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A nonlinear magnonic nano-ring resonator
Qi Wang 1,2,6✉, Abbass Hamadeh 1,3,6, Roman Verba4,6, Vitaliy Lomakin5, Morteza Mohseni1, Burkard Hillebrands 1,

Andrii V. Chumak2 and Philipp Pirro 1✉

The field of magnonics, which aims at using spin waves as carriers in data-processing devices, has attracted increasing interest in
recent years. We present and study micromagnetically a nonlinear nanoscale magnonic ring resonator device for enabling
implementations of magnonic logic gates and neuromorphic magnonic circuits. In the linear regime, this device efficiently
suppresses spin-wave transmission using the phenomenon of critical resonant coupling, thus exhibiting the behavior of a notch
filter. By increasing the spin-wave input power, the resonance frequency is shifted, leading to transmission curves, depending on
the frequency, reminiscent of the activation functions of neurons, or showing the characteristics of a power limiter. An analytical
theory is developed to describe the transmission curve of magnonic ring resonators in the linear and nonlinear regimes, and is
validated by a comprehensive micromagnetic study. The proposed magnonic ring resonator provides a multi-functional nonlinear
building block for unconventional magnonic circuits.
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INTRODUCTION

Spin waves are collective excitations of spin systems in magnetic
materials, which can be considered as a potential data carrier in
future low-energy data-processing systems1–4. This is due to their
small wavelengths, down to a few nanometers5,6, high frequencies
up to a few terahertz7, ultralow losses8,9, and abundance of
associated nonlinear phenomena10–12. These features make spin
waves highly attractive for wave-based and neuromorphic comput-
ing concepts. Several important milestones were achieved in the
realization of magnonic data-processing units, including logic
gates13–15, majority gates16–18, a magnon transistor19, a phase
shifter20, building blocks for unconventional computing21–23,
auxiliary units for integrated circuits12, magnonic directional
couplers24–27, and an integrated magnonic half-adder25.
Here we propose a nanoscale nonlinear magnonic ring

resonator. It is magnetic counterpart of the photonic ring
resonator, which is considered as a universal unit and widely
used in integrated photonic circuits28, photonic quantum
computing29, and photonic neuromorphic computing30. The
concept of the magnonic ring resonator (see Fig. 1a) is similar
to that of the photonic ring resonator31, except that spin waves,
instead of light, are used to carry information. A magnonic ring
resonator of submillimeter size has been studied in the linear
regime using micromagnetic simulations as reported in ref. 32.
Although such rather macroscopic ring resonators demonstrate
certain interesting features due to multimode coupling and
external field sensitivity, their functionality and size are hardly
compatible with the current state of the complementary metal-
oxide-semiconductor technology. Moreover, the presence of
multiple modes such as width modes with different coupling
strengths results in less effective energy transfer and makes it
impossible for the device to operate in the so-called “critical
coupling” condition. Here we study the single-mode nanoscale
magnonic ring resonator using the critical coupling phenomenon
and demonstrate its functionality analytically and by simulation,

including linear and nonlinear operation regimes, as well as their
anticipated applications. Despite the fact that this is a simulation,
the recent progress in the realization of single-mode magnonic
nano-conduits proves that the sizes chosen here can be realized
based on the current nano-fabricating technology33.

RESULTS AND DISCUSSION

Theory and micromagnetic simulations of the linear regime

The basic configuration of the magnonic ring resonator consists of
a ring of mean radius R and width w, and a straight waveguide of
same width w, as shown in Fig. 1a. The static magnetization
distribution of the magnonic ring resonator obtained from
micromagnetic simulation is shown in Fig. 1b (details of the
micromagnetic simulation method are described in “Methods”).
For a sufficiently narrow ring, here w= 100 nm, the static
magnetization is in the vortex state with the magnetization lying
along the ring. Such a vortex state is the ground state in the
presence of zero external fields (i.e., it corresponds to the global
energy minimum) and it can be easily achieved in experi-
ments34,35, for instance, by controlling the variation of the external
field (see Supplementary Figs. 1 and 2). The static magnetization
of a straight waveguide is uniform and is along the waveguide,
which is caused by a strong shape anisotropy and by the small
cross-section. We consider Yttrium-Iron-Garnet (YIG) as the
material of both the waveguide and the ring: it is chosen for its
low damping, allowing for long-range spin-wave propagation36.
The used material parameters of YIG are described in “Methods.”
For the theoretical description of the power transmission in the

ring resonator, we adopt a method typically used in optics and
microwave electronics31,37. Let us denote the complex amplitudes
of input (output) spin waves in the waveguide and ring by a1,2
(b1,2), as shown in Fig. 1a. To define a reference plane, we use the
position of the minimum distance between the ring and
waveguide (see the dashed line in Fig. 1a), so that all ai and bi
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are the values, which would be at the point x= 0 if continuously
extrapolated in the absence of coupling. If the coupling between
the ring and waveguide is lossless, which is the case for pure
dipolar coupling, it is described by the unitary scattering matrix31:

b1

b2

� �
¼

τ iκ

iκ τ�

� �
a1

a2

� �
(1)

The parameter κ is the coupling coefficient between the straight
waveguide and the ring, which shows the fraction of the spin-
wave amplitude coupled from the waveguide into the ring
structure and vice versa. The parameter τ is the transmission
coefficient across the coupling region, which shows the fraction of
the spin-wave amplitude passed through the coupling region. The
transmission coefficient τ is different from the transmittance T,
which demonstrates the final transmitted power through all the
structures and accounts for the interference in the ring. Naturally,
|ĸ|2+ |τ|2= 1, which reflects the lossless nature of the coupling.
The calculation of the coefficients κ and τ for the dipolar coupled
waveguides and ring is presented in “Methods.”
The complex amplitudes a2 and b2 are connected by the

circulation condition: a2= b2βe
iθ. Here, β= exp(−2πRΓ/vgr) is the

loss coefficient that describes which part of the spin-wave
amplitude remains in the ring after one circulation, with Γ and
vgr being the spin-wave damping rate and group velocity in the
ring, respectively (for details, see “Methods”). The parameter θ=
2πRk is the round-trip phase accumulation, where k is the
wavenumber of the spin wave in the ring. The wavenumber is
determined by the input spin-wave frequency, which is given by
the dispersion relation ωk in the ring and is normally different from
the wavenumber in the straight waveguide.
Solving Eq. (1) together with the circulation condition, one finds

the transmission T through the ring resonator structure:

T ¼ b1j j2

a1j j2
¼ β2 þ τj j2�2β τj j cos θ� ψð Þ

1þ β2 τj j2�2β τj j cos θ� ψð Þ
; (2)

using the phase ψ= Arg[τ]. In our case of a straight waveguide
and ring of the same cross-section, the phase is ψ= 0. At the
resonance frequencies, at which θ= 2πn (n= 0, 1, 2, 3, … is the
number of the resonance modes in the ring), the transmission T is
equal to T= (β− |τ|)2/(1− β|τ|)2. The output signal vanishes

completely if the transmission coefficient is equal to the loss
coefficient, i.e., |τ|= β, which is the so-called case of “critical
coupling.” The maximum transmission T in the critical case, which
is reached when θ= (2n+ 1)π, is equal to T= 4β2/(1+ β2)2, and
increases with β. Therefore, it is desirable to work in the range of
β ≈ |τ|→ 1 to achieve a large output power, i.e., to have small
losses in the ring and weak coupling between the ring and the
waveguide. However, a small loss and a small coupling increase
the operational time of the resonator (time to reach the dynamic
equilibrium)38. Thus, optimal values of the transmission coefficient
and the loss coefficient are in the range β ≈ |τ| ~ 0.6–0.9, which is
the result of the trade-off between a large transmission and a
short delay time for the ring resonator.
The coefficients κ, θ, and β depend on the spin-wave frequency.

The coupling coefficient κ significantly depends on the gap
between waveguide and ring. In our example simulations, the
minimum gap, which is the closest distance between the
waveguide and the ring, is fixed to δ= 20 nm for all simulations.
The ring radius determines the separation between the ring
resonance frequencies. To set the loss coefficient to a value close
to the optimum of β ≈ |τ|, in our simulations we increased the
Gilbert damping in the ring structure to αG= 2 × 10−3. In an
experiment, an increase of the YIG damping can be realized, for
instance, by placing a normal metal on top of the ring to use the
phenomenon of spin pumping39. Please note that the parameters
R, δ, and αG are selected for the working frequency range from 2.6
to 2.8 GHz. These parameters can also be modified to obtain other
frequency ranges that fulfill the critical coupling condition.
As an approximation of the ring dispersion relation, in principle,

one can use the dispersion relation of a straight waveguide40. For
our case, it results in only a slight discrepancy of 80 MHz and the
discrepancy becomes more negligible for R »w and kR » 1. In all
the following calculations, we use a more accurate theory of the
dispersion in the ring, as outlined in “Methods.” The spin-wave
damping rate and group velocity, which determine the loss
coefficient, are calculated from the dispersion relation.
The frequency dependencies of the transmission and the loss

coefficient τ and β, together with the round-trip phase θ are
shown in Fig. 2. In the chosen frequency range, the condition τ ~ β
holds and the critical coupling condition is exactly satisfied at a
frequency around 2.55 GHz (not shown in Fig. 2). The frequency
dependence of the transmission coefficient is more pronounced
because of a significant wavenumber dependence of the dynamic
dipolar fields, generated by the spin waves propagating in the
waveguide and the ring24.
The theoretical transmission curve of the whole ring resonator

calculated according to Eq. (2), as well as the results of
micromagnetic simulations are shown in Fig. 3a. In the simulation,
the transmission T is defined by calculating the ratio of the spin-
wave intensities in the straight waveguide behind and in front of
the ring. Two resonance frequencies of the magnonic ring
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Fig. 1 Geometry and parameters used in the modeling. a Generic
model of the magnonic ring resonator. The width of the waveguides
is w= 100 nm and the thickness is h= 50 nm, the radius (from the
center of the ring to the center of the waveguide) is R= 550 nm, the
minimum gap between the ring and waveguide is δ= 20 nm. The
dashed line shows the position of the reference plane. b Initial
magnetization distribution of the investigated structure. The gray
arrows and colors represent the in-plane orientations of the
magnetization M.
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Fig. 2 Characteristics of the magnonic ring resonator. Transmis-
sion coefficient (τ), loss coefficient (β), and round-trip phase cos(θ) as
a function of frequency f.
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resonator are observed in this frequency range, which correspond
to the 16th and 17th resonant mode. At these frequencies, the
output signal is vanishing due to the destructive interference in
the outgoing waveguide between the transmitted spin wave a1τ
and the coupled-back spin wave ia2κ, which acquires the round-
trip phase of θ= 2πn plus two π/2 phase shifts in the coupler (see
Eq. (1)), being, in total, in antiphase to the first wave. At the
resonance frequency, all the spin-wave power is concentrated in
the ring (see Fig. 3b). In contrast, at the frequency of 2.724 GHz,
which corresponds to θ= 2π × 16.5, the constructive interference
conditions are satisfied and a large part of input power is
transmitted, whereas only a small amount is circulating in the ring
(Fig. 3b). A strong frequency dependence of the output power is
important, as it allows one to realize notch filters with a magnonic
ring and it enhances the sensitivity of the system to a nonlinear
frequency shift.
In addition, Fig. 3 shows the transmission curves for the rings

having different radii. As expected, the resonance frequencies
change and the resonance curves are shifted, while preserving
their shape. The resonance frequencies, calculated analytically, are
20 MHz higher than those found from the micromagnetic
simulations. Also, in the simulations, the critical coupling condition
is satisfied in the range 2.65–2.68 GHz, as it is evident from the
vanishing output at the resonance frequency, whereas theory
indicates the critical coupling at a slightly different frequency of

2.55 GHz. These two weak discrepancies are mainly due to a
slightly nonuniform width profile of the spin waves in the ring and
the waveguide, and to a weak dipolar field generated by the
straight waveguide, which slightly modifies the dispersion relation
in the ring. Both effects are not taken into account in the theory.
Furthermore, there is a certain difference in the maximum
transmission energy between the simulations and the theoretical
calculations, which is attributed to the propagation losses in the
straight waveguide and the coupling area.

RECONFIGURABLE MAGNONIC RING RESONATOR

In the previous section, the magnetization in the ring is oriented
counterclockwise and the magnetization in the coupling region
between ring and waveguide is aligned parallel. However, in the
absence of an external field, the ring can exist in two stable
magnetic configurations—clockwise and counterclockwise—as
shown in the insets of Fig. 4. These two states lead to antiparallel
and parallel magnetization configurations in the coupling region.
The switching between these two states can be realized by
controlling the tracks of the variation of the external field before
reaching the remanent state (for details see Supplementary Figs. 1
and 2). The coupling strength, described by the coupling
coefficient κ, depends strongly on the static magnetization
configuration and affects significantly the transmission coefficient
τ24. The coupling strength is stronger for the antiparallel
magnetization configuration and this results in the breaking of
the critical coupling condition, i.e., |τ| ≠ β and, consequently, the
transmission T at the resonance frequencies increases. Figure 4
shows the transmission curve for parallel and antiparallel
alignments in which the transmissions at the resonance frequency
of 2.662 GHz are 0.48% and 30.8%, respectively. The contrast
between the two states can be further increased by optimizing the
parameters of the ring resonator. For a future on-chip magnonic
device, this switching can be realized by a local Oersted field
created by direct current passing through a conducting wire,
which is placed on top of the ring structure. This example shows
that the symmetry break caused by the direction of the
magnetization allows creating magnonic functionalities that are
not available in the same form in, e.g., photonics.

NONLINEARITY OF MAGNONIC RINGS

Magnonic systems are known to involve a variety of nonlinear
effects, which open a way for the development of various
nonlinear power-dependent devices. In general, all the
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parameters, which define the operation of the magnonic ring
resonator, namely θ, β, and τ, are power dependent. However, it
can be shown that the main impact of nonlinearities is caused by
the nonlinear phase accumulation θ= θ(b), where b is the spin-
wave amplitude, whereas the nonlinearities of the loss coefficient
(due to the group velocity shift) and the coupling strength lead
only to a small (second order) correction and, therefore, can be
neglected in almost all experimentally achievable cases.
An increase of the spin-wave power results in a nonlinear shift

of the spin-wave resonance frequency, ωk bð Þ ¼ ω
linð Þ
k þWk bj j2,

where Wk is the nonlinear shift coefficient. Consequently, a wave
of a constant frequency possesses a power-dependent wavenum-
ber k ≈ k0− (Wk/vgr)|b|

2, which directly affects the phase accumu-
lation during the spin-wave propagation. The integration over the
ring yields the round-trip phase θ(b2)= 2πR(k0− K|b2|

2), where
K ¼ Wkð1� e�4πΓR=vgr Þ=4πΓR � Wkβ=vgr is the averaged coeffi-
cient of the nonlinear shift of the spin-wave wavenumber. Then,
Eq. (1) together with the circulation condition yields the following
relation:

b2j j2¼ a1j j2 κ2

1þ β2τ2 � 2βτ cos θ b2ð Þ � ψ½ �
; (3)

which implicitly determines the amplitude in the ring. The
transmission T is given by the same Eq. (2), in which one should
use the nonlinear phase accumulation θ(b2) with the amplitude of
b2, found from Eq. (3).
The simulated transmission curves of the magnonic ring

resonator for different excitation fields be are shown in Fig. 5
(bottom panel). A pronounced shift of the resonance frequency, at
which transmission is minimum, is observed. A similar power-
dependent transmission curve shift was observed in optical ring
resonators28,41,42. To plot the theoretical curves, we use a
nonlinear frequency shift value of W=−2π × 2.6 GHz, which is
calculated for a straight waveguide25,43. As one can see, this
approximation is reasonable and gives a similar shift of the
transmission minimum position compared to the simulated
results.
For a large-enough input spin-wave power, the transmission

curve becomes bistable (see the magenta line in Fig. 5). The
appearance of bistability is clear from Eq. (3), which, by expanding
the denominator near the resonance frequency, has the same
structure as the nonlinear ferromagnetic resonance curve,
demonstrating the foldover effect44,45. In the bistability range,
the exact shape of the transmission curve depends on the
experimental (simulation) conditions. The solid curves are
obtained when all the simulations start from the same ground

state. To access the dashed curve in the simulations, we gradually
decrease the excitation frequency starting outside of the
bistability range with a constant spin-wave amplitude. The small
discrepancy between theory and simulation is mainly attributed to
the nonlinear shift coefficient, which is extracted from a straight
waveguide and not from the ring structure and the previously
mentioned nonuniform spin-wave profile in the ring structure.

NONLINEAR RING RESONATOR FOR NEUROMORPHIC
APPLICATIONS

In neuromorphic systems, the so-called “activation function” plays
an important role. It describes how an incoming stimulus (here,
the incoming spin-wave amplitude a1) is transformed into the
output signal (the outgoing spin-wave amplitude b1) via a strongly
nonlinear function. Thus, if the ring resonator should serve as a
building block for neuromorphic spin-wave computing in a larger
network composed of many resonators and interconnecting spin-
wave waveguides and combiners, the activation function is
characterized by the transmission T of the ring resonator, which
should depend strongly on the input amplitude. For instance, in
so-called spiking neurosynaptic networks, the “firing” of an
artificial neuron, i.e., the emission of an output signal, takes place
only if the input signal overcomes a certain threshold. This
essentially means that the transmission T should be significantly
large only if a certain incoming spin-wave input amplitude is
overcome. Wave-based neuromorphic computing using such kind
of function has been recently demonstrated for a full neuronal
network in optics30.
To characterize the activation function of the magnonic ring

resonator, the spin-wave excitation frequency is fixed to f=
2.662 GHz, which coincides with the 16th resonance in the linear
regime, as depicted in Fig. 5 by the vertical dashed line. The
output spin-wave intensity nonlinearly depends on the input
power, because this frequency does not correspond anymore to a
resonance in the nonlinear regime. Figure 6a shows the relative
transmission power for f= 2.662 GHz as a function of the
excitation field amplitude be and the dynamic out-of-plane
component of magnetization mz (top axis). The transmission T is
almost constant and below 1% in the excitation field range from
0.6 to 4 mT and then strongly increases from T= 0.78% at be=
4mT to T= 51.5% at be= 13mT due to the strong nonlinear shift
and the steep slope of the transmission curve vs. frequency
(compare to Fig. 5). A high contrast of around 18 dB between the
output states is observed. This is reflected in the fact that by
increasing the input spin-wave intensity by a factor of about 10,
the transmitted intensity (absolute spin-wave output power) is
increased by a factor of around 700. This strong nonlinearity can
be achieved, as energy is stored in the ring at resonance. The
contrast, threshold, and maximum transmission level can be tuned
by adjusting the radius of the ring R, the transmission coefficient τ,
and the loss coefficient β. As a further example for the use of the
ring resonator for data processing, Fig. 6b shows a functionality
that can be considered as a kind of “passivation function,”
meaning that the transmitted intensity decreases with increasing
input intensity. Due to the foldover effect shown in the
transmission curve in the high-power region (see the magenta
line in Fig. 5), the transmission T at the frequency of f= 2.638 GHz
drops down from 68.6 to 14.2% by slightly increasing the
excitation field from 10 to 12mT. This functionality can be used
to filter out the high-power spin waves or normalize the output
spin-wave power, i.e., the absolute spin-wave output power could
be made independent of the input spin-wave power in a certain
power range. It is worth noting that the precession angle is only
around 5° even for the high excitation field of 13 mT, which
reveals the fact that the energy consumption is very low in the
magnon domain.
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In conclusion, a nanoscale nonlinear magnonic ring resonator is
proposed and its functionality is demonstrated using micromag-
netic simulations. The transmission curve of the ring resonator in
the linear region is of a notch filter type due to the resonant
critical coupling effect. Spin waves at resonance frequencies are
stored in the ring and cannot pass through it, whereas spin waves
of a frequency in between the resonances pass the ring resonator
with only a small loss. Importantly, the nonlinear shift of the spin-
wave resonance frequency and, consequently, of the spin-wave
phase accumulation leads to a strong power dependence of the
magnonic ring transmission curves. In this nonlinear regime, the
resonance frequencies are shifted, the transmission curves
become asymmetric, and, at large-enough input power, exhibit
a bistability. The transmission at the linear resonance frequency
shows a threshold-like behavior: a low-input spin-wave power is
stored in the ring structure and the ring only generates an output
if the input power exceeds a threshold. This functionality is useful
for magnonic logic applications, for instance, in the field of
neuromorphic computing. Very different transmission curves can
be realized at frequencies not coinciding with the linear
resonances. In addition, the transmission functions can be
reconfigured by changing the alignment of the magnetization in
the ring and the adjacent waveguide. The obtained results are
supported by the developed analytical theory, which allows to
calculate the ring resonator characteristics in both the linear and
nonlinear regimes.

METHODS

Spin-wave dispersion in a ring
The dispersion of spin waves in a magnonic ring can be calculated similarly
to those of a vortex-state magnetic disk46,47. It is noteworthy that the ring
dispersion relation in the considered system is continuous, ω=ωk, and
spin waves with continuous wavenumbers k can propagate in it, as the ring
resonator is not isolated. In our case, the width of the ring is sufficiently
small40, leading to an almost uniform (unpinned) spin-wave profile across
the ring width, which greatly simplifies the calculations. In this
approximation, the dispersion relation is given by

ω2
k ¼ ω2

M λ2k2 þ F
rrð Þ
k

� �
λ2 k2 � R�2
� �

þ F
zzð Þ
k

� �
; (4)

where ωM= γμ0Ms, Ms is the saturation magnetization, γ is the
gyromagnetic ratio, λ is the exchange length, and bFk ¼R R bG r; r0ð Þ exp ikR ϕ� ϕ0ð Þ½ �drdr0= 2πRwð Þ is the effective dynamic demag-
netization tensor with bG r; r0ð Þ being the magnetostatic Green’s function in
the polar coordinate system48 and the integration going over the ring
surface. For an arbitrary wavenumber, the calculation of bFk is complicated.
However, for kn= n/R, which are the wavenumbers corresponding the

resonant modes of an isolated ring, it is greatly simplified and yields

F rrð Þ
n ¼ 1

4Rw

Z 1

0

f khð Þ Inþ1 kð Þ � In�1 kð Þ½ �2kdk; (5)

F zzð Þ
n ¼ 1

hRw

Z 1

0

1� e�kh
� 	

I2n kð Þdk; (6)

where f khð Þ ¼ 1� 1� exp �khð Þð Þ= khð Þ, and we use the notation

In kð Þ ¼
Z Rþw=2

R�w=2

Jn krð Þrdr; (7)

with the Bessel functions Jn. The function In(k) can be expressed via a
combination of hypergeometric functions or calculated numerically. The
complete continuous spin-wave dispersion ωk can be numerically found by
interpolation of the dispersion relations of the ring resonance frequencies
ωkn . The spin-wave group velocity is found via vgr= dωk/dk. The spin-wave
damping rate is calculated using the following general formalism49:

Γk ¼ αGωM λ2 2k2 � R�2
� �

þ F
rrð Þ
k þ F

zzð Þ
k

� �
=2: (8)

Coupling between waveguide and ring
The dynamics of spin-wave amplitudes a1(x) and a2(x) in coupled
waveguides is described by the following system of equations24:

vgr
da1 xð Þ
dx ¼ iωc xð Þa2 xð Þ

vgr
da2 xð Þ
dx ¼ iωc xð Þa1 xð Þ

(

; (9)

where ωc is the coupling frequency, which has the meaning of a splitting
between the symmetric and antisymmetric collective modes in the
coupled waveguide. The difference in dispersion relations (and, conse-
quently, in vgr) in the waveguide and ring leads to only a small (second
order) correction and is neglected here. The coupling frequency is given by

ωc ¼ ωM

Ω
zzFyykx dð Þ þ Ω

yyFzzkx dð Þ
ωk

(10)

and it depends on the coordinate x via the dependence of the distance

between centers of straight and ring waveguides dðxÞ ¼ d0 þ
ðRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
Þ with d0= δ+w. The position-dependent angle between

the waveguide and ring, and consequently between their static
magnetizations, is not accounted for, as in the region that contributes
most to the overall coupling, this angle is negligible. Here and below the

tensors bΩ, bF and bNk are defined as in ref. 24.
From the solution of Eq. (9), one finds the coupling and transmission

coefficients, which enter into Eq. (1):

τ ¼ cos 2ωcR=vgr
� �

; κ ¼ sin 2ωcR=vgr
� �

; (11)

where ωc ¼ 1=2Rð Þ
R R
�Rωc xð Þdx is the “averaged” coupling frequency. This

equation can be used for any shape of the coupling area, e.g., if the ring is
changed to a polygon. For the ring structure, the calculation of ωc is
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greatly simplified (note that bF dð Þ is an integral itself), noting that the
coupling frequency decays fast with the separation d, so we can use the
approximation d(x) ≈ d0+ x2/(2R) and change the integration limits to
(−∞,∞). Then,

ωc ¼
ωM

ωk
Ω
zz
Φ

yy
kx
þ Ω

yy
Φ

zz
kx

� �
; (12)

where

bΦkx ¼
1ffiffiffiffiffiffiffiffi
2πR

p
Z 1

0

bNk cos kyd0 þ
π

4

� � dkyffiffiffiffiffi
ky

p : (13)

MICROMAGNETIC SIMULATIONS

The micromagnetic simulations were performed using the soft-
ware package FastMag developed at the University of California,
San Diego50. This software uses a finite element method to solve
the LLG equation and can use the power of modern Graphics
Processing Units, which leads to the capability to handle ultra-
complex geometries at a high speed50. The finite element method
is especially useful if non-rectangular systems such as the
presented ring are simulated. The simulated structure of a
magnonic ring resonator is shown in Fig. 1a. The parameters of
the nanometer-thick YIG are obtained from the experiment as
following36: saturation magnetization Ms= 1.4 × 105 Am−1,
exchange constant A= 3.5 pJ m−1, and Gilbert damping for most
of the structure α= 2 × 10−4, except for the ring structure. The
Gilbert damping in the ring structure is increased to 2 × 10−3 to
meet the critical coupling condition and the damping at the ends
of the simulated structure is set to exponentially increase to 0.2, to
prevent spin-wave reflection. The high damping region can be
realized in the experiment by placing another magnetic material
or a metal on top of YIG. The averaged cell size was set to 10 ×
10 × 10 nm3, which is smaller than the exchange length of YIG
(~16 nm) and the studied wavelength (~220 nm). To excite a
propagating spin wave, a sinusoidal magnetic field b= besin(2πft)
was applied over an area of 40 nm in length, with a varying
oscillation amplitude be and microwave frequency f. The
magnetization Mz(x,y,t) was obtained over a period of 250 ns,
which is long enough to reach a stable dynamic equilibrium. The
spin-wave intensity is calculated by performing a Fourier trans-
form from 200 to 250 ns, which is long enough to resemble the
condition of a dynamic equilibrium. The transmission T is defined
by calculating the ratio of the spin-wave intensities in the straight
waveguide behind and in front of the ring.

DATA AVAILABILITY

The data that support the plots presented in this paper are available from the
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