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A Nonlinear Lumped Equivalent Circuit Model for
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Abstract— An accurate nonlinear lumped equivalent circuit
model is used for modeling of capacitive micromachined ultra-
sonic transducers (CMUTs). Finite-element analysis (FEA) is a
powerful tool for the analysis of CMUT arrays with a small
number of cells while with the harmonic balance (HB) analysis
of the lumped equivalent circuit model, the entire behavior of a
large-scale arbitrary CMUT array can be modeled in a very short
time. Recently, an accurate nonlinear equivalent circuit model
for uncollapsed single circular CMUT cells has been developed.
However, the need for an accurate large-signal circuit model for
CMUT cells with square membranes motivated us to produce
a new nonlinear large-signal equivalent circuit model for uncol-
lapsed CMUT cells. In this paper, using analytical calculations
and FEA as the tuning tool, a precise large signal equivalent
circuit model of square CMUT dynamics was developed and
showed excellent agreement with finite-element modeling (FEM)
results. Then, different CMUT single cells with square and
circular membranes were fabricated using a standard sacrificial
release process. Model predictions of resonance frequencies and
displacements closely matched experimental vibrometer mea-
surements. The framework presented here may prove valuable
for future design and modeling of CMUT arrays with square
membranes for ultrasound imaging and therapy applications.

Index Terms— Capacitive micromachined ultrasonic transduc-
ers (CMUTs), microelectromechanical systems (MEMSs), micro-
fabrication, nonlinear lumped equivalent circuit model.

I. INTRODUCTION

C
APACITIVE micromachined ultrasonic transducers
(CMUTs) have attracted considerable attention in

the ultrasound community owing to their potential for
mass fabrication and cointegration with electronics [1]–[6].
In addition, recent efforts have focused on applications not
easily addressed with conventional piezoelectric materials,
including bias-switchable crossed-electrode 2-D arrays [7]
and multifrequency interlaced transducers for acoustic
[8]–[11] and photoacoustic imaging applications [12].
Electromechanical modeling of these devices will be critical
for optimizing the performance of the arrays.
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Much of the previous modeling literature, which is based
on Mason’s equivalent circuit [13], has focused on circular
membranes owing to simplifications associated with cylin-
drical symmetry [14]–[16]. In these cases, equivalent-circuit
models have proven to be computationally superior over
finite-element modeling (FEM) with excellent accuracy. How-
ever, finite-element analysis (FEA) is still a powerful tool to
predict the nonlinear effects of the CMUT and higher order
harmonics.

Square membrane CMUTs have been widely used and
make better use of active wafer real estate compared
to circular membranes. Their modeling, however, is more
complex [17], and most prior work has relied on FEA,
which is time-consuming and practically intractable for large
arrays. Although static deflection models have been previ-
ously presented for square membranes [18]–[21], dynamic
lumped equivalent circuit models have only been developed
for the small signal regime [17], where important nonlin-
ear behavior is ignored. The Degertekin group developed a
2-D finite-element hybrid model [22], [23], which is com-
putationally advantageous over the full 3-D model; however,
the computational burden is still nontrivial and the lack of an
equivalent circuit model makes cosimulation with electronics
difficult.

In this paper, a large-signal nonlinear equivalent circuit
model is developed for single CMUT cells with square mem-
branes by obtaining new circuit parameters for the model
developed in [14]. First, we studied the deflection profile
of the square membranes using static FEA and analytical
calculations. Then, the nonlinear capacitance of the CMUT
was obtained relative to the normalized deflection of the
membrane. Using the root mean square (rms) of the plate
displacement and velocity, the electrostatic force acting on the
membrane was found and compared with circular plates. The
membrane rms compliance was found for thin and thick plates
and all obtained parameters were implemented in a circuit
model. The nonlinear equivalent circuit model is based on
accurate approximations of membrane deflection and velocity
profiles as well as self-radiation impedance, for which there
are no known analytical closed-form solutions [17]. The model
is implemented in the commercial circuit simulator Advanced
Design System Environment (Agilent Technologies Inc.,
Santa Rosa, CA, USA).

Model predictions of the membrane static deflections for
different dc biases, membrane dynamic displacement ampli-
tude and phase, resonance frequency, and total electrical
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Fig. 1. Nonlinear large signal equivalent circuit model of a CMUT with
square membrane.

conductance closely matched the 3-D FEM analysis for various
single square CMUT cells with thin and thick membranes.
Then, the results were compared with circular CMUT cells
when the half-side length of the square CMUT is assumed
to be equal to the radii of the circular cell. It will be shown
that there is a considerable difference between the simula-
tion results of the counterpart circular and square CMUT
cells. The fabricated single transducers using a standard
sacrificial release process are then compared with circuit
simulation results. The predictions for resonance frequencies
and displacements show a good agreement with experimental
vibrometer measurement results in air.

Although some have used circular CMUT models as an
approximation to square membrane models, our paper aims to
show some important differences that may make a difference
when designing next-generation transducers with maximal
real estate for photoacoustic and ultrasound imaging-therapy
applications.

II. NONLINEAR LUMPED EQUIVALENT CIRCUIT MODEL

FOR A SINGLE SQUARE CMUT CELL

We based our large signal equivalent circuit on the model
developed in [14] in which the model parameters are provided
for single CMUT devices with circular membranes. However,
by considering the same circuit, different circuit parameters
are used for the CMUTs with square membranes. The circuit
model consists of three interacting physical domains of a
CMUT including electrical, mechanical, and acoustical ports
(Fig. 1).

A. Deflection Profile

Fig. 2 shows the basic top and cross-sectional views of a
circular and square CMUT cells with an applied voltage. The
general form of a square CMUT deflection profile with side
length of 2L can be written as [20]
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where L is the half-side length of the aperture, x and y

are the distances across the plate in two directions, x p is

Fig. 2. Top and cross-sectional view of the CMUT geometry with applied
voltage and dimensional parameters.

the displacement at the center of the membrane, and Cn

coefficients can be adjusted for any design parameters and
are determined by FEA.

Since the analytical deflection calculations for the plates
with square membranes are complicated, approximate methods
must be used to solve the plate equation. Rahman et al. [20]
provided a deflection profile for square CMUTs with a
membrane thickness of 0.5–3 µm and half-side length
of 100–500 µm. However, the provided expression loses accu-
racy while the membrane size shrinks to smaller values
(L < 100 µm). As will be shown later, the CMUT membranes
can be considered as thin (L/tm ≥ 15) or thick (L/tm < 15)

plates. First, the model parameters are achieved by considering
the thin plate condition. Then using FEA, the model will
be expanded for thick membranes by applying the obtained
correction factors to the compliance of the membrane. The
approximate deflection profile of a CMUT with a square
membrane can be written as
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which is a special case of (1) for N = 2. Thomsen et al. [18]
found the coefficient β for the plates on a silicon (001)
substrate and aligned to the [110] direction as

β =
182 + 143k2

1432 + 91k2
(3)

where k2 is the plate coefficient and βlow = 0.23920 and
βhigh = 0.23691 are obtained for single-crystal silicon with
low (150 � − cm,∼ 2.8 × 1013 cm−3) and high doping
(3.26 m� − cm,∼ 2.1 × 1019 cm−3), respectively, as defined
in [17]. We use β = 0.23691 in our simulations and found that
this provides a reasonable agreement with FEM for a wide
range of thin membranes with different materials including
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Fig. 3. Comparison of FEA deflection profile of 1-µm silicon nitride
diaphragm with the approximate analytical solution, plotted from the center
to the edge of the plate. L = 20 µm and tm = 1 µm. The silicon nitride
membrane parameters are provided in [10, Table IV].

silicon nitride which we are mostly interested in. Fig. 3 shows
the normalized deflection profile, D(x, y)/x p, of a target thin
silicon nitride square membrane (L = 20 µm, tm = 1 µm)

versus the normalized diagonal distance from the center of
the plate for different biasing voltages in water immersion.

The applied dc voltage is increased until the membrane
collapsed at 69 V. The normalized deflection profile is slightly
changed under different bias voltages. However, the approx-
imate analytical solution using βhigh = 0.23691 gives us an
acceptable deflection profile to start obtaining the nonlinear
lumped equivalent circuit parameters of a square CMUT
cell. The membrane material parameters of the membrane
can be found in [10, Table IV]. For further investigation,
the similar analysis was accomplished for different types of
thin membranes with different sizes and thicknesses with 60-V
dc bias (Fig. 4). The collapse voltages for considered three
different designs from top to bottom are 69, 82, and 87 V and
the applied 60-V bias is 87%, 73%, and 69% of their collapse
voltages, respectively.

B. Capacitance

The capacitance, δC(x, y, t), of a concentric narrow square
on the membrane with dimension of dx by dy can be
expressed as

δC(x, y, t) =
ε0dxdy

tge − D(x, y, t)
(4)

where ε0 = 8.85 × 10−12 F/m is the permittivity of the
gap in free space and tge = tg + ti/εr is the effective gap
height in which εr is the relative permittivity of the insulating
material, tg is the thicknesses of the vacuum gap height, and
ti determines the insulating layer thickness.

The total capacitance, C(t), of the deflected membrane with
full electrode can be written as

C(t) =
1

tge

∫ L

−L

∫ L

−L

ε0

1 − 1
tge

D(x, y, t)
dxdy. (5)

Fig. 4. Comparison of FEA deflection profile of different silicon nitride
membranes with the approximate analytical solution, plotted from the center
to the edge of the plate. Vdc = 60 V.

Fig. 5. Comparison of normalized total capacitance versus normalized
membrane deflection for a circular plate with full electrode and a square
membrane with full- and concentric half-size electrodes.

However, the capacitance can be found for the membranes
with a partial electrode of inner half-side length of L i and
outer half-side length of Lo. Since there is no analytical
solution for the capacitance calculation of the square CMUTs,
the integration is performed numerically. Fig. 5 shows the
analytical solution for a circular membrane with full electrode
[14, eq. (2)] and numerical solutions for the capacitance of
a square plate with full- and concentric half-size electrodes.
Note that for the plates with half-size concentric electrodes,
the area of the electrode is 2L2 and the intervals of the integral
in (5) will be from −

√
2 L/2 to

√
2 L/2.

The total capacitance of the deflected membrane with full-
area electrodes can be expressed as

C(t) = C0g

(

x p(t)

tge

)

= C0g(u) (6)
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where C0 = ε04L2/tge is the capacitance at zero deflection,
and the function g(u), which describes the shape of the
capacitance curve, can be found by performing the higher
order polynomial fitting to the numerically obtained solu-
tion for three different deflection ranges: 1) low deflection
0 < u < 1e − 3; 2) the range below the pull-in distance
1e − 3 < u < 0.5; and 3) the range beyond the pull-
in distance of 0.5 < u < 0.99. Note that [17, eq. 82]
calculates the normalized pull-in distance as 0.466 without
additional pressure loading, which we are rounding to 0.5.
Fig. 6 demonstrates the numerically obtained solutions for
the normalized capacitance of a square plate and its first
and second derivatives for three different normalized deflection
ranges. The goodness of fitting on obtained graphs is increased
dramatically when the polynomial fitting is done separately for
divided membrane deflection ranges. The polynomial coeffi-
cients of (7) are provided in Table V of the Appendix

g(u) =
9

∑

n=0

anun . (7)

Note that for negative values of peak displacement
(x p(t) < 0), g(u) will be replaced by g(−u), which is a useful
expression for circuit simulators.

C. RMS, Average, and Peak Displacement and

Velocity Coefficients

Since the average displacement and velocity measurements
are problematic in some cases, the rms velocity distribution on
the membrane surface, vrms, is preferred instead of the average
velocity, vave, as the lumped variable at the mechanical side
of the circuit [15]. For instance, higher harmonic deflection
profiles may generate zero average displacement and velocity.
In this case, the mechanical radiation impedance will go to
infinity and makes the mechanical port of the lumped model
open circuit. This problem can be handled by defining the rms
displacement of the square membrane profile as

xR(t) =

√

1
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and the average displacement, xA(t), for the membrane
displacement profile given by (1) is

xA(t)=
1
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∫ L

−L
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[

64(2β + 7)

1575

]

.

(9)

Table I summarizes the displacement rms and average
coefficients for low and high doping cases. Note that
the rms and average displacements, xR(t) and x A(t), for
the circular membranes are x p(t)/

√
5 = 0.4472x p(t) and

x p(t)/3 = 0.3333x p(t), respectively [14]. For the rest of this
paper, we will consider Coef fRM S and Coe f fAV G as the
membrane rms and average coefficients, respectively (Table I).

TABLE I

DISPLACEMENT RMS AND AVERAGE COEFFICIENTS

FOR THE SQUARE PLATES

According to v(t) = dx(t)/dt , the membrane velocity has
the same rms and average coefficients as shown for the plate
displacement in Table I.

The electrostatic force acting on the small square area dxdy

is calculated by taking the derivative of the stored energy in the
capacitance with square plates, while the CMUT is driven by
the combination of dc and ac voltages. The rms force, fR(t),
is given by [14, eq. (6)]

fR(t) =
∂ E(t)

∂xR(t)
(10)

where E(t) = 1/2C(t)V 2(t) is the instantaneous energy
stored on the capacitance, if V (t) is applied as the voltage
across the capacitance. Then, the rms force can be written as
[14, eq. (7)]

fR(t) =
V 2(t)

2

∂C(t)

∂xR(t)

=
(

1

Coe f fRM S

)

C0V 2(t)

2tge

g′(u). (11)

For the CMUTs with full electrodes, Fig. 7 depicts
the comparison of rms electrostatic force normalized with
C0V 2(t)/4tge for devices with circular and square membranes.

D. Compliance and Mass of the Square Membrane

The accuracy of the proposed model depends on the
agreement between the parameters of the equivalent circuit
model and the actual device parameters. For some of the
parameters including the membrane deflection and velocity
profiles, we are not able to use the exact form, and for some
calculations such as capacitance and mechanical radiation
impedance, there are no precise analytical solutions, hence we
need to perform numerical calculations or use approximations.
Since the device resonance frequency and the snap-down
voltage depend on the compliance of the membrane, Cm , and
the compliance is related to the membrane physical dimensions
(softer compliance for thicker plates), the relationship between
the compliance and membrane physical dimensions needs to
be adequately modeled to compensate the initial thin plate
approximation and keeps the accuracy of the equivalent circuit
for thicker plates.

Yamaner et al. [24, eq. (1)] used FEM simulation results to
develop a correction factor for thick circular plates, applied to
the rms compliance of a circular membrane. Using the same
approach, the accuracy of the model is increased by applying
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Fig. 6. Normalized capacitance of a square plate and its derivatives for normalized deflection of 0 < (xp/tge) < 1e−3 (left), 1e−3 < (
xp

tge
) < 0.5 (middle),

and 0.5 < (xp/tge) < 0.99 (right).

Fig. 7. Comparison of rms normalized electrostatic force as a function of
normalized membrane deflection.

different correction factors separately for thin and thick square
membranes.

For the structure shown in Fig. 2, the flexural rigidity of the
square plate is given by [17, eq. (2)]

D =
Y0t3

m

12(1 − σ 2)
(12)

where Y0 is Young’s modulus, tm is the thickness of the
membrane, and σ is the Poisson ratio. The linear spring
constant of the square membrane is [17]

KS =
768D

L2
(13)

with compliance given as Cm = 1/K S . As explained in [14],
the capacitance in Mason’s circuit representing the compliance
of the plate needs to be multiplied by |vrms|2/|vavg|2 to
preserve the resonance frequency in vacuum. Then, the rms
value of the compliance for devices with square membranes
can be written as [24, eq. (7)]

CRm =
(

Coe f fRM S

Coe f fAV G

)2 (1 − σ 2)L2

64Y0t3
m

(14)

TABLE II

COEFFICIENTS OF THE COMPLIANCE CORRECTION FACTOR

EQUATION FOR THIN AND THICK MEMBRANES

where Coef fRM S and Coe f fAV G are given in Table I.
We previously showed excellent agreement between FEM

and equivalent circuit model for circular CMUTs in [10]. The
circuit parameters for thin circular membranes are obtained
using exact analytical calculations, but for thin square mem-
branes, we used approximate deflection profile and numerical
calculations to find the nonlinear capacitance of the device.
To obtain good agreements between FEM, model, and exper-
iments, two correction factors are obtained by ANSYS 3-D
FEA for thin (L/tm > 15) and thick (L/tm < 15) membranes
and then applied to CRm separately as [26]

C ′
Rm = CRm

[

a + b

(

tm

L

)c]

(15)

with provided coefficients in Table II.
In the proposed circuit model shown in Fig. 1, the induc-

tance corresponds to the total mass of the membrane and the
rms value is

L Rm = ρ(4L2)tm (16)

where ρ is the density of the membrane.
It is necessary to consider the effects of the self-acoustic

radiation impedance on the behavior of the CMUT, especially
for immersion media. The radiation impedance, Z , of a
radiator is determined by dividing the total radiated power, P ,
from the transducer by the square of the absolute value of an
arbitrary nonzero reference velocity, V [25]. The self-radiation
impedance of a flexural circular clamped disk located on an
infinite rigid baffle is given in [10, eq. (36)] and [15]. The
same expression may be used as an approximation for a
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Fig. 8. Comparison of FEM with circuit simulation results for permanent resonance frequency of thin and thick plates in water immersion with and without
applying the correction factors to the compliance of the membrane. The half-side length of the device is 30 µm, the thickness of the membrane is swept
from 1 to 10 µm, and a dc bias of 30 V is applied. Device parameters are provided in [10, Table IV].

square clamped radiator by replacing the area of the circu-
lar plate (πa2) with the area of a square disk (4L2). The
self-radiation impedance is implemented in the acoustical port
of the circuit model. The choice to use the square area 4L2

rather than the circular area πa2 in the expression for the
self-radiation impedance was purely phenomenological and
based on model accuracy compared to FEM simulations. This
reflects slightly more moving membrane real estate in the
square membrane case compared to the circular membrane
case.

The accuracy of the model in static and dynamic conditions
is tested for thin and thick plates by comparing the FEM and
circuit simulation results for different designs. ANSYS 3-D
axisymmetric models of CMUTs with quarter periodic sections
are utilized by applying the rigid boundary conditions. More
details about the finite-element simulations for transducers
with circular membranes are provided in [26] as we used the
similar method to model and simulate the CMUTs with square
membranes. The CMUT is clamped from the side lengths and
considered as a clamped radiator. Fig. 8 shows the comparison
of finite-element simulations with the results obtained by the
circuit model with and without applying the correction factors
for the permanent resonance frequency of thin and thick plates
in water immersion. The permanent resonance frequency of
the CMUT is defined as the frequency of the peak total
conductance G (the real part of the admittance) [10], [14].
The parameters of [10, Table IV] are used for simulations,
except the dc voltage applied is 30 V, the half-side length
of the CMUT is considered 30 µm and the thickness of the
membrane is swept from 1 to 10 µm. The dynamic simulation
results show good agreement with FEM simulations for both
thin and thick plates.

More investigation is done by testing the accuracy of the
model in static conditions for two thick plates (L = 93 µm
with 7 and 14 µm thicknesses) by comparing the static
deflection obtained by finite-element simulations and circuit
models for different dc biases in water immersion. As shown

Fig. 9. Comparison of peak static deflections of a square CMUT cell with
a half-side length of 93 µm for two thick membranes obtained by FEM and
lumped equivalent circuit model using parameters of [10, Table IV] in water
immersion.

in Fig. 9, the model can predict the peak static deflection
values of a target CMUT cell under different dc biases.

Fig. 10 demonstrates the error of the equivalent circuit
model simulations for peak displacements compared to FEM
for two different designs shown in Fig. 9. It is obvious to see
that the model is more accurate for thinner membranes, which
is more desirable for our fabrication purposes. For example,
if we bias the considered CMUT cells with 75% of their
collapse voltages, the accuracy of the model is more than 97%
and 91% for the designs with the thicknesses of 7 and 14 µm,
respectively.

III. COMPARISON WITH FEM ANALYSIS

In Section II, the dc performance of the harmonic balance
(HB) circuit model was compared with the finite-element
static analysis results. Moreover, the large signal electrical
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Fig. 10. Error analysis of the peak displacement calculations for two different
designs shown in Fig. 9. The graph shows the accuracy of the proposed
equivalent circuit model compared to FEM.

conductance of a square CMUT with different design para-
meters was simulated and compared with FEM. All the
circuit simulations were done in water immersion and obtained
results were in excellent agreement with FEA. In this section,
we will do more dynamic simulations using different CMUT
parameters provided in [10, Table IV] and compare with FEM
results.

The large signal HB circuit model obtained in [14] and [15]
for circular CMUT cells may be used as an approximation to
model the CMUTs with square membranes by assuming that
the half-side length of the square plate is equal to the radii of
the circular membrane. Fig. 11 demonstrates the total electrical
conductance of two circular and square CMUTs with differ-
ent membrane sizes, 93 and 110 µm. Using the parameters
provided in [10, Table IV], the square CMUTs are modeled
in FEM and compared with the circuit simulation results for
circular and square devices. As shown, the circuit model with
proposed parameters for square CMUTs matches the 3-D FEA,
while the circular approximation does not provide the precise
solution. For example, the permanent resonance frequency of
a square CMUT cell with the half-side length of 93 µm and
a membrane thickness of 14 µm is 4.22 MHz with the total
electrical conductance of 1.96 µ�−1, while the circular model
gives the total peak conductance of 1.463 µ�−1 at 5.01 MHz.

For further investigation, we considered two circular and
square CMUTs with the same areas. For example, the area
of a square CMUT with half-side length of 93 µm is equal
to the area of a circular membrane with radii 105 µm. The
results shown in Fig. 11 demonstrate that the total electrical
conductance of a circular CMUT is more compared to a square
membrane with the same area, while the resonance frequency
shifts to lower values when we replace the circular membrane
with a square disk with the same area.

To evaluate the effects of the CMUT physical parameters
on the performance of the device and to show the accuracy
of the model in detail, more circuit simulations are done

Fig. 11. Comparison of total electrical conductance for square and circular
CMUT cells with provided parameters in [10, Table IV] when the half-side
length of the square CMUT is assumed to be equal to the radii of the circular
membrane and when the circular and square disks have the same areas.

in water immersion and compared with FEM. As shown
in Fig. 12, three CMUTs with L/tm of 20, 10, and 5 are
considered as thin and thick membranes using the same
parameters of [10, Table IV]. The simulation results of the
square CMUTs are obtained for the phase and amplitude of
the peak displacement and the total electrical conductance.
Compared to ANSYS 3-D FEM results, circuit simulations
show close predictions. However, it takes longer for FEM
simulations to be completed.

Results are thus far simulated using low 1-V ac driving
voltages (but with 60-V dc bias voltages close to snapdown)
where small-signal models may be applicable. However, our
model is also applicable to large signal operation. To demon-
strate this, we performed simulations similar to those in [14],
except using square, rather than circular membranes (Fig. 13).
We used both FEM and our equivalent circuit model to
simulate a silicon nitride membrane CMUT cell in water with
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Fig. 12. Amplitude and phase of the peak displacement and the total electrical conductance of the single CMUT cells with square membranes for different
L/tm combinations. All simulations are done in water immersion for devices with parameters provided in [10, Table IV].

parameters provided in [10, Table IV]. The modeled driving
voltage was 40-V peak ac, swept from 2 to 6 MHz, applied
over a 10-V bias. Note that the nearly 70-nm displacement
shown in Fig. 13 (top) is close to one-third of the effective gap
size (geff = 226 nm). Because the applied voltage swings both
positive and negative, this would not be a typical operating
mode for CMUTs, but this simulation tests the nonlinear
capacity of the model under large ac driving conditions.

IV. FABRICATION

We fabricated single circular and square CMUT cells using
a silicon nitride sacrificial release process that was recently
developed in our group [1] with slight modifications and
based on the process flow developed in [2]. Fig. 14 demon-
strates the cross-sectional overview of our fabrication scheme.
A prime wafer is coated with 250-nm low-stress low-pressure
chemical vapor deposition (LPCVD) thin silicon nitride as
insulation layer, 50-nm plasma-enhanced chemical vapor
deposition (PECVD) silicon dioxide as an etch-stop layer

for reactive ion etching (RIE) of the sacrificial layers and
250-nm LPCVD polysilicon sacrificial layer on it [Fig. 14(a)].
This is patterned using a highly anisotropic deep RIE (DRIE)
[Fig. 14(b)] to define the area of the plugs. Then, another
100-nm LPCVD polysilicon layer is deposited [Fig. 14(c)]
as the second sacrificial layer and is patterned to define
the low-height etching channels while slightly increasing the
polysilicon sacrificial layer in the gap area [Fig. 14(d)].
Over the patterned polysilicon sacrificial layer, 1-µm
LPCVD silicon nitride is deposited as the device membrane
[Fig. 14(e)].

To access the polysilicon sacrificial layer, holes are etched
through the membrane [Fig. 14(f)]. Then, the membranes
are released by KOH wet etching of combined sacrificial
layers [Fig. 14(g)]. Long KOH etching removes the entire
sacrificial layers including 350-nm polysilicon and 50-nm
silicon dioxide layers beneath the gap. A low-stress PECVD
silicon dioxide layer is then deposited to seal the etch holes
[Fig. 14(h)], which is etched to form the sealing plugs without
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Fig. 13. Amplitude and total electrical conductance of the peak displacement
of a silicon nitride membrane CMUT cell in water with parameters provided
in [10, Table IV]. A 40-V peak ac signal is applied on a 10-V bias voltage.
Large signal response is observed using our finite-element (FEM, dashed line)
transient analysis and compared with the response of the developed equivalent
circuit model shown in Fig. 1 (solid line).

TABLE III

PARAMETERS OF THE FABRICATED CMUT CELLS USING

A SACRIFICIAL RELEASE PROCESS

coating the membranes [Fig. 14(i)]. To minimize stiction
defects, the critical point drying (CPD) step must be done after
releasing the membrane.

Fig. 14. Silicon nitride sacrificial release CMUT fabrication process starting
on a prime wafer. (a) Deposition of thin bottom silicon nitride insulation film,
silicon dioxide protection layer, and first thick polysilicon sacrificial layer.
(b) Etching of the first polysilicon sacrificial layer. (c) Deposition of the
second thin polysilicon sacrificial layer. (d) Etching of polysilicon sacrificial
layer followed by a quick buffered oxide etch of exposed silicon dioxide
protection layer. (e) Deposition of thick silicon nitride membrane. (f) Etching
of the silicon nitride membrane to get access to the polysilicon sacrificial layer.
(g) Chemical etching of combined sacrificial layers to release the membrane.
(h) Deposition of silicon dioxide sealing film. (i) Pattering the silicon dioxide
sealing film into plugs. (j) Etching through the silicon nitride film to access
the bottom silicon electrode. (k) Sputtering the aluminum film. (l) Etching the
aluminum layer to form the top and bottom electrodes.

The final step after forming the CMUT cavity and sealing
the holes to make the membranes is defining top and bottom
electrodes. Using RIE, bottom electrode holes are etched
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TABLE IV

COMPARISON OF CIRCUIT SIMULATIONS WITH EXPERIMENTAL RESULTS FOR CMUTS WITH CIRCULAR AND SQUARE MEMBRANES

Fig. 15. SEM image of the fabricated CMUT devices with circular and
square membranes using a standard sacrificial release process. The radii of
the circular devices are equal to the half-side length of the counterpart square
CMUTs. Top electrodes of the CMUT cells are connected and all the devices
have a common bottom electrode through the silicon substrate.

through the silicon nitride layer to access the substrate which
is silicon [Fig. 14(j)]. Using a magnetron sputtering system,
the entire device is covered by a 400-nm aluminum layer
[Fig. 14(k)], and finally, top and bottom electrodes are formed
by wet aluminum etching [Fig. 14(l)]. More details about the
fabrication process can be found in [1].

V. COMPARISON WITH EXPERIMENTAL RESULTS

In addition to FEA, the simulation results were validated
by comparing the resonance frequencies of designed single
CMUT cells with fabricated circular and square transducers
using the silicon nitride sacrificial release process described
above. The measurements were made using a Microsystem
Analyzer laser vibrometer (MSA-500, Polytec). A pseudoran-
dom signal, which is equally weighted in all frequencies, was
applied to determine the center frequency of the devices in air.
Due to the softening of the membrane, the resonance frequency
of the CMUTs is shifted to lower frequencies by increasing
the dc bias. To find the actual resonance frequency, we only
applied pseudorandom signals without a dc bias. Fig. 15 shows

the scanning electron microscopy (SEM) image of the fabri-
cated circular and square CMUT cells with provided parame-
ters in Table III. To compare the resonance frequency of the
circular and square MUTs, the radii of the circular devices are
considered to be equal to the half-side length of the square
transducers. Circular CMUTs of radius 40, 35, 30, 25, and
20 µm were fabricated, tested, and compared with square
CMUTs of equivalent half-side-lengths. Table IV shows an
excellent agreement between the simulation and experimental
results both for circular and square devices. As can be seen,
the difference between the resonance frequency of the coun-
terpart circular and square CMUTs becomes larger, as the size
of the membrane gets smaller.

We applied a 1-V pseudorandom signal with different dc
biases to a single square CMUT cell with the half-side length
of 25 µm to find the collapse voltage and observe the changes
in resonance frequency (Fig. 16). As can be seen, due to the
softening of the membrane, the resonance frequency of the
device is shifted to lower frequencies by increasing the dc
bias. Using the HB circuit analysis, the snap-down voltage
was found to be 93 and 110 V for the devices with insulator
thicknesses of 150 and 250 nm, respectively. Obtained circuit
simulations for the snap-down voltage match with experimen-
tal results which are around 90 and 105 V. We expected to get
better agreement between simulation and experimental results
when applying low voltages, but in Fig. 16, we observe better
results for higher biases. This may be because of differences
between the simulation parameters and the parameters of the
actual fabricated devices. These differences may occur due to
slight variations during the fabrication process.

VI. DISCUSSION AND CONCLUSION

A nonlinear large signal equivalent circuit model was
developed for a single uncollapsed CMUT cell with square
membranes. The deflection profile of a square plate was
studied first, and then the nonlinear capacitance of the square
CMUT was obtained using numerical analysis. The poly-
nomial fitting was done on obtained capacitance curves for
different normalized deflection areas and the first and second
derivatives of the capacitances were calculated. The compli-
ance of the membrane was calculated for thin square plates
and then, by comparing the finite-element simulations and
circuit model, two correction factors are obtained for thin
and thick plates and then applied to the compliance. The
model was designed and implemented in a circuit simulator
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Fig. 16. Sample laser Doppler vibrometer measurements. (a) 2-D scan
showing membrane displacement for 40 Vdc bias and 1-V pseudorandom ac
signal. (b) Single point measurement using a 1-V pseudorandom ac signal
with different dc biases. Peak represents the optimum resonance frequency of
the device for a given dc bias and the frequency is shifted to lower frequencies
by increasing the dc bias due to the softening of the membrane.

and compared with FEM and experimental results. ANSYS
3-D FEA was used to validate the equivalent circuit model
predictions by performing static, prestressed harmonic, and
nonlinear transient analysis. The static analysis for calculating
the peak deflection of the membrane showed an excellent
agreement with FEA. Moreover, the performance of the model
was examined for dynamic analysis. The advanced design
system (ADS) circuit model could predict many intrinsic
properties of a square CMUT cell including static deflection,
resonance frequency, phase and magnitude of the membrane
displacement, membrane velocity, electrical conductance, and
collapse voltage with accuracy comparable with FEM but
within considerably less time. The results were compared with
circular CMUT cells when the half-side length of the square
CMUT is assumed to be equal to the radii of the circular
transducer.

Single CMUT cells with silicon nitride membranes were
fabricated using a standard sacrificial release process. The
comparison between the ADS circuit simulations and the
experimental results showed a good agreement for the res-
onance frequency and the membrane deflection.

Our model can include atmospheric pressure but has yet
to include residual stress of the membrane. Inclusion of
these residual stresses and more accurate material and device

TABLE V

POLYNOMIAL COEFFICIENTS OF FUNCTION g(u)
FOR CAPACITANCE CALCULATION

structural parameters may further improve model accuracy in
future work.

Even though we used a circular membrane approximation
for the acoustic self-radiation impedance, we used improved
accuracy models for square membranes for other lumped cir-
cuit elements and found high accuracy when comparing both
finite-element simulations and experimental results. Future
work should consider the computational evaluation of the
self-radiation impedance of square membranes to compare the
incremental accuracy improvement over the circular membrane
self-radiation impedance approximation.

The studies presented here could be used as a framework
for designing the arrays with square CMUT cells. How-
ever, the effects of the mutual-acoustic impedance between
the square cells of the same and different sizes should be
investigated in detail and implemented into a circuit model
as a z matrix to evaluate the performance of the array.
Future work should aim to expand these results for improved
modeling of the multifrequency CMUT arrays with square
cells and their novel applications.

APPENDIX

The polynomial coefficients of (7) for different normalized
deflection areas of x p(t)/tge are computed using a polynomial
curve fitting method to give a best fit to numerical solutions
of (5) and are shown in Table V.
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