

pixel to be pressed 

FIG. 3. Two-dimensional crescent updating for a circular maximum or minimum filter with filter 

size I. 

The gradients originating entirely from within the unit circle should all be viewed as 
lying exactly on the circle; this corresponds to a coefficient of 1 in the multiplication 
mask, Possible multiplication masks for the 5 X 5 and the 7 X 7 filters are shown in 
Fig. 2. 

In addition, mask coefficients which originate completely from outside this circle 
may be set to zero. In the masks presented in Figs. 1, 2, and 3 the central pixel is 
also used in the gradient calculations presented in Eqs. (19), (20). These masks will 
be used in the following sections when we evaluate the nonlinear Laplace operator. 

Technique 2. Circular filter shapes can be achieved by choosing a circular 
support for the maximum and minimum filters (Eqs. (24), (25)). As the radius of the 
support increases, this produces a better (smoother) digital approximation to a 
circle. Although a round full filter requires a proper 2D window, updating-as 
described in the previous section-can be used again. Now the pixels to be removed 
constitute a crescent and those to be added another crescent (see Fig. 3). The 
number of pixels in the crescents is proportional to the filter size n as is the pixel 
fetching time. This updating technique can be applied to all filter shapes that have a 
considerable overlap between subsequent positions (Verbeek [51]). 

The first technique seems to be more isotropic, especially for small filter sizes. The 
second technique, however, implies the possibility of even simpler and faster 
implementation on general purpose computers. 

3. EDGE DETECTION MODEL 

It is our purpose to evaluate the nonlinear Laplace operator as edge detector. As 
discussed in Section 2, a Laplace filter without pre- and/or post-processing will not 
result in a desired edge image. To be able to transform these images into a final edge 
image, we have to understand how the edge information has been derived. At every 
place where an intensity change occurs, there will be a corresponding peak in the 
first derivative perpendicular to the local edge direction. This is, however, equivalent 
to a zero crossing in the output of the second directional derivative along the 
gradient. Hence the extraction of intensity changes can be performed by finding the 
zero crossings in the Laplace filtered image. 

Marr and Hildreth have improved this simple scheme by combining the Laplace 
filter with a Gaussian smoothing filter as described in Section 2.3. This filter offers 



178 VAN VLIET, YOUNG, AND BECKERS 

the ability to choose an appropiate size scale at which intensity changes can 
occur-dependent upon the type of input image and the noise level of that 
particular image. The necessity of such a smoothing tilter combined with a Laplace 
filter is confirmed by the fact that before the publication of Marr [15], the classical 
Laplace operator had fallen into disuse [4]. After their report, a significant number 
of similar studies were performed [22-27, 30-321 reviving the use of the Laplace 
operation. This has motivated us to develop an edge detection system based on the 
Marr-Hildreth theory of edge detection with a central place for the nonlinear 
Laplace operator. 

3.1. Edge Detection System 

The complete Marr-Hildreth model for edge detection consists of a smoothing 
filter, a Laplace filter, and a zero-crossing detector performed in sequence. We have 
extended this model with an edge strength filter and a threshold operator. An 
outline of the system is shown in Fig. 4. 

We can distinguish five major functions and each of them can be accomplished by 
different operators. In order to obtain the best overall performance, all of these 
operators must be optimal. Each operator has associated with it, parameters whose 
values depend upon the type of input image and the signal to noise ratio. With all 
the possible choices of parameters, we can, in principle, construct many edge 
detectors with different properties, characteristics, and performance. 

In this section the possible choices for each function-smoothing, Laplace 
filtering, edge strength detection, zero-crossing detection, and thresholding-will be 
summarized with a brief motivation. 

3.2. Smoothing Filter 

In many applications the input image is first smoothed in order to reduce the 
noise level. We will study the influence of a smoothing filter on edge detection in 
detail. Two types of smoothing filters will be considered- the uniform filter u,( x, y ) 

FIG. 4. The edge detection model. 
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and the Gaussian filter G,(x, y). The uniform filter with filter size n is defined by 

24,(x, y) = ; “F 

v+su 

c I(& Y’L (26) 
x,=x-S” y’=y-S” 

where S, is half the filter size of the uniform filter ((n - 1)/2). The Gaussian filter 
with standard deviation u is defined by 

6(x, Y) = & 

x + s, 

c 

x1* + y’2 I(& Y’> (27) 
x,=x-s, y’=y-SE 2a2 1 

with a window size of 2Sg + 1 in each direction. We shall choose Sg equal to the 
smallest integer larger than 20 for the following reasons: (1) The digital filter must 
be a good fit relative to the continuous Gaussian function. Choosing Sg too small 
produces artifacts attributable to the side lobes that occur in the frequency domain. 
(2) Large values of Sg slow the computational speed considerably. (3) At least 95% 
of the area under a l-dimensional Gaussian lies between plus and minus 1.96~ from 
the mean. The symmetry of the Gaussian smoothing filter (as well as the uniform 
filter), means that it can be separated in two independent l-dimensional filters-one 
for the rows and one for the columns. 

Smoothing filters are able to suppress noise by applying some form of averaging 
to the input image. We must be careful with using this kind of filter, however, 
because averaging blurs the image and thus decreases resolution. 

Consider that the noise in the image consists of independent samples from a 
distribution with zero mean and variance u,‘. A uniform filter of size n (n * samples) 
will reduce the noise variance to 

Var[smoothed noise] = ( un)*/n2. (28) 

Thus averaging increases the signal to noise ratio. A uniform filter has associated 
with it the parameter size n while the Gaussian filter standard deviation u. It can be 
shown that the noise suppression factors are equal if the standard deviation of the 
filters are equal. Hence, if we desire to develop a Gaussian filter with the same noise 
suppression factor as a corresponding uniform filter, then the standard deviation of 
the Gaussian filter must be chosen equal to the calculated standard deviation of the 
original uniform filter. For simplicity let us consider the l-dimensional case; the 
2-dimensional case is a straightforward extension. For the 1D uniform filter with 
total width n we have 

Var[unifrom,] = (n’ - 1)/12. (29) 

The relation between these two filter types is shown in Table 1. In this context it is 
important to understand that our Gaussian filter (due to the finite window size) has 
an effective standard deviation which is a little less than that of the underlying 
continuous function. This also reduces (slightly) the effective noise suppression 
factor. Even when the effective noise suppression factors of the uniform and 
Gaussian filters are equal, however, the ultimate result is quite different. This is due 
to the different frequency responses of these filters. 
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TABLE 1 

Comparison of the Equivalent Noise Suppression of the Uniform and the Gaussian Filters 

Based upon Their Standard Deviations 

Uniform filter Uniform tilter Gaussian filter 

with size with standard deviation with standard deviation 

3 0.82 0.X 

5 1.41 1.4 

I 2.00 2.0 

9 2.58 2.6 
~~-. ___. ~~. .- .- 

3.3. Laplace Filters 

In Section 2 we presented a few Laplace filters in detail. In our evaluation of 
Laplace filters we have considered the following: 

l The classical Laplace filter, 

l The Marr-Hildreth operator with three different sizes of the underlying 
Gaussian: u = 1.0, 2.0, and 3.0. (In the case of the Marr-Hildreth operator, the 
smoothing filter will be removed from the system.) 

l The square shaped nonlinear Laplace filter with sizes 3, 5. and 7, 

l The circular shaped nonlinear Laplace filter with sizes 3, 5, and 7. 

Each of these “second-derivative” operators produces an image in which the zero 
crossings must be detected. 

3.4. Zero-Crossing Detector 

It is the task of the zero-crossing detector to assign the changes in sign of a 
Laplace filtered image as the location of the edge. It is not likely, however, that most 
of the zero crossings will coincide with the specific spatial coordinates called pixels. 
Therefore the nearest neighbor in the direction of the gradient should be assigned as 
the edge pixel to achieve accuracy. Still higher accuracy can be achieved by subpixel 
interpolation. 

Another possibility is to fit the data of a local neighborhood with discrete 
orthogonal polynomials. The calculated parameter values of this model determine 
the gradient direction in which the second derivative ought to be computed. With 
the help of the transformed model the zero crossings establish the proper edge 
position. This has been done by Haralick [33-341. 

These methods have a maximum displacement of 0.5 pixel in the orientation 
perpendicular to the local edge direction. A disadvantage is that these techniques 
require rather complex calculations in contrast to the approach presented below. 

At all places where regions of opposite sign touch each other, the border pixels of 
the positive region will be assigned as possible edge pixels. When these regions have 
been separated by a l-pixel width strip of zero value pixels, then these pixels mark 
the exact edge position. In the case of large ramp-like edges, the “Laplacian” 
transition strip will become wider. Each zero value pixel will be assigned to the 
nearest region, either positive or negative. The border of the positive region 
represents the zero crossing. This zero crossing detector has a maximum displaee- 
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FIG. 5. The zero crossing detection scheme. 

ment of one pixel on the downward side of the edge slope. It will, however, offer a 
better performance when dealing with unsharp images where long ramp edges often 
occur. 

3.41. Implementation 

A flow diagram of the zero-crossing detector is shown in Fig. 5. The input is a 
Laplace filtered image, which is first segmented into three regions dependent upon 
the pixel value: positive, zero, or negative. 

Next the minimum distance for a zero value pixel to both the positive and 
negative regions is computed with Borgefors’ [35] distance transformation. Her 
algorithm computes, in two passes through the image, a pseudo-Euclidean distance 
from the given (zero) pixels to the nearest (positive or negative) regions. The masks 
for these two passes contain the local chamfer distances. Dorst [36] has proven that 
the best mean square error approximation to the Euclidean distance for small 
integers is obtained by using the chamfer distances 5 and 7 in a 3 X 3 neighbor- 
hood. This corresponds to a step with weight 5 along the grid and with weight 7 in 
diagonal directions. Thus the distance between points P and Q is computed as the 
minimum distance along a path connecting P and Q. The path consists of ng“grid” 
steps and n d “diagonal” steps. 

The zero value pixels are now assigned to the nearest adjacent region. This results 
in a binary image of positive and negative regions. Finally the 8-connected contour 
of the positive region is extracted by an exclusive-or with the 4-connect eroded 
image. This is an important step in that closed contours are guaranteed without 
additional computational effort. 

3.5. Edge Strength Detector 

The most plausible detector for computing the edge strength is a gradient 
operator. A gradient operator is maximal near the position of maximum edge slope. 
A few common gradient operators are: Roberts [37], Prewitt [38], and Sobel [3]. 
Performance comparisons by Abdou [39] and Peli [13] have pointed out that these 
operators perform poorly in images with medium and low signal to noise ratios. 
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FIG. 6. The blur minimum morphologic edge detector Lee [40] on a blurred edge profile. 

Another edge strength detector is the local grey level contrast (maximum-mini- 
mum). This filter performs similarly to the above-mentioned gradient operators. 

Lee [40] proposed an edge strength detector based on grey scale morphological 
operators. We have chosen this operator because its inherent noise sensitivity is 
much less than the more conventional gradient operators. It is composed of the 
dilation residue and the erosion residue operators and has been called the “blur 
minimum morphologic edge detector.” Lee [40] has defined it as 

I Edge-strength = min{ I1 - Erosion( I,), Dilation( 11) - I,}, 

where Ii = Blur{ I,,,,, } and Blur{ Iinput } is the input image with a blurring opera- 
tion. The grey scale erosion and dilation operators can be implemented by local 
minimum and maximum filters. The blurring or smoothing beforehand is essential 
as this operator only assigns a pixel as an edge element when it has a grey value 
between the two extremes-when the pixel lies on the edge slope. Thus-curiously 
enough-step edges can only be detected after the input image has first been 
smoothed. The blurred edge profile of Fig. 6 offers an impression of how this edge 
strength detector works. We see that the minimum of two gradients is maximal at 
the position with the steepest edge slope. This coincides with a zero crossing in the 
output of the nonlinear Laplace operator. 

When we consider this operator in detail we notice a strong parallel with the 
nonlinear Laplace operator. According to Eqs. (18)-(20) the definition given by Eq. 
(30) can be rewritten as 

I mge-Slrength(~, y) = min{gradmax(x, Y), -gradbn(x, .Y)>. 

This edge-strength filter includes the possibility of using circularly shaped supports. 
The above equation also implies a reduction in computational effort. Namely. 
gradmax and gradmin have to be computed only once and are used twice. 

Lee has pointed out that the blurring filter should be of the same size as the grey 
scale erosion and dilation. Its lower sensitivity to single noise pixels in a homoge- 
neous region is shown in Fig. 7. It shows that when using a uniform smoothing filter 
for blurring, the output image will not respond to an isolated noise sample in the 
input image. 
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FIG. 7. The response of a single noise sample by Lee’s [40] minimum morphologic edge detector. 

3.6. Threshold Operator 

We did not use an automatic threshold selection algorithm to identify the 
appropriate threshold level indicated in Fig. 4. It may be possible to separate 
automatically the noise response and the real edge response for medium and high 
signal to noise ratios, but an algorithm robust enough for images with low signal to 
noise ratio is not available. We have, instead, chosen the threshold level by “hand.” 
In order to obtain this we estimate an initial threshold level based on the grey value 
histogram and this is then adjusted by visual inspection. 

4. EVALUATION TECHNIQUE 

Quantitative performance measures are often used to compare the results ob- 
tained by different edge detectors. In this study these measures are also quite useful 
for evaluating the various configurations of our edge detection model, developed 
with choices from the previous section. While the zero-crossing detector and the 
threshold operator are essentially fixed, the smoothing filter and the Laplace filter 
must be optimized as to type and size. The size of the edge strength filter should also 
be related to the smoothing size. 

4.1. Parameter Choice as f(SNR) 

It is possible to describe a relationship between the SNR (signal to noise ratio) of 
the input image and the parameter choices of the edge detection model. The SNR is 
defined as 

SNR = g2/(aJ2, (32) 

where g is the grey level difference between the two sides of the edge, and on the 
standard deviation of the additive Gaussian noise with zero mean. From Eq. (28) we 
see that the SNR improves by smoothing the noisy input image. Hence, the noise 
level of the input image determines roughly the minimum size of the smoothing 
filter. The lower the SNR, the larger the minimum size of the smoothing filter must 
be. Within a given range of SNR, however, the final filter configuration ought to be 
the one with the smallest possible total support in the spatial domain; this permits 
the detection of relatively small spatial features. 
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4.2. Figure of Merit 

Quantitative performance measures can be grouped into two types. The first type 
-probabilistic measures-is based upon the statistics of false detection and false 
rejection. The second type-distance measures-is based upon edge deviation or 
error distance. This is the minimum distance between the detected edge and ground 
truth. A few measures based upon distance are: 

l the mean square deviation: 

MSD = ; ,E (di)2 (33) 
D r=l 

l the mean absolute deviation: 

l Pratt’s figure of merit: 

FOM = 

(34) 

where ID is the number of detected edge points, I, the number of ideal edge points 
(ground truth), (Y (> 0) a scaling constant, and dj the edge deviation or error 
distance for the ith detected edge pixel. 

In our study we favor the distance measures, in particular, Pratt’s FOM. It fulfills 
our requirements and it has been used often in edge detector evaluations: Pratt [2], 
Abdou [39], Peli [13], Gerbrands [12], and Bailey [41]. For a perfect match between 
the detected edge and the ground truth, FOM = 1; as the detected edge deviates 
more and more from the truth, the FOM goes to zero. In all cases 0 < FOM s 1. 
The advantage of the FOM over the first type of performance measure is the more 
carefully balanced appraisal of the detected edge. For example, the edge detection 
algorithm that gives a l-pixel offset between the detected edge and its ground truth 
will receive a poor rating based upon the false detection probability of 1.0. Using 
Pratt’s FOM (a = t) the same algorithm achieves an excellent rating of 0.9. 
Unfortunately, Pratt’s figure-of-merit gives no bonus for finding closed contours and 
small erroneous edge fragments far from the true contour are heavily penalized. 
When the ratings obtained with the FOM for different detection techniques or 
different parameter choices are very close, the measures given in Pqs. (33) (34) can 
be used to decide which one performs incrementally better. 

The implementation of the distance measures is simple. With Borgefors distance 
transformation we compute the distance from each detected edge pixel to the 
nearest actual edge element simultaneously. Again the chamfer distances 5 and 7 are 
used. 
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FIG. 8. Edge profiles: (a) an ideal step edge; (b) an ideal ramp edge. 

4.3. Test Images 

For the comparison of the performance of the different configurations examined, 
we used two test images: one containing a circular edge and one containing a 
vertical edge. 

A circle is a complex object for those edge detectors that are not able to adapt 
their orientation to the local edge direction. The local direction of the edge varies 
rapidly. We used a circle with 180 pixels in diameter. The edge of the circle is an 
ideal step edge, meaning no transition region between the object and the back- 
ground (Fig. 8a). 

We have chosen this particular test object because it has been used by Peli, who 
has provided an extensive survey of edge detector performance. The vertical edge is 
a ramp edge with a transition region of one pixel lying just between the object and 
background grey level (Fig. 8b). This test image is equivalent to the one used by 
Pratt, Abdou, and Gerbrands. 

Like the above authors we have considered the test images with SNR from 1 to 
100. For all test images, g is the grey level change across the edge and u,~ is the 
standard deviation of the additive Gaussian noise. 

4.4. Noise Generator 

The Gaussian noise is generated using the polar method for normal deviates 
proposed by Knuth [42]. This algorithm requires a uniform random number 
generator for which we have used the one available on our system. According to the 
Unix Programmer’s Manual [43] this generator uses a multiplicative random num- 
ber generator with period 232 to return successive pseudo-random numbers in the 
range from 0 to 231 - 1. All of the programming was performed in the C language 
[44] on a Motorola 680 x O-based computer system running under Unix. 

5. TEST RESULTS 

In this section we present the results of our evaluations. In the first part the 
quantitative results-Pratt’s figure of merit-are shown for the different experi- 
ments we have performed. In the second part we offer the visual results of our edge 
detection model. 

5.1. Quantitative Evaluation 

Figure 9 contains plots of the FOM as a function of SNR for different configura- 
tions of our edge detection model. We have used the following abbreviations to 
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FIG. 9. (a) The figure-of-merit as a function of SNR obtained with different smoothing filters 
(Gaussian filter, G(o); and uniform filter, u(n)) on a circular test image. All nonlinear Laplace filters as 
well as the edge strength filters have a pseudo-circular support. (b) The figure-of-merit as a function of 
SNR obtained with different Laplace filters (nonlinear Laplace filter, nlLap(n); classic Laplace filter, 
Lap; and the Marr-Hildreth operator, MH(o)) on a circular test image. All nonlinear Laplace filters as 
well as the edge strength filters have a pseudo-circular support. The edge results achieved with the 
classical Laplace filter at SNRs below 10 are more disturbed by noise than one would expect from the 
corresponding figure-of-merits. Large sections of the contour are missing and the rest exhibit a 
“high-frequency” character around the true contour. (c) The figure-of-merit as a function of SNR 
obtained with different parameters for Gaussian filter and nonlinear Laplace filter on a vertical ramp 
edge. All nonlinear Laplace filters as well as the edge strength filters have a pseudo-circular support. 
(d-e) The figure-of-merit as a function of SNR obtained with several configurations of the edge detection 
model on a circular test image. All nonlinear Laplace filters as well as edge strength filters have a 
pseudo-circular support. (d) low SNRs; (e) high SNRs. 
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indicate the associated parameter values where c means circular and s means 
square: 

Gaussian filter w/standard deviation u G(u) 
uniform filter of size n X n 44 
classical Laplace Lap 
nonlinear Laplace w/shape (c or s) and size n nlLap(c/s, n) 
Marr-Hildreth operator w/standard deviation u MWu) 
edge strength detector w/shape (c or s) and size &c/s, 4 

In the configurations with the nonlinear Laplace filter we always use the edge 
strength detector with the same parameters (c/s,n). Thus the filter will not be 
indicated in those cases. A circle around a point on the lines drawn in Fig. 9 marks 
a point where a broken edge (contour) was detected instead of a closed one. The 
values of SNR evaluated are 1, 2, 5, 10, 20, 50, and 100. 

5.1.1. Smoothing Filter 

The first function to be investigated is the smoothing filter. In Fig. 9a we show the 
FOMs obtained with two different types of smoothing for which the noise reduction 
factor is almost the same. (Remember that from Table 1 in Section 3 with respect to 
noise reduction: G(1.4) = u(5) and G(2.0) = u(7).) Although this test was executed 
for three equivalent noise reduction sizes (u(5), u(7), u(9)), we have plotted only two 
of them in order to keep Fig. 9a readable. The result of the third, however, is similar 
to the ones plotted in Fig. 9a. The other functions of the edge detection model (Fig. 
4) were all equal for the corresponding configurations with different smoothing 
filters. 

As can be seen in Fig. 9a, the Gaussian filter was found to have the best 
performance over the entire range of SNR. Even with the somewhat smaller 
effective noise reduction factor of our FIR Gaussian filter, the results are superior to 
those obtained with uniform filtering. Based upon our results from Fig. 9a as well as 
the Marr-Hildreth results, we will focus exclusively in the following experiments on 
the use of Gaussian smoothing filters. 

5.1.2. Laplace Filters 

In this section we evaluate the various possible choices for Laplacian-like filtering 
with the Gaussian filter as smoothing filter. In Fig. 9b we show the FOM for three 
different Laplace-like filters: the classical Laplace (Lap), the Marr-Hildreth (MH), 
and the nonlinear Laplace (nlLap). Before judging the performance one should 
know that: (1) For the classical Laplace filter we have chosen the optimal smoothing 
size for each SNR; for the others the smoothing size was constant. By “optimal 
Gaussian” filter we mean the value for the standard deviation that leads to the best 
ultimate edge result according to the FOM. (2) The edge strength (from Eq. (31)) 
was also computed with this optimal smoothing filter. 

From Fig. 9b, we conclude that the nonlinear Laplace operator has the best 
performance for medium and low SNR (that is, SNR I 50). At high SNR (= 100) 
the classical Laplacian performs better due to its optimally chosen Gaussian filter. 
At very low SNR the nonlinear Laplacian is far superior; it is the only Laplace-like 
filter able to detect closed contours at SNR = 1. Experiments with other values for 
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the standard deviation (Marr-Hildreth and Gaussian filter) and the size of the 
nonlinear Laplace filter offer similar results in comparison to the other two types of 
Laplace filters. 

5.1.3. Nonlinear Laplace Filter 

For the test image containing a vertical ramp edge (Fig. 8b) as used by Pratt, 
Abdou, and Gerbrands, we have studied four configurations with a Gaussian filter. a 
nonlinear Laplace filter, and an edge strength filter with the same parameters as the 
nonlinear Laplacian. The FOM plots are shown in Fig. 9c. For the vertical ramp 
edge we see that the larger the filters (G, nlLap, and es) the better the achieved 
FOM for low SNR. For SNR > 5 all filters achieve similar performance. 

A characteristic of the nonlinear Laplace filter is its shape in the spatial 
domain-circular or square. It has not been possible for us to distinguish their 
performance with the two test images considered. For these images the performance 
of the circularly shaped filter is just slightly better than that of the square-shaped 
one. 

5.1.4. Locally Optimum Con&urations 

To identify the optimal parameter choice for each interval of SNR, we divide the 
total range in two parts: 1 I SNR I 10, and 10 < SNR < 100. We have studied 
many configurations arranged with a Gaussian smoothing filter, a nonlinear Laplace 
filter, and an edge strength filter of different sizes. Figure 9d shows the FOM results 
for low SNRs and Fig. 9e for high SNR. 

From Fig. 9e we may conclude there is a lower bound for the smoothing width 
somewhere between u = 0.8 and u = LO-just above the standard deviation of a 
uniform smoothing filter with size 3 (see Table 1). The lower bound for the 
nonlinear Laplace filter is size 3. As the SNR decreases we see a monotonic increase 
in the width of the FIR Gaussian filter required to achieve a respectable FOM. This 
result confirms the proposal for relating the sizes of the smoothing and nonlinear 
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3 
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FIG. 10. Locally optimal standard deviation of the Gaussian smoothing filter and locally optimal size 

of the nonlinear Laplace filter as function of the signal-to-noise ratio. 
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Laplace filters to the signal to noise ratio. A rough estimation of the locally optimal 
standard deviation is shown in Fig. 10. (By locally optimal we mean the value of the 
filter parameter required to achieve optimal performance over a local range of 
SNR.) An estimate of the uncertainty associated with these parameter choices is 
indicated by the grey region in Fig. 10. At the bottom of the figure a rough 
indication for the proper size of the nonlinear Laplace filter has been presented. 
These results provide another indication of the appropriate sizes for the combina- 
tion of Gaussian smoothing, nonlinear Laplace filtering and edge strength measure- 
ment. 

The locally optimal smoothing size also depends on the edge strength detector 
(Lee [40]) used. This detector always requires a certain minimum amount of blurring 
in order to be able to detect sharp edges such as step edges. 

5.2. Qualitative Evaluation 

In addition to the objective analysis presented above, it is worthwhile to offer a 
qualitative examination by presenting standard pictures processed with these proce- 
dures. The reasons for this are twofold: First, an impression of the performance is 
given by a sequence of pictures made during the various stages of the edge detection 
process. This has been done for SNR = 1, and the results are shown in Fig. 11. 
Second, despite the subjectivity associated with simply viewing pictures, the topic 
remains image processing and we would be less than responsible if we did not 
permit the reader to draw his or her own conclusions as to the efficacy of our 
method. 

6. DISCUSSION 

In the previous section we have evaluated a number of configurations of our edge 
detection model. The evaluation has pointed out a (locally) optimal configuration 
for our edge detector as a function of the SNR in the input image. In order to get a 
perspective on its performance, it is useful to compare our results with those 
reported in the literature. 

Pratt, Abdou, and Gerbrands compared the FOM on a vertical ramp edge in the 
presence of noise. In their comparisons the threshold level was set to achieve 
the maximum FOM value. We also could have chosen to set our thresholds by the 
“objective” method of maximizing the FOM. We chose instead thresholds that 
provided closed contours and we took our chances with the resulting FOM. We did 
so, because the edge results with maximum figure-of-merit consist of many small 
disconnected line elements from which hardly any information can be derived. They 
examined the Kirsch template matching operator [45] of different sizes and levels 
and the Prewitt, Sobel, and Roberts’ gradients combined with both the square root 
and the magnitude operation. Gerbrands evaluated a sequential edge detector which 
searched for a minimum cost path through a desired region of interest with the help 
of dynamic programmin g. His method showed significantly better performance than 
the best of the above-mentioned parallel schemes for low values of the SNR. His 
results are shown in [12, Fig. 41. A disadvantage of his technique is that a priori 
knowledge is required about the shape and position of the edge to be detected. On 



FIG. 11. Pictures showing the intermediate results during the various states of the edge detectron 

process for a circle of SNR = 1: (a) circular test image of SNR = 1 (0 dB) with a superimposed line plot; 

(b) Gaussian filtered image, G(3.0); (c) zero crossings after nonlinear Laplace filtering, nlLap( c, 7); 

(d) edge strength image, es(c,7); (e) zero crossings with grey values representing the strength of the 

underlying edge; (f) thresholded edge result, a simply connected l-pixel thick contour. 
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the same ramp edge our nonlinear Laplace filter exhibits better performance than 
the minimum cost search algorithm even at low values of SNR (Fig. SC). 

Peli carried out an extensive evaluation of edge detection performance on a 
circular test image. His results are shown in [13, Fig. llb]. He pointed out that 
Roberts’ gradient is a useful edge detector for an image with a very small amount of 
noise because of its low number of computations. When the image is noisy, 
however, the Rosenfeld algorithm [46-481 performs better. The general idea behind 
his technique is that of computing differences between averages of nonoverlapping 
neighborhoods that meet at the same point. Our edge detection model with a 
suitable combination of Gaussian smoothing and nonlinear Laplace filtering is 
superior to the above results for the entire range of SNR. 

Haralick [33, 491 and Grimson compared edge detectors based upon the detection 
of zero crossings in the output of the second-order derivative. They used a synthetic 
chessboard image with base grey levels 75 to 175 to which was added independent 
Gaussian noise of zero mean and standard deviation 50. This test image had a 
SNR = 4 according to our definition of the SNR in Eq. (34). The measures they 
used were the conditional probabilities of true edges given assigned edges and vice 
versa and an edge distance criteria which was the average distance from the detected 
edge pixels to the closest true edge pixels which were assigned nonedge but which 
were true. The edge detectors analyzed were: the cubic polynomial edge detector 
which computes the second-order derivative by a model approximation of the 
underlying grey level surface (Haralick [33]), the Marr-Hildreth operator (Grimson 
and Hildreth [22]), and a truncated version of the Marr-Hildreth operator (Haralick 
[33]). Following Fig. 10 we have constructed our edge detector with a Gaussian 
smoothing of standard deviation 1.8 in combination with a circular shaped nonlin- 
ear Laplace filter of size 5. The results of this comparison are shown in Table 2. 

It appears that the conditional probabilities for the nonlinear Laplace filter are 
slightly better than the Haralick cubic polynomial fitting model, but slightly worse 
than the Marr-Hildreth operator. This may be explained by the fact that in their 
implementation the edge pixels are assigned to the nearest neighbor in the output of 
the Marr-Hildreth operator, instead of the nearest positive neighbor in the nonlin- 
ear Laplace filtered image. This latter method offers a faster implementation in 
exchange for a slightly larger displacement of the edge. Truncation of the 
Marr-Hildreth operator leads to disastrous results. For the measured error distance 
our detector has the smallest value. Figure 12 shows the noisy chess-board and the 
edge result achieved. 

Conditional Probabilities and the Mean Absolute Edge Deviation as Performance Measures for 

a Chessboard Image with SNR = 4. IE Stands for Ideal Edge and AE Stands for Assigned Edge 

TABLE 2 

Performance 

measures 

Prob(AEIIE) 

Prob(IEIAE) 

Error distance 

Cubic polynomial 

model (Haralick) 

0.7207 

0.7197 

1.16 

Truncated 

Marr-Hildreth 

0.3977 

0.4159 

1.76 

Marr-Hildreth 

0.8887 

0.9237 

1.17 

Nonlinear 

Laplace 

filter 

0.82 

0.81 

1.07 
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FIG. 12. (a) A synthetic chessboard image of SNR = 4 with a superimposed line plot. (b) Detected 
edges achieved by an edge detector consisting of: A Gaussian filter with standard deviation 1.8, G( 1.8); :i 
nonlinear Laplace filter of quasi-circular shape and filter size 5, nlLap(c, 5); and a Lee’s edge strengrh 
filter of the same shape and filter size, es( c, 5). 

7. CONCLUSIONS 

In this article we have evaluated extensively the performance of an edge detection 
scheme developed around the nonlinear Laplace operator. The complete edge 
detection model is based upon the Marr-Hildreth theory of edge detection and is 
extremely effective and flexible in detecting l-pixel thick edges. We have argued that 
the parameters of the Gaussian smoothing filter as well as the nonlinear Laplacian 
depend upon the SNR in the input image. Using an optimal configuration for 
minimum spatial extension leads to a result where even in noisy images most of the 
edge information is retained. We have compared our results with those in the 
literature. For the test images we considered, our configuration performs at least as 
well-and in most cases far better-than other edge detectors. For these compar- 
isons we have used Pratt’s figure of merit as a quantitative performance measure. At 
low SNRs (< 10) our detector performed far better than the others and produced 
closed contours for the test images used. 

Specific characterizations of the nonlinear Laplacian are its adaptive orientation 
to the direction of the gradient, its inherent masks which permit the development of 
approximately circular (isotropic) filters, and its easy and fast implementation in 
software. For a finishing touch we present the edge results achieved by applying our 
detector to three “real world” images (Fig. 13). 
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FIG. 13. Presentation of the edge results achieved by applying the proposed edge detection model to 
some “real world” images. (a) Picture of a woman wearing a hat (“lena”). (b) Detected edges achieved 

by: G(l.S), nlLap(c, 5), es( c, 5). (c) Picture of a woman wearing a highly structured scarf (“ trui”). 

(d) Detected edges achieved by: G(1.4), nlLap( c, 5), es( c, 5). (e) Electron microscope image containing 

gold particles embedded in glass (“cermet”). (f) Detected edges achieved by: G(l.O), nlLap(c, 3), es(c, 3). 
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