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A Nonlinear Mixed Model Framework for Item
Response Theory

Frank Rijmen, Francis Tuerlinckx, Paul De Boeck, and Peter Kuppens
Katholieke Universiteit Leuven

Mixed models take the dependency between observations based on the same cluster

into account by introducing 1 or more random effects. Common item response

theory (IRT) models introduce latent person variables to model the dependence

between responses of the same participant. Assuming a distribution for the latent

variables, these IRT models are formally equivalent with nonlinear mixed models.

It is shown how a variety of IRT models can be formulated as particular instances

of nonlinear mixed models. The unifying framework offers the advantage that

relations between different IRT models become explicit and that it is rather straight-

forward to see how existing IRT models can be adapted and extended. The ap-

proach is illustrated with a self-report study on anger.

Mixed models (see, e.g., Diggle, Heagerty, Liang,

& Zeger, 2002; Goldstein, 1995; Longford, 1993;

Verbeke & Molenberghs, 2000) are a collection of

statistical tools that are well suited for analyzing clus-

tered data, such as, for example, data from students

nested within schools or repeated measurement data

(measurements nested within participants). Modeling

clustered data under a model that assumes indepen-

dent observations is inappropriate because the obser-

vations on the subunits (students, measurements) of

the same unit (school, participant) tend to be more

homogeneous than the observations on subunits of

different units. The heterogeneity between units can

be taken into account by assuming that (some of) the

parameters of the model follow some random distri-

bution over the population of units. Hence, (some of)

the parameters of the model are random variables, and

the model is a random effects model, or mixed model.

The random effects represent the unit effects. The

parameters that are not assumed to be random real-

izations from a distribution, and hence are not con-

sidered to be unit specific, are called fixed effects.

Mixed models and related methods were first de-

veloped in the context of analysis of variance and

regression analysis, leading to the linear mixed model.

Other commonly used terms are multilevel models

(Goldstein, 1995), hierarchical models (Raudenbush

& Bryk, 2002), and random coefficient models (Long-

ford, 1993). More recently, nonlinear mixed models

were also developed. A nonlinear mixed model is a

model with random coefficients in which the fixed

and/or random effects enter the model nonlinearly

(Davidian & Giltinan, 1995). As we explain below, a

subset of nonlinear mixed models is the class of gen-

eralized linear mixed models (McCulloch & Searle,

2001).

The main purpose of this article is to explain how

item response theory (IRT) models can be conceptu-

alized as nonlinear mixed models and to provide a

framework for this conceptualization. There are four

important assets of this approach. First, this concep-

tualization relates IRT to the broad statistical litera-

ture on mixed models. Second, applying the same

framework to different IRT models can help in the

understanding of their differences and commonalities.

Third, using this framework, one can readily adapt or

extend standard IRT models, so that a researcher can

build his or her own model, customized to a specific

scientific question or data set. Fourth, existing and

newly formulated models can be estimated using soft-
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ware for generalized linear and nonlinear mixed mod-

els.

The article is organized as follows. First, we pre-

sent the mixed logistic regression model (Hedeker &

Gibbons, 1994; Zeger & Karim, 1991) and show how

different IRT models fit within this framework. It is

explained how those IRT models can be categorized

on the basis of which kind (or combination) of co-

variates the model takes into account: item covariates,

person covariates, and person-by-item covariates.

The mixed logistic regression model is presented for

binary data. Then, models for polytomous data are

considered. With respect to the latter, an additional

distinction between models refers to how logits for the

response variable are formed: baseline-category log-

its, adjacent-category logits, continuation-ratio log-

its, and cumulative logits.

Subsequently, the mixed logistic regression model

is extended to incorporate IRT models that are non-

linear mixed models but do not belong to the family of

generalized linear mixed models, unlike the mixed

logistic regression model. These models have in com-

mon that multiplicative functions of parameters ap-

pear in the model equation (e.g., a product of a dis-

crimination parameter and a latent trait). Then we

discuss briefly some remaining IRT models that can-

not be captured by the mixed logistic regression

model or by our extension of it.

Next, statistical inference and software packages

are discussed. The general models we present are il-

lustrated with specific instantiations. In addition, a

self-report study on anger is analyzed. The SAS code

used to estimate these models with the SAS procedure

NLMIXED is provided in Appendixes A and B,

which are available in the online version of this article

in the PsycARTICLES database.

Mixed Logistic Regression Model for
Binary Data

In the mixed logistic regression model for binary

data, the observations are assumed to be independent

Bernoulli observations conditional on the covariates,

the fixed effects, and the random effects. This condi-

tional independence assumption is often referred to in

the IRT literature as the assumption of local stochas-

tic independence. The probability of success for each

observation is modeled as

p�Yni = 1|xni,zni,�,�n� =
exp�x�ni� + z�ni�n�

1 + exp �x�ni� + z�ni �n�
, (1)

where Yni is the binary response variable for subunit i

of unit n, i � 1, . . . , In; n � 1, . . . , N; xni is a known

P-dimensional covariate vector for the P fixed effects;

zni is a known Q-dimensional covariate vector for the

Q random effects; � is the P-dimensional parameter

vector of fixed effects; and �n is the Q-dimensional

parameter vector of random effects for unit n.

The distribution of the random effects �n is com-

monly assumed to be multivariate normal with mean

vector 0 and covariance matrix �, and �1, . . . , �N are

assumed to be independent. The random effects have

a mean of zero because they represent the deviations

from the mean effects of the covariates, which are

treated as fixed effects.

The marginal density of a response vector yn of

length In is

p�yn|Xn,Zn,�,�� = ���
i=1

In exp�yni�x�ni� + z�ni�n��

1 + exp�x�ni� + z�ni�n��
N��n|��d�n, (2)

where Xn and Zn are the In × P and In × Q design

matrices for unit n of the fixed and random effects,

respectively, with x�ni and z�ni as ith rows.

Furthermore, we define X and Z to be the super-

matrices obtained from stacking the N Xn and Zn ma-

trices one below the other. This formulation will turn

out to be useful to distinguish between several kinds

of covariates.

The mixed logistic regression model belongs to the

class of generalized linear mixed models (Clayton,

1996; Hedeker & Gibbons, 1994; McCullogh &

Searle, 2001; Zeger & Karim, 1991). To clarify the

latter, we briefly introduce the generalized linear

mixed model in the following.

In a generalized linear model (McCullagh &

Nelder, 1989) the observations are assumed to be in-

dependent realizations from an exponential family

distribution, and the mean responses �i � E(Yi|xi,�)

are related to a linear predictor �i via a link func-

tion g(.),

g(�i) � �i � x�i �. (3)

If the distribution is the normal distribution, and the

link function g(.) is the identity link function, g(�i) �

�i, the classical linear model is obtained.

Generalized linear models are a subset of nonlinear

models:

1. Generalized linear models are nonlinear models,

because the conditional mean is not a linear
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combination of parameters, except when g(.) is

the identity link, and the data are not necessarily

normally distributed as in linear models.

2. Generalized linear models are a subset of non-

linear models, because the observations are dis-

tributed according to some exponential family

distribution, and some function of the condi-

tional mean is a linear combination of param-

eters.

In a generalized linear mixed model, the observa-

tions are assumed to be independent realizations from

an exponential family distribution conditional on the

random effects (in addition to the covariates and fixed

effects). The mean responses �ni � E(Yni|xni,zni,�,

�n) are now related via a link function g(.) to a linear

predictor that consists of both a fixed and a random

part:

g(�ni) � �ni � x�ni� + z�ni�n. (4)

If the distribution is the normal distribution and g(.) is

the identity link function, a linear mixed model is

obtained.

The mixed logistic regression model is a general-

ized linear mixed model in which the observations are

realizations from a Bernoulli distribution, �ni � �ni

� p(Yni � 1|xni,zni, �,�n), and the link function is the

logit function,

L��ni� = log
�ni

1 − �ni

.

Hence, an equivalent formulation for the mixed logis-

tic regression model is

L(�ni) � �ni � x�ni� + z�ni�n. (5)

Two other commonly used link functions for binary

data are the probit link, �ni � �−1(�ni), where �−1(.)

is the cumulative standard normal distribution, and

the complementary log-log link, �ni � log[−log(1 −

�ni)] (McCullagh & Nelder, 1989).

In psychometrics, IRT models have been developed

to model clustered binary data (polytomous data are

discussed later). Commonly, in this context, the sub-

units are the responses on the items, and the units are

the participants (cf. repeated measurement data). In

IRT models, one or more latent person variables are

incorporated in the model to account for participant

effects. If it is assumed that the latent variable(s) fol-

low a distribution, the IRT model is formally equiva-

lent to a nonlinear mixed model, where the latent

variables are the random effects (Agresti, Booth,

Hobert, & Caffo, 2000; Kamata, 2001; Legler &

Ryan, 1997).

For categorization purposes, we now introduce the

following definitions:

1. Item covariates: A covariate is an item covariate

if and only if the elements of the corresponding

column of X (and/or Z) vary across items but

are constant across persons.

2. Person covariates: A covariate is a person co-

variate if and only if the elements of the corre-

sponding column of X (and/or Z) vary across

persons but are constant across items.

3. Person-by-item covariates: A covariate is a per-

son-by-item covariate if and only if the elements

of the corresponding column of X (and/or Z)

vary across both persons and items.

IRT models that are mixed logistic regression mod-

els for binary data can be classified on the basis of the

kind of covariates taken into account in the model:

item covariates, person covariates, and person-by-

item covariates:

1. Examples of IRT models for binary data with

only item covariates are the Rasch model

(Rasch, 1960), the linear logistic test model

(Fischer, 1973), and the random weights linear

logistic test model (Rijmen & De Boeck, 2002).

2. Examples of IRT models in which the latent

variable is regressed on person covariates in-

clude Adams, Wilson, and Wu (1997); Mislevy

(1987); and Zwinderman (1991). These models

incorporate item covariates as well as person

covariates. Note that the weights of the latent

regression on the latent variable are fixed effects

and that the random effect corresponds with the

error term of the latent regression.

3. The dynamic Rasch model (Verguts & De

Boeck, 2000; Verhelst & Glas, 1993) and com-

mon models for differential item functioning are

IRT models that incorporate both item covari-

ates and person-by-item covariates.

Within the context of IRT, the generalized Rasch

model of Adams and Wilson (Adams, Wilson, &

Wang, 1997; Adams, Wilson, & Wu, 1997; Wu, Ad-

ams, & Wilson, 1998) closely resembles the mixed
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logistic regression model of Equation 2, taking into

account item and person covariates and, insofar as

differential item functioning is concerned, also per-

son-by-item covariates. The generalized Rasch model

was developed outside the context of generalized lin-

ear mixed models, however. We now illustrate how

different IRT models can be formulated as specific

instances of the mixed logistic regression model of

Equation 2.

Only Item Covariates

The Rasch model. Under the Rasch model (Rasch,

1960), the responses are assumed to be conditionally

independent Bernoulli observations, with the prob-

abilities of success modeled as follows:

p�Yni = 1|�i,�n� =
exp��n + �i�

1 + exp��n + �i�
, (6)

where �i is the item parameter of item i, i � 1, . . . ,

I, and �n is the person parameter (ability) of person n,

n � 1, . . . , N.

The person parameter �n is a latent variable. If the

�n values are considered to be a random sample from

a (commonly normal) distribution, then Equation 6 is

a mixed logistic regression model with linear predictor

�ni � �n + �i (7)

(see Equations 2 and 5), where Xn is an I × I identity

matrix and Zn a vector of ones of length I for all n, so

that X consists of N stacked I × I identity matrices,

and Z is a column vector of ones of length N × I,

formed by stacking the N column vectors of ones of

length I one below the other. Hence, in the Rasch

model only the intercept �n is random. Furthermore,

the model incorporates only item covariates, with

fixed effects � � (�1, . . . , �I)�.

The mean of the latent variable is constrained to

zero, conforming to the convention to define the ran-

dom effects as the deviations from the mean effect. In

this particular case, the fixed intercept parameter is

constrained to be zero as well, to ensure that the

model is identifiable (otherwise, X would not be of

full column rank). The Rasch model is mainly a mea-

surement model because it does not provide a sub-

stantive explanation for the data.

The linear logistic test model (LLTM). The

LLTM (Fischer, 1973) is a Rasch model with a linear

structure on the item parameters. Its specification as a

mixed logistic regression model is completely analo-

gous to the specification of a Rasch model as a mixed

logistic regression model, except that the N identical

Xn matrices no longer have to be identity matrices.

Their columns represent item covariates (note that

Fischer, 1973, used the term weights for the values of

the covariates and the term basic parameters for the

logistic regression weights). For example, an item co-

variate can represent the number of times a particular

operation has to be performed to answer an item cor-

rectly. Furthermore, X now does in general also con-

tain a column of ones coding for the fixed intercept.

Of course X should be of full column rank to ensure

the identifiability of the model.

The LLTM explains the responses by relating them

to external item characteristics as represented in Xn.

This allows for explaining why some items are more

difficult than others or why “yes” responses are more

common for some items than for others.

The random weights linear logistic test model

(RWLLTM). The RWLLTM (Rijmen & De Boeck,

2002) extends the LLTM in allowing that, in addition

to the intercept, also one or more of the item covari-

ates have a random effect. For example, a random

effect for an item covariate that represents a cognitive

operation to be carried out in some but not all of the

items means that the cognitive operation involved in

these items has a person-dependent effect on the prob-

ability of success, posing more difficulty for some

persons than for others. The random effects represent

the person-specific deviations from the mean (fixed)

effect of the item characteristic. Because it introduces

additional random effects, the RWLLTM is a multi-

dimensional (each random effect corresponds to a di-

mension) extension of the unidimensional LLTM.

In the LLTM, the main effects of participants are

taken into account by the random intercept, and the

main effects of the item covariates by their fixed ef-

fects. However, interactions between item covariates

and participants are not captured by the LLTM. In

contrast, in the RWLLTM, the item covariates may

have a person-dependent (random) effect, so that in-

teractions between item covariates and participants

can indeed be taken into account.

Casting the RWLLTM in terms of the mixed logis-

tic regression model, we see that both X and Z consist

of N stacked identical matrices (containing only item

covariates). In contrast to the Z matrix that specifies

the Rasch model and the LLTM, Z now contains a

column for each item covariate with a random effect

in addition to a column of ones coding for the random

intercept.

Item bundle models with random dependency ef-

fects. An item bundle is a subset of items that share
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some material (Rosenbaum, 1988). For instance, in a

test of reading comprehension, several items may be

based on the same reading paragraph in order to re-

duce the total test time. It is an unrealistic assumption

that the responses on the items of the same item

bundle are conditionally independent, given the abil-

ity underlying the test. However, the assumption that

an item bundle is conditionally independent of other

item bundles is still reasonable.

In this article, we discuss two approaches for in-

corporating item bundle effects into an IRT model.

The first approach consists of defining an additional

random effect for each item bundle. This is the ap-

proach developed by Bradlow, Wainer, and Wang

(1999), also followed by Scott and Ip (2002). In the

second approach, which was developed by Hoskens

and De Boeck (1997), Jannarone (1986), and Kelder-

man (1984), item bundle effects are incorporated by

introducing additional fixed effects. The second ap-

proach is outlined in the Polytomous Data section.

Note that there might be other causes of conditional

dependence between responses besides the depen-

dency that results from the use of item bundles. An-

other possibility is, for example, that the dependence

results from learning during the test, as in the dynamic

Rasch model, in which the dependency is also ac-

counted for by fixed effects. The dynamic Rasch

model is discussed in the Person-by-Item Covariates

section.

We now discuss the approach proposed by Bradlow

et al. (1999). The item bundle model of Bradlow et al.

is a normal ogive model with an item discrimination

parameter, but their approach can also be used for a

logistic model without a discrimination parameter, as

we do now. For this purpose, we extend the linear

predictor (�ni � �n + �i) of the Rasch model (see

Equation 7) to

�ni � �n + �i + �nb(i), (8)

where �nb(i) is a random effect representing the per-

son-specific effect for item bundle b that contains

item i. The conditional dependency model by Brad-

low et al. (1999) can be seen as a special case of the

RWLLTM, in which additional item covariates with

random effects are used to code for the item bundles.

When the model is extended with an item discrimi-

nation parameter, as in Bradlow et al. (1999) and in

Scott and Ip (2002), it no longer belongs to the class

of generalized linear mixed models. Such extended

models are described in the Extending the Mixed Lo-

gistic Regression Model section.

Person Covariates: Latent Regression

When information is available about the partici-

pants taking a test, it might be interesting to estimate

the extent to which the latent person parameter �n is

determined by these person characteristics. This can

be achieved by constructing a (multiple) regression

model for the latent variable �n (Adams, Wilson, &

Wu, 1997; Mislevy, 1987; Zwinderman, 1991):

�n � x�n� + 	n, (9)

where 	n ∼ N(0,
2
	) and xn is a vector of person co-

variates. In terms of the mixed logistic regression

model, this means that X now contains both person

and item covariates. Furthermore, 	n, the error term of

the latent regression, which is normally distributed

over persons, is now the random effect. Even if one is

not interested in the relation between the latent vari-

able and the person characteristics as such, including

additional information about participants offers the

advantages that more precise estimates for the (fixed)

item and (random) person parameters are obtained

(Mislevy, 1987). Furthermore, if the model of Equa-

tion 9 holds, then the unconditional distribution of �n

is not normal but a mixture of normals (Verbeke &

Molenberghs, 1997), invalidating the assumption of

normally distributed random effects for a model with-

out latent regression.

Similarly to the regression model for the random

intercept �n, a regression model can be constructed for

other random effects. For example, in the RWLLTM,

the interaction between persons and an item covariate

is accounted for by incorporating a random effect for

that particular item covariate, rendering the effect of

the item covariate person dependent. By regressing

the random effect on person covariates, one can ex-

plain the person-dependent effect of the item covari-

ate in terms of characteristics of the person.

Person-by-Item Covariates

Models for differential item functioning. In gen-

eral, we can distinguish between two kinds of differ-

ences between groups in their performance on a test.

First, it may be the case that groups differ with respect

to the ability the test is measuring. This kind of dif-

ference can be modeled through a latent regression on

the latent person variable or through multilevel mod-

eling, as described in, respectively, the previous sec-

tion and the Multilevel IRT Models section below.

A second scenario is that the groups under inves-

tigation do not differ with respect to ability but that

one group is performing worse than the other(s) on
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one or more of the items nevertheless. In other words,

some of the items are biased against one group, or

more generally, they are functioning differentially. An

overview on differential item functioning can be

found in Holland and Wainer (1993).

When an item is suspected of functioning differen-

tially, this can be taken into account in the mixed

logistic regression model by constructing person-by-

item covariates as the product of person covariates

coding for the different groups and an item covariate

coding for the item.

Both the RWLLTM and models for differential

item functioning deal with interactions between per-

sons and items (item covariates), though in a different

way. In the RWLLTM, the effect of an item covariate

is allowed to be different for all persons. In contrast,

in models for differential item functioning, the effect

of an item can only differ between groups of persons.

A second difference is that the RWLLTM incorpo-

rates random effects for item covariates to deal with

interactions between persons and item covariates,

whereas common models for differential item func-

tioning include a fixed effect for each group by the

construction of the person-by-item covariates just

mentioned. The two differences are related: Including

a fixed effect for each person would result in a mul-

titude of parameters to be estimated.

Dynamic models. The dynamic Rasch model

(Verhelst & Glas, 1993) is a model for learning and

change during the test. In its most general form, the

dynamic Rasch model reads as

p�Yni = 1|�i,�n, fi�y
ni

�,ki�r
ni

��

=
exp��n + �i + fi�y

ni
� + ki�r

ni
��

1 + exp��n + �i + fi�y
ni

� + ki�r
ni

��
(10)

or, equivalently,

L(�ni) � �n + �i + fi(y
ni) + ki(r

ni), (11)

where yni is the partial response vector, consisting of

participant n’s responses for items 1 to i − 1, and rni

is the partial reinforcement vector, consisting of rein-

forcements given after each of the responses up to

item i. fi(.) and ki(.) are real-valued functions. Hence,

the probability of giving a correct answer is a function

of ability, of item difficulty, and of previous responses

and reinforcements. That responses can be modeled as

a function of other responses is an important model

feature for the study of behavior, because behavior is

a function not only of the person and the situation but

also of previous behaviors.

In general, each dynamic Rasch model character-

ized by a specific choice for fi(.) and ki(.) corresponds

to a mixed logistic regression model with accordingly

defined person-by-item covariates because the pos-

sible function values of fi(.) and ki(.) can be consid-

ered as parameters. However, in its most general

form, the dynamic Rasch model is not identified be-

cause the number of parameters outnumbers the num-

ber of possible response patterns (Verhelst & Glas,

1993, p. 397). Useful models do arise when some

suitable restrictions are imposed on fi(.) and ki(.). We

consider two examples.

In a first example, it is assumed that a constant

amount of learning � takes place after each success-

fully solved item, but no reinforcement is given.

Hence, fi(y
ni) � ��i−1

j�1ynj, i � 2, . . . , I, and the term

ki(r
ni) can be omitted. The model is fitted in the mixed

logistic regression framework by including a person-

by-item covariate that is defined as the number of

items solved correctly by person n up to item i. Be-

cause the amount of learning is considered to be the

same for all persons, the person-by-item covariate is

only included in X, the supermatrix containing the

covariates with a fixed effect.

As a second example, consider the case in which

solving a particular item i* is facilitated if one suc-

ceeded in solving a related item j presented earlier in

the test. Then, fi(y
ni) � 0 for all i � i*, and fi*(yni*)

� ynj, where  represents the amount of facilitation.

Again, the term ki(r
ni) can be omitted, because no

reinforcement is taken into account. The facilitation

effect can be incorporated by including a person-by-

item covariate into the mixed logistic regression

model that has, for item i*, as its value the response

on item j, ynj, and is zero otherwise. Similar to the first

example of the dynamic Rasch model, the person-by-

item covariate is only included in X because the

amount of facilitation is considered to be the same for

all persons.

The two examples considered for the dynamic

Rasch model both involve the estimation of a learning

parameter. By consequence, the corresponding pa-

rameters in the mixed logistic regression model are

expected to be positive. In principle, negative depen-

dencies among items may also occur, for example,

because of interbehavioral compensatory or inhibitory

mechanisms.

Multilevel IRT Models

Hitherto, we have considered only the case in

which there is just one kind of clustering: measure-
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ments clustered within participants. However, it might

be that an additional clustering of the data is present.

For example, consider the case in which participants

are selected from several schools. Similar to the de-

pendency between the responses given by a single

participant, one might expect that the responses of

participants belonging to the same school are not in-

dependent. More particularly, it might be unwarranted

to assume that the latent person parameters �n, or

more generally the random effects, are independent

realizations from a distribution defined over the popu-

lation of participants.

Two strategies can be followed to account for ad-

ditional cluster effects. First, if one is exclusively in-

terested in the specific effects of the schools (or other

clusters of participants), one can perform a latent re-

gression with person covariates coding for the

schools. This approach results in a separate fixed pa-

rameter for each school.

Alternatively, if the schools can be regarded as a

random sample from a population of schools, and one

wishes to draw conclusions with respect to this popu-

lation, one can define the effects of the schools to be

random, analogous to the random effects of partici-

pants. The latter approach results in multilevel IRT

models (Fox & Glas, 2001; Kamata, 2001; Maier,

2001). Considering the standard case of a mixed lo-

gistic regression model with only a random intercept,

and assuming normal distributions for the random ef-

fects on all levels, we obtain

L(�nsi) � x�nsi� + �ns, (12)

where �ns ∼ N(�s,

2
s), �s ∼ N(0,v2), with �ns denoting

the random intercept for person n nested within school

s, and �s denoting the random effect of school s.

Hence, the joint distribution of the latent abilities �ns,

s � 1, . . . , S, within a school is multivariate normal

with mean 0, variances 
2
s + v2, and covariances v2.

Polytomous Data

So far, we have considered only binary responses.

However, psychometric data are often polytomous,

for example, rating scale data, or cognitive tests for

which one distinguishes between false, partially cor-

rect, and correct. Instead of dichotomizing the data,

and applying the mixed logistic regression model for

binary data, one can model the polytomous responses

directly by extending the models for dichotomous

data. This way, the maximal information that is con-

tained in the data is preserved.

The mixed logistic regression model can handle

polytomous responses by forming logits for polyto-

mous data. Given Ji + 1 response categories (0, . . . ,

Ji), four different sets of Ji nonredundant logits can be

formed (Agresti, 1989, 2002):

1. Baseline-category logits are the log odds of a

category in question versus a baseline category.

This approach leads to the nominal response

model with a priori known discrimination pa-

rameters (Bock, 1972).

2. Adjacent-categories logits are the ordinary log-

its of the conditional probabilities of response j,

given response j or j + 1 (or, alternatively, given

response j or j − 1). This approach leads to the

partial credit model (Masters, 1982) and the rat-

ing scale model (Andrich, 1978).

3. Continuation-ratio logits are the ordinary logits

of the conditional probabilities of response j,

given response j or higher (or, alternatively,

given response j or lower). This approach leads

to the sequential response model (Tutz, 1990).

4. Cumulative logits are the logits of cumulative

probabilities (or, alternatively, the logits of the

probability of a response of category j or

higher). This approach leads to the graded re-

sponse model with a priori known discrimina-

tion parameters (Samejima, 1969).

For binary data, the four types of logits are identical

and correspond with the ordinary logits. The baseline-

category logits are appropriate for nominal responses,

whereas for ordinal responses, the three other types of

logits are more appropriate because ordering informa-

tion is taken into account. Furthermore, adjacent-

categories logit models, but not continuation-ratio and

cumulative logit models, can be expressed as base-

line-category models (Agresti, 2002, chapter 7).

The mixed logistic regression model can now be

formulated in logit terms as

Lnij � xnij� + z�nij�n, (13)

where Lnij is one of the logit transformations defined

earlier and j � 1, . . . , Ji.

The supermatrices X and Z can be defined in a way

analogous to the dichotomous case, but they now con-

tain a separate row for each person-by-item-by-

category combination, respectively, x�nij and z�nij (ex-

cept for one category given that only Ji logits are

nonredundant). Hence, if each item has the same num-
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ber of response categories (Ji � J for all i), and each

person receives the same number of items, X and Z

both consist of N × I × J rows.

Again, we can distinguish between different kinds

of covariates, depending on whether they are constant

or not across items, persons, and/or categories. IRT

models for polytomous data can be categorized ac-

cording to two properties: the type of logit that is used

as link function (Mellenbergh, 1995) and the kind of

covariates they incorporate.

The rating scale model incorporates item covariates

and category covariates. The other models for polyto-

mous data (the nominal response, partial credit, se-

quential response, and graded response models) con-

sider only item-by-category covariates. All models

assume a unidimensional ability (only the intercept is

random). Nevertheless, additional random effects can

make sense and can easily be incorporated. Further-

more, similar to the latent regression models and the

dynamic Rasch model for binary data, person covari-

ates and/or person-by-item covariates could also be

incorporated.

We discuss now two more models to illustrate the

mixed logistic regression model for polytomous data.

The first one is the partial credit model, often used to

model ordinal response data. The second one illus-

trates the second approach of dealing with item

bundle effects, which consists of introducing addi-

tional fixed parameters to account for the dependen-

cies between the items of the same item bundle.

The Partial Credit Model

The partial credit model (Masters, 1982) incorpo-

rates the adjacent-category logit (Mellenbergh, 1995),

contrasting category j with category j − 1. For an item

with Ji + 1 categories (0, . . . , Ji), the partial credit

model is defined as

Lnij = log� �nij

�ni, j−1
� = �n + �ij, (14)

where �nij is the conditional probability that the re-

sponse of participant n on item i belongs to category

j, j = 1, . . . , Ji. This results in the Ji + l category

probabilities

�nij = p�Yni = j|�i,�n� =

exp��
v=1

j

��n + �iv��
1 + �

h=1

Ji

exp��
v=1

h

��n + �iv��
,

for j > 0, and

�ni0 = p�Yni = 0|�i,�n� =
1

1 + �
h=1

Ji

exp��
v=1

h

��n + �iv��
,

(15)

where �n is a latent variable, and �i � (�i1, . . . , �iJi
)�.

Equation 14 is a specification of Equation 13, where

� is the vector resulting from stacking the I �i vectors

one below the other (with length �I
i�1Ji); xnij has only

one nonzero element, with value 1, to select parameter

�ij; and znij is 1 for all j, i, and n. Hence, X consists of

�I
i�1 Ji item-by-category covariates, and Z is a N ×

�I
i�1 Ji column vector of ones.

Item Bundle Models With Fixed
Dependency Effects

Item bundle models with fixed dependency effects

form part of the approach of Hoskens and De Boeck

(1997) and were also described by Jannarone (1986)

and Kelderman (1984). In these models, it is not an

additional random effect that accounts for the condi-

tional dependency between items of the same item

bundle but a fixed parameter. For instance, the depen-

dency between two items 1 and 2 is parameterized by

an additional dependency parameter �12. If items 1

and 2 make up a single item bundle, then the prob-

ability formula for a joint response on items 1 and 2

(with equal discrimination parameters of one) equals

p�Yn1 = yn1,Yn2 = yn2|�1,�2,�12,�n�

=
exp�yn1��n + �1� + yn2��n + �2� + yn1yn2�12�

1 + exp��n + �1� + exp��n + �2�
+ exp�2�n + �1 + �2 + �12�

.

(16)

In Equation 16, the joint probability of a response

pattern (yn1,yn2) is modeled. For an item bundle con-

sisting of two binary items, there are four different

response patterns possible: (0,0), (1,0), (0,1), and

(1,1). Instead of looking at the two separate items as

the basic units, one could also consider the item

bundle as the basic unit and model the item bundle as

if it were a polytomous item i° with four different

response categories 0, 1, 2, and 3 corresponding with

the response patterns (0,0), (1,0), (0,1), and (1,1), re-

spectively.

Taking the baseline-category logits of the newly

defined item with 0 as baseline category, Equation 16

can be reformulated as follows:
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Lni°1 = log��ni°1

�ni°0
� = �n + �1,

Lni°2 = log��ni°2

�ni°0
� = �n + �2, (17)

and

Lni°3 = log��ni°3

�ni°0
� = 2�n + �1 + �2 + �12.

Equation 17 is a specification of Equation 13 where �
equals (�1, �2, �12)�, xni°j consists of two 0s and one

1 in appropriate places to select �1 or �2 if j � 1 or

2, respectively, or consists of three 1s if j � 3. Fur-

thermore, zni°j is equal to 1 for j � 1, 2 and equal to

2 if j � 3, and �n is the one-dimensional �n. An

extension of this model to incorporate random depen-

dency was described by Hoskens and De Boeck

(1997) but is not considered here.

In summary, the key step to fit this type of depen-

dency model in the framework of random effects

models is to map the possible response patterns into

distinct categories of a polytomous artificially con-

structed “item bundle item” i°, so that the correla-

tional structure of the observations is modeled

through one or more random effects (measuring the

construct(s) underlying the test) and additional depen-

dency parameters (to account for the dependency be-

tween the responses not accounted for by the random

effects). For simplicity, we have assumed in our ex-

planation that only two items from a test belong to an

item bundle. The other items in the test may also be

subdivided into additional item bundles (if they show

conditional dependency) or they may not (if they are

conditionally independent). The different item

bundles in the test are assumed to be conditionally

independent of each other. An item bundle may also

consist of more than two dependent items. An appli-

cation of such a model to projective testing can be

found in Tuerlinckx, De Boeck, and Lens (2002).

Extending the Mixed Logistic
Regression Model

In this section, we formulate an extension of the

mixed logistic regression model. The extension con-

sists of the inclusion into Equation 13 of loading or

discrimination parameters that can be considered as

item covariates with unknown values,

Lnij � x�nij�1 + z�nij�n1 + a�i �2 + b�i �n2, (18)

where xnij is a known P1-dimensional covariate vector

for P1 fixed effects, znij is a known Q1-dimensional

covariate vector for Q1 random effects, ai is a P2-

dimensional vector (P1 + P2 � P) for the unknown

covariates of P2 fixed effects, bi is a Q2-dimensional

vector (Q1 + Q2 � Q) for the unknown covariates of

Q2 random effects, � � (��1,��2) is the P-dimensional

vector of fixed effects, and �n � (��n1,��n2) is the Q-

dimensional vector of random effects for unit n.

The extension in Equation 18 is formulated for po-

lytomous data and hence also treats the case of binary

data. The unknown covariates have no person index

because we only allow unknown item covariates ai

and bi. In the context of an ability test, the fact that an

item covariate is unknown means that the degree to

which a cognitive operation is involved in solving the

item is not known in advance but is estimated from

the data as a weight parameter similar to factor load-

ings.

Furthermore, we can define the supermatrices X, Z,

A, and B in the same way as they were defined for the

mixed logistic regression model. The supermatrices X

and Z contain known covariate values. The superma-

trices A and B contain unknown covariate values, or

in other words, parameters. A and B consist of N

identical submatrices, stacked one below the other

because we only consider unknown item covariates.

The predictor (the right side of Equation 18) is no

longer linear in that there appears a product of param-

eters, so that we are outside the family of generalized

linear mixed models.

Again, we can distinguish between several types of

covariates and categorize IRT models along these

lines. Only IRT models that are specifications of

Equation 18 and that take into account only unknown

item covariates (and, for polytomous responses, un-

known category covariates and item-by-category co-

variates) are formulated hitherto. For binary data, ex-

amples are the two-parameter logistic model

(Birnbaum, 1968), the two-parameter logistic-

constrained model (Embretson, 1999), the multidi-

mensional two-parameter logistic model (McKinley

& Reckase, 1983), the confirmatory multidimensional

two-parameter logistic model (McKinley, 1989), and

the model with internal restrictions on item difficulty

(Butter, De Boeck, & Verhelst, 1998). The two-

parameter model has also been presented with a probit

link instead of a logit link (Bock & Aitkin, 1981; Lord

& Novick, 1968).

For polytomous data, familiar IRT models of this

type are the nominal response model in which the
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discrimination parameters for the categories are re-

stricted to be equal within items (Bock, 1972; base-

line-category logits), the graded response model

(Samejima, 1969; cumulative logits), and the gener-

alized partial credit model (Muraki, 1992; adjacent-

category logits). The unconstrained version of Bock’s

nominal response model allows that the discrimina-

tion parameters differ not only among items but also

among the categories within a single item. The latter

can be accommodated by allowing bi of Equation 18

to differ among categories and hence be subscripted

with both an index i and j, bij.

Analogously to the latent regression models and the

dynamic Rasch model from the Mixed Logistic Re-

gression Model for Binary Data section, it can be

worthwhile to formulate IRT models that incorporate

person covariates or person-by-item covariates. An-

other possibility is to regress the discrimination pa-

rameters on known item covariates, as is done in the

two-parameter logistic-constrained model, or to re-

strict them otherwise, as is done by Thissen and Stein-

berg (1986). Thissen and Steinberg (1986) conceptu-

alized a family of models that differ with respect to

the restrictions placed on the discrimination param-

eters, ranging from the partial credit model (no dis-

crimination parameters) to the nominal response

model (no restrictions on the discrimination param-

eters). However, care should be taken in extending or

adapting existing models not to make the model too

complex to avoid identification problems. The general

model of Equation 18 is illustrated in the following

example.

According to the multidimensional two-parameter

logistic model (McKinley & Reckase, 1983), the con-

ditional probability of a correct answer is

�ni = p�Yni = 1|�i,�n,bi� =
exp�b�i�n + �i�

1 + exp�b�i�n + �i�
. (19)

When all the elements of bi are estimated, the model

is exploratory. In the confirmatory model (McKinley,

1989), some elements of bi are constrained to zero.

Hence, the unknown covariates collected in bi are

only partially unknown in the latter case. Formulated

in terms of the logit, the multidimensional two-

parameter logistic model becomes

Lni � b�i �n + �i. (20)

Equation 20 is a specification of Equation 18 for bi-

nary data, where each Xn is an I × I identity matrix

(and therefore the vector x can be omitted, as was also

the case for the Rasch model; see Equation 6), and �n2

equals �n. The two other terms of Equation 18, z�nij�n1

and a�i �2, do not appear in Equation 20.

In the exploratory model, one restriction for each

random effect or dimension is needed to render the

model identifiable, because one can multiply a par-

ticular element of bi by a constant and divide the

corresponding element of �n by the same constant.

The usual restrictions consist of fixing all the vari-

ances to one. An additional unidentifiability results

from the rotational freedom with respect to �n, similar

to the rotational freedom in classical factor analysis

(Bock, Gibbons, & Muraki, 1988). The latter can be

solved by fixing the correlations between the �n and/

or by putting some constraints on the bi. Alterna-

tively, one can rotate the solution according to some

criterion, such as varimax (orthogonal dimensions) or

oblimin (correlated dimensions).

Other IRT Models

The models presented in Equations 5, 13, or 18 are

quite general and capture the majority of commonly

used IRT models. We now consider some categories

of IRT models that do not fit within this framework.

A first category consists of IRT models that incorpo-

rate both qualitative and quantitative latent person

variables. In these models, the qualitative latent vari-

ables denote the latent class to which a person be-

longs. Within a class, an IRT model incorporating

quantitative latent variables is assumed to hold.

Hence, the first category of models consists of models

that are a discrete mixture of other IRT models. Ex-

amples of this category are as follows: the hybrid

model of Yamamoto (1987), which is a discrete mix-

ture of IRT and random guessers; the mixed Rasch

model (Rost, 1990; mixed referring to the discrete

mixture, and not to the random intercept within each

discrete mixture component); and the model of Mis-

levy and Verhelst (1990), which consists of a discrete

mixture of LLTMs.

A second category consists of IRT models that in-

clude guessing parameters, such as the three-

parameter logistic model (Birnbaum, 1968) for binary

data. For polytomous data, see in this respect Same-

jima (1969) and Thissen and Steinberg (1984). These

models can also be seen as discrete mixtures: On a

particular item, a participant either chooses intention-

ally for a certain response alternative or “guesses” for

a certain response alternative when “undecided”

(Thissen & Steinberg, 1984, p. 502). In this second

category of IRT models, the mixture is defined over
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all measurements: Whether a participant is in the ig-

norance state or not may change from item to item. In

contrast, for the first category of models, the mixture

is defined over participants: They are in the same

class for all items.

Throughout the article, the item parameters were

considered fixed. Consequently, IRT models in which

the effects of the items are random over items form a

third category of models not captured by our frame-

work (Janssen & De Boeck, 2003).

Statistical Inference and Software

In this section, we give an overview of estimating

the mixed models considered in this article and dis-

cuss some software that can be used for estimating

these models. In a final paragraph, we briefly mention

some issues on model evaluation.

The following marginal likelihood has to be maxi-

mized to obtain parameter estimates:

L��,�|y1, . . . , yN� = �
n=1

N

Ln ��,��

= �
n=1

N

�p�yn|�,�n�N��n|0,��d�n,

(21)

where p(yn|�,�n) is the probability of observing re-

sponse pattern yn and N(�n|0,�) is the multivariate

normal distribution (of dimension Q) with mean vec-

tor zero and covariance matrix �. The parameter vec-

tor � contains the fixed effects that appear in

p(yn|�,�n). If the model is a generalized linear mixed

model, the parameter vector � equals �, as in Equa-

tion 2.

For all mixed models considered in this article, the

integral in Equation 21 is intractable. There are three

general types of solutions to this problem. The first

one is to approximate the integral with numerical in-

tegration techniques; this is called a full-likelihood

analysis. The second solution consists of approximat-

ing the nonlinear model by a linear one and then

estimating the parameters using an estimation algo-

rithm for linear mixed models. Both solutions are de-

veloped in a frequentist context. As a third option, we

mention Bayesian estimation methods.

Full-Likelihood Analysis

In a full-likelihood analysis, a numerical approxi-

mation to the likelihood in Equation 21 is maximized.

Roughly speaking, there are four different possible

approaches, and they can be classified in a two-by-

two table. The first dimension of the table classifies

the techniques according to whether the numerical

approximation to the marginal likelihood is maxi-

mized directly or whether the maximization problem

is transferred to another function for which it can be

shown that as a by-product, the marginal likelihood is

maximized, too. The second dimension distinguishes

between deterministic and stochastic numerical ap-

proximations to intractable integrals encountered in

the optimization problem.

Direct maximization. In direct maximization

techniques, it is the intractable integral in Equation 21

that is numerically approximated and then this nu-

merical approximation is maximized. A first possibil-

ity is to approximate the integral numerically in a

deterministic way by means of a numerical quadrature

rule. In the case in which the random effects are as-

sumed to be normally distributed, usually the Gauss–

Hermite quadrature is chosen. A second possibility is

to use Monte Carlo integration (i.e., the stochastic

option).

Currently there are four popular software packages

that provide a full-likelihood analysis with direct op-

timization for at least some IRT models: SAS PROC

NLMIXED, GLLAMM (generalized linear latent and

mixed models; Rabe-Hesketh, Pickles, & Skrondal,

2001; Skrondal & Rabe-Hesketh, in press), MIXOR

(mixed effect ordinal regression; Hedeker & Gibbons,

1996), MIXNO (mixed effect nominal logistic re-

gression; Hedeker, 1999), and HLM (hierarchical lin-

ear models; Version 5; Raudenbush, Bryk, & Cong-

don, 2001). All programs allow the use of person,

item, and person-by-item covariates.

Almost all IRT models discussed in this article

(both generalized linear and nonlinear mixed models)

can be estimated using PROC NLMIXED in SAS; the

only exceptions are multilevel models with three or

more levels. The intractable integral can be approxi-

mated by a Gauss–Hermite quadrature, an adaptive

Gauss–Hermite quadrature, or their stochastic coun-

terparts (Pinheiro & Bates, 1995). Moreover, there are

a variety of methods available to maximize the mar-

ginal loglikelihood that differ from each other in the

order of the derivatives that are used.

GLLAMM is a program written for STATA (Stata-

Corp., 2001), and it allows one to fit all models dis-

cussed in this article, including models with more

than two levels and models with a discrimination pa-

rameter. To approximate the integral in Equation 21,

the user may choose between a regular or an adaptive
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Gauss–Hermite quadrature. One can also choose a

semiparametric estimation method, in which the mix-

ing distribution is discrete and the node points and

corresponding weights are estimated. The latter

method is appropriate when the assumption of a nor-

mal mixing distribution is unwarranted. The maximi-

zation is done using a Newton–Raphson algorithm.

The programs MIXOR and MIXNO use a Gauss–

Hermite quadrature to approximate the intractable in-

tegral. MIXOR can be used for estimating IRT mod-

els for dichotomous data that are generalized linear

mixed models. Also the two-parameter logistic model

can be estimated. As for polytomous data, MIXOR is

suited for the graded response models with equal dis-

crimination. MIXOR can handle only two-level data.

MIXNO can be used to estimate not only multinomial

logit models with and without discrimination param-

eters but also more restricted versions of these mod-

els, such as the partial credit model and dependency

models with fixed effects for the item bundles. Both

in MIXOR and MIXNO, a Fisher scoring algorithm is

used to maximize the marginal likelihood.

In the newest version of HLM (Version 5), a sixth-

order Laplace approximation to the intractable inte-

gral is implemented (Raudenbush, Yang, & Yosef,

2000). Although different from the adaptive Gaussian

quadrature (Pinheiro & Bates, 1995), the Laplace ap-

proximation is related to it, and therefore it is listed

under the full-likelihood analysis. Currently, it is

implemented only for the regular Rasch-type models

(generalized linear mixed models with only two re-

sponse categories and Bernoulli distributed data) with

a maximum of two levels. Other types of generalized

linear mixed model IRT models can be estimated by

HLM but only by means of a linearized analytical

approximation (see below).

Indirect maximization. Indirect maximization in

mixed effects models is based on the Expectation-

maximization (EM) algorithm (Dempster, Laird, &

Rubin, 1977; for other types of indirect maximization,

see Lange, Hunter, & Yang, 2000). The random ef-

fects are considered as missing data, and together with

the observed data they form the complete data. Be-

cause the random effects are not known, one first

computes, given the current estimates of the fixed

effects and observed data, the expected value of the

complete loglikelihood (the E-step), and then ex-

pected loglikelihood is maximized (the M-step). In

the E-step, a similar intractable integral as the one in

Equation 21 appears, and it has to be approximated

again using the aforementioned methods.

As noted by Bock and Aitkin (1981), for the stan-

dard versions of the IRT models (hence without ad-

ditional covariates) the application of the EM algo-

rithm has a major advantage. In that case, the item

parameter vector � can be subdivided into I subsets of

parameters, each pertaining to only one item. Conse-

quently, the expected loglikelihood can be written as

a sum of independent terms that can be maximized

separately because, given the random effects, there is

independence between the items. This approach al-

lows one to analyze a large number of items. The EM

algorithm is currently implemented in IRT software

packages such as MULTILOG (Thissen, 1991) and

ConQuest (Wu et al., 1998).

MULTILOG can handle Rasch models, two-

parameter logistic models, graded response models,

and multinomial logit models (the last two with and

without discrimination parameters). Also restricted

versions of the multinomial logit model such as the

partial credit model and fixed effects dependency

models can be estimated. MULTILOG can handle

multiple groups, which is a specific case of latent

regression. The intractable integral in Equation 21 is

approximated by a Gauss–Hermite quadrature. One

can also opt for a semiparametric method when the

assumption of a normal mixing distribution is unwar-

ranted.

ConQuest can handle all IRT models of the gener-

alized linear mixed model type that incorporate per-

son and/or item covariates. Also models for differen-

tial item functioning can be estimated. The intractable

integral in Equation 21 is approximated by Gauss–

Hermite quadrature or its stochastic counterpart.

Spiessens, Verbeke, and Komárek (2002; see

Spiessens, Verbeke, Fieuws, & Rijmen, 2003, for an

application) proposed an EM algorithm implemented

in a SAS macro that can be used to approximate a

nonnormal mixing distribution by a discrete mixture

of normal distributions. In this case, the missing data

consist of the respective component of the discrete

mixture to which persons belong. The M-step is car-

ried out with PROC NLMIXED.

Linearized Analytical Approximations

The integral in Equation 21 has a closed-form so-

lution if the distribution of the data conditional on the

random effects is normal and the link function is the

identity function. In that case, the marginal distribu-

tion is also normal (see Verbeke & Molenberghs,

2000). Because the estimation methods for the normal

linear mixed model are well established, many re-
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searchers have tried to apply them also in the case of

generalized linear and nonlinear mixed models

through approximating the nonlinear model with a

linear one. Fortunately, the assumption of normality is

not necessary to estimate the parameters because only

the mean and variance–covariance matrix of the data

have to be specified; this is called the quasi-likelihood

approach (McCullagh & Nelder, 1989).

Therefore, a strategy to avoid the intractable inte-

gral is to use a linear approximation (by means of a

first-order Taylor expansion) to the link function. In a

next step, the mean and variance–covariance matrix

for the data can be derived, and then one of the linear

mixed model estimation methods can be applied.

These two steps (linearization and estimation) are re-

peated until convergence.

There are two popular approaches. The first one is

the penalized quasi-likelihood method (PQL; Breslow

& Clayton, 1993) in which the Taylor expansion of

the link function is around the current estimates for

the fixed effects, and around the empirical Bayes es-

timates for the random effects. The second approach

is the marginal quasi-likelihood method (MQL; Gold-

stein, 1991) in which the Taylor expansion of the link

function is around the current estimates for the fixed

effects and zero for the random effects. Several im-

proved extensions of both methods have been pro-

posed (MQL2, PQL2, and corrected PQL; see Bres-

low & Lin, 1995; Goldstein & Rasbash, 1996;

Rodriguez & Goldman, 1995). The quasi-likelihood

methods have been investigated only for generalized

linear mixed models and for nonlinear mixed models

with normally distributed error (Wolfinger & Lin,

1997); hence, it is unclear whether they can be applied

to models such as the two-parameter logistic model.

Rodriguez and Goldman (1995) showed in a simu-

lation study that fixed and/or variance components

estimated with MQL may suffer from a downward

bias, especially when random effects are large and the

number of subunits for a unit is small, and Breslow

and Clayton (1993) showed that such biases also oc-

cur for PQL. For the unidimensional Rasch model for

two items, Breslow and Lin (1995) showed that the

PQL estimates for the regression coefficients also

have an appreciable downward asymptotic bias; that

led these authors to propose a corrected version of the

PQL (not equal to PQL2) by adding a term to over-

come the asymptotic bias. Also the variance compo-

nents have some asymptotic bias when estimated with

PQL, and here a multiplicative correction factor is

proposed. Lin and Breslow (1996) extended the re-

sults from Breslow and Lin (1995) to generalized lin-

ear mixed models with multiple independent random

effects.

Both the MQL and PQL methods are implemented

in MLwiN (Rasbash, Browne, Goldstein, & Yang,

2000) to estimate generalized linear mixed models for

binary data (currently it is not possible to estimate

models for polytomous data). The PQL method is

implemented in HLM (Version 5), and multilevel

generalized linear mixed models up to three levels can

be estimated in HLM (Version 5) for binary data. For

polytomous data, only models with at most two levels

can be estimated.

Bayesian Methods

An important feature of the aforementioned estima-

tion methods is that they are developed within a fre-

quentist framework of statistical inference. An alter-

native is to consider Bayesian estimation methods.

Modern computer-intensive techniques known as

Markov chain Monte Carlo methods (Gelman, Carlin,

Stern, & Rubin, 1995; Tanner, 1996) often make the

parameter estimation problem in a Bayesian frame-

work less complex than techniques in a frequentist

one, but the drawback is that the optimization tech-

niques are often more time-consuming. Currently,

Bayesian estimation can be done using BUGS (Gilks,

Thomas, & Spiegelhalter, 1994) and MLwiN.

Model Evaluation

Model evaluation is used as a collective term for

activities such as hypothesis testing, constructing con-

fidence intervals, model selection, variable selection,

graphical model checking, and so on. Inferential pro-

cedures that are applicable for fixed effects general-

ized linear and nonlinear models can usually be used

for inferences about fixed effects in the mixed models

without many problems (Wald tests, likelihood ratio

tests, etc.). However, for inferences about variance

components, some caution is necessary. For instance,

the reference distributions of the likelihood ratio test

statistic require some modification to test whether

variance components differ from zero (see Self &

Liang, 1987; Stram & Lee, 1994). Also, it has to be

stressed that the deviance statistic produced by using

PQL or MQL methods (or their extensions) cannot be

used in the subsequent model stage because they lack

the necessary asymptotic properties (Snijders &

Bosker, 1999). In our opinion, none of the current

software packages offer satisfactory possibilities for

model evaluation.
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Application: A Self-Report Study on Anger

As an example, we discuss a questionnaire in which

hypothetical aversive situations were judged on the

degree to which they elicit anger (Kuppens, 2003).

The questionnaire consisted of 24 hypothetical situa-

tions, such as “You’re at a party when you hear that

someone broke your bike,” and “One day, a member

of your family is ill with 39.5 °C (103 °F) of fever.”

The English translation (translated from Dutch) of the

list of 24 situations used can be obtained from Peter

Kuppens. The questionnaire was presented to 510

high school students, 179 (35%) female and 331

(65%) male, in groups of about 20 students. The mean

age of the students was 17 years (SD � 1). The par-

ticipants rated on a 4-point scale (ranging from 0–3)

to what extent each of the situations elicited anger.

Additional information obtained for the participants

consisted of the mean score on the 10 items of the trait

anger scale of Spielberger (Van der Ploeg, Defares, &

Spielberger, 1982; ANGER), the mean score on the

10 items of the Rosenberg Self-Esteem Scale (Rosen-

berg, 1989; SELF), the mean score on a subset of 10

items of the irritation scale of Eysenck (Eysenck,

1953; IRRITATION), and the gender of the par-

ticipants (GENDER). For ANGER, SELF, and

IRRITATION, the mean item scores (items were all

scored from 0–3) were 1.3, 1.8, and 1.8, respectively.

The standard deviations were, respectively, 0.6,

0.6, and 0.5. The intercorrelations were rather low,

with the highest correlation of .31 being between

IRRITATION and ANGER (p < .001).

A second group of 25 first-year psychology under-

graduate students, 19 (76%) female and 6 (24%) male,

with a mean age of 19 years (SD � 2), rated the 24

situations on a 4-point scale (also ranging from 0–3)

with respect to a set of 10 situational characteristics.

The students participated in the study as a partial ful-

fillment of their course credits. The situational char-

acteristics to judge were the amount of control over

the situation (CONTROL), whether the situation

could be changed (CHANGE), the predictability of

the situation (PREDICT), the consequences for a third

person (CONSEQ3), the consequences for oneself

(CONSEQ1), whether the situation was threatening

for oneself (THREAT), whether one had to blame

oneself (BLAME), whether the situation touched one-

self in a personal emotional way (TOUCH), whether

what was going on was clear (CLEAR), and whether

one had a loss experience in the situation (LOSS).

We report on two illustrative analyses. A more pro-

found set of analyses would be beyond the aim of this

article. The first analysis is targeted on the prediction

of the anger responses on the basis of person and item

characteristics. The second is targeted on revealing

the underlying structure of the questionnaire.

Rating Scale Model With a Decomposition of
the Item Location Parameters and
Latent Regression

The base model for the first analysis is the rating

scale model (Andrich, 1978), which is a partial credit

model (see Equations 14 and 15) in which the item

parameters are decomposed as �ij � �i + �j, where �i

is the location of item i, and �j is the deviation of

category j from the item location. The latter are as-

sumed equal across items, so that the only difference

among items is the difference in location. To identify

the model, we set �1 to zero.

Furthermore, the item location parameters �i were

decomposed into a weighted sum of item covariates,

analogous to the LLTM. As item predictors, we used

the mean ratings, computed over participants, of the

situations on the 10 situational characteristics.

Finally, the latent variable of the rating scale

model, �n, was modeled through a latent regression

(see Equation 9), with ANGER, SELF, IRRITATION,

and GENDER serving as person covariates.

Putting all those components together, the full

model is, for j � 1, 2, 3 because there were four

response categories,

log� �nij

�ni, j−1
� = 	n + �angerANGERn + �selfSELFn

+ �irritationIRRITATIONn

+ �genderGENDERn

+ �controlCONTROLi

+ �changeCHANGEi

+ �predictPREDICTi

+ �conseq3CONSEQ3i

+ �conseq1CONSEQ1i

+ �threatTHREATi + �blameBLAMEi

+ �touchTOUCHi + �copeCLEARi

+ �lossLOSSi + �j. (22)

The first 5 terms define the latent regression of the

latent variable on person covariates (hence the par-

ticipant subscript n), whereas the next 10 define the

decomposition of the item location into a weighted

sum of item covariates (hence the item subscript i).

Equation 22 is a mixed logistic regression model for

polytomous data; see Equation 13. Z is a column vec-

tor of ones of length 510 × 24 × 3 � 36,720. X

consists of the same number of rows and 17 columns:
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a column vector of ones (intercept), four person co-

variates (ANGER to GENDER) defining the latent

regression, 10 item covariates (CONTROL to LOSS)

defining the decomposition of the item parameters,

and two category covariates to select the appropriate

�j (only two, because setting �1 to zero is equivalent

to removing the corresponding covariate from X).

The model was estimated using the NLMIXED

procedure of SAS. The program code is presented

with some discussion in Appendix A, which is avail-

able in the online version of this article in the

PsycARTICLES database. The parameter estimates,

standard errors, and significance probabilities for the

t statistic with 509 degrees of freedom1 are shown in

Table 1.

With respect to the decomposition of the item pa-

rameters into a weighted sum of the situational char-

acteristics, all of them do contribute to the prediction

(all ps < .05) despite the high intercorrelations be-

tween several of them. The situational characteristics

with positive regression weights were, from high to

low, CHANGE, LOSS, CLEAR, PREDICT, TOUCH,

and THREAT, with regression parameters of, re-

spectively, 1.82, 1.46, 1.02, 0.21, 0.17, and 0.13.

CONSEQ3, BLAME, CONSEQ1, and CONTROL all

had negative regression weights of, respectively,

−0.11, −0.21, −0.45, and −1.93. As in ordinary mul-

tiple regression analysis, the regression weights rep-

resent the contribution of a particular covariate to the

prediction of anger, given all other covariates. Espe-

cially when intercorrelations between covariates are

high, the estimate of a regression weight may heavily

depend on which other covariates were included in the

model. Some of the intercorrelations between the item

covariates were quite high indeed, up to .86 between

CONTROL and CHANGE (p < .01). Removing the

item covariates having high correlations with other

item covariates might render the interpretation more

clear. However, because all regression weights were

significant, removing some of the item covariates

would result in a worse fit of the model to the data.

With respect to the latent regression parameters,

ANGER and IRRITATION have positive regression

weights of 0.32 and 0.39, respectively (both ps < .01);

the weight of SELF is not significantly different from

zero (�self � 0.05, p � .28); and GENDER has a

marginally significant negative regression weight of

−0.10 (p � .05). The variance of the latent variable

not explained through the latent regression, 
2
	n

,

amounted to 0.24. Hence, given the other covariates,

participants with a high score on the anger scale

tended to exhibit more anger, participants with a high

score on the irritation scale also tended to exhibit

more anger, the score on the self-esteem scale was not

predictive, and male participants were more likely

than female participants to exhibit anger (female par-

ticipants were coded with a 1 on GENDER, and male

participants with a 0). Anger being the dependent

variable, it was somewhat surprising that the regres-

sion weight of IRRITATION was slightly higher

than the regression weight of ANGER. The latter

was not due to the presence of more variation in

IRRITATION, the standard deviation of IRRITATION

being smaller than the standard deviation of ANGER,

1 For single effects, it is common to use the standard

normal distribution as the reference distribution for the t

statistic (the parameter estimate divided by its estimated

standard error); this is known as the Wald test (Fahrmeir &

Tutz, 2001). In contrast, SAS NLMIXED uses the Student’s

t distribution as the reference distribution for the t statistic,

with the number of degrees of freedom being equal to the

number of units minus the number of random effects. We

adhere to the output as given by SAS NLMIXED. However,

with 509 degrees of freedom, the Student’s t distribution is

almost identical to the standard normal distribution.

Table 1

Parameter Estimates, Standard Errors, and Significance

Probabilities of the Rating Scale Model With Latent

Regression and Decomposition of the Item

Location Parameters

Parameter Estimate SE p (df � 509)a

�anger 0.32 0.05 <.01

�self 0.05 0.04 .28

�irritation 0.39 0.06 <.01

�gender −0.10 0.05 .05

�control −1.93 0.07 <.01

�change 1.82 0.06 <.01

�predict 0.21 0.06 <.01

�conseq3 −0.11 0.03 <.01

�conseq1 −0.45 0.06 <.01

�threat 0.13 0.06 .03

�blame −0.21 0.03 <.01

�touch 0.17 0.06 <.01

�clear 1.02 0.09 <.01

�loss 1.46 0.06 <.01

�2 −0.31 0.05 <.01

�3 −1.02 0.05 <.01

Intercept −4.48 0.20 <.01


2
	n

0.24 0.02 <.01b

a Probability values for t statistic. bSignificance probabilities for
the variance of the error term of the latent regression should not be
relied upon (see the Statistical Inference and Software section).
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or a higher reliability of the irritation scale, Cron-

bach’s alpha being lower for the irritation scale than

for the anger scale, with values of .70 and .85, respec-

tively.

Finally, the estimates of the category parameters �2

and �3 were −0.31 and −1.02, respectively (both ps <

.01). We note that the ordering of the category pa-

rameters, from 0 for �1 to −1.02 for �3, is an empirical

result and is not imposed by the model. Such an or-

dering of category parameters would have been im-

posed if cumulative logits were used, however. The

ordering of the category parameters implies −�i1 <

−�i2 < −�i3 for all i, because the item parameters were

decomposed as �ij � �i + �j. Because −�ij represents

the value of �n where the probability curves for cat-

egory j − 1 and j intersect (Masters, 1982, p. 162), the

ordering of the category parameters means that for

each category, a region of �n existed for which that

particular category is the most likely to occur.

Two-Dimensional Two-Parameter
Logistic Model

For the second analysis, the responses were di-

chotomized: zero and one were recoded as a zero, and

two and three were recoded as a one. These dichoto-

mized responses were analyzed with an exploratory

two-dimensional two-parameter logistic model (Mc-

Kinley & Reckase, 1983; see Equations 19 and 20).

To identify the model, we set the variances of the

latent variables to one; we set the covariance between

the two latent variables to zero (thus the latent vari-

ables were constrained to be orthogonal); and finally

we also set b12, the value of the first item on the

second unknown item covariate, to one.

The exploratory two-dimensional two-parameter

logistic model considered here is a particular instance

of the nonlinear mixed model of Equation 18. X con-

sists of 510 identity matrices of size 24 × 24, stacked

one below the other. B consists of 510 identical ma-

trices of size 24 × 2, with ith row the vector (bi1,bi2),

i � 1, . . . , 24, also stacked one below the other. Z

and A are not defined; see the discussion of the mul-

tidimensional, two-parameter logistic model.

The model was estimated using the NLMIXED

procedure of SAS. The program code is presented

with some discussion in Appendix B, which is avail-

able in the online version of this article in the

PsycARTICLES database. The parameter estimates,

standard errors, and significance probabilities for the

t statistic with 508 degrees of freedom are given in

Table 2.

Revealing the underlying structure of the question-

naire as the main target of the second analysis, we

focused on the estimates of the unknown item covari-

ates. In Figure 1, the estimates of the unknown item

covariates for the first random effect (the loadings of

the items on the first dimension) are plotted against

the estimates of the unknown item covariates for the

second random effect (the loadings of the items on the

second dimension).

Two groups of items can be distinguished in Figure

1: one group with relatively low loadings on the first

dimension and moderate to high loadings on the sec-

ond dimension, and a second group with relatively

high loadings on the first dimension and low to mod-

erate loadings on the second dimension. The first

group consists of WAITER, SOMEONE ELSE,

COMPETITION, ILL, GLASSES, CROSSING,

HOME, SAME FEELINGS, SWIM, COMA, and

TROUSERS. The second group consists of SON,

LOSS, DISK, MESS, JOBSTUDENT, OLD MAN,

BORROW, HOMEWORK, NOISE, NOBODY

HOME, BIKE, and GOSSIP.

According to descriptions of the situations, the sec-

ond group of items turned out to consist of situations

in which the aversive situation is caused by a third

person, either because the latter purposely behaved or

did not behave on purpose in a specific way. In the

first group, to the contrary, no such third person is

present. Only DISK (“You have to write a thesis for

school. You write it on the computer. A week before

the deadline, your disk gets jammed into the com-

puter. This causes your disk to break, and all your

work is lost.”) does not fit within this interpretation,

as it belongs to the second group and there is no third

person present. However, one can consider the com-

puter to play the role of being an entity that refuses to

function properly in this situation.

Concluding Remarks

We proposed a nonlinear mixed model framework

for IRT models, relating psychometrics to a broad

statistical literature. Many IRT models, among them

the “standard” IRT models, nicely fit into the nonlin-

ear mixed model framework. Casting different models

into this framework is a way of making explicit the

differences and commonalities among IRT models.

Furthermore, standard IRT models can readily be

adapted and extended, and the resulting models can be

estimated using existing software for generalized lin-

ear and nonlinear mixed models.
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Within the nonlinear mixed model framework, ex-

isting IRT models can be categorized according to

several principles. A first principle, reflected in the

structure of the article, is whether an IRT model is a

mixed logistic regression model, is a member of the

set of extended mixed logistic regression models, or

does not fit within either set of models. Second, mod-

els can be categorized with respect to what kind of

covariates they incorporate (item covariates, person

covariates, etc.). Third, a distinction can be made be-

tween models for dichotomous and models for polyto-

mous responses. With respect to the latter, one can

make a further distinction based on the type of gen-

eralized logit used. Fourth, unidimensional models

(one random effect, usually the intercept) can be con-

trasted with multidimensional models (more than one

random effect).

Crossing the four categorization principles (which

are not intended to form an exhaustive set of prin-

ciples) would reveal a lot of new models to be for-

Table 2

Parameter Estimates, Standard Errors, and Significance Probabilities of the Two-Dimensional Two-Parameter Logistic Model

Parameter Estimate SE p (df � 508)a Parameter Estimate SE p (df � 508)a

�waiter −1.92 0.15 <.01 bhomework,1 1.47 0.24 <.01

�someone else −1.40 0.15 <.01 bsame feelings,1 0.35 0.24 .14

�competition −1.93 0.16 <.01 bnoise,1 1.14 0.21 <.01

�ill −4.61 0.49 <.01 bnobody home,1 1.27 0.21 <.01

�son 2.96 0.31 <.01 btest,1 0.39 0.26 .14

�loss 1.79 0.18 <.01 bswim,1 0.26 0.23 .27

�glasses −1.41 0.17 <.01 bbike,1 1.41 0.27 <.01

�disk 2.62 0.25 <.01 bgossip,1 1.58 0.29 <.01

�mess 1.58 0.18 <.01 bcoma,1 0.46 0.19 .02

�jobstudent 0.92 0.15 <.01 btrousers,1 0.29 0.25 .25

�crossing −0.29 0.11 <.01 bwaiter,2
b 1 / /

�home −3.55 0.40 <.01 bsomeone else,2 1.07 0.21 <.01

�old man −0.68 0.12 <.01 bcompetition,2 0.79 0.20 <.01

�borrow 2.48 0.25 <.01 bill,2 0.49 0.55 .37

�homework 0.61 0.14 <.01 bson,2 0.33 0.31 .29

�same feelings −1.61 0.18 <.01 bloss,2 0.52 0.25 .03

�noise 0.37 0.13 <.01 bglasses,2 1.37 0.28 <.01

�nobody home 0.95 0.14 <.01 bdisk,2 0.45 0.29 .12

�test −2.61 0.25 <.01 bmess,2 0.22 0.25 .38

�swim −2.28 0.21 <.01 bjobstudent,2 0.73 0.27 <.01

�bike 2.41 0.23 <.01 bcrossing,2 0.79 0.18 <.01

�gossip 2.73 0.27 <.01 bhome,2 1.60 0.36 <.01

�coma 0.39 0.11 <.01 bold man,2 0.55 0.21 <.01

�trousers −1.90 0.20 <.01 bborrow,2 0.78 0.32 .01

bwaiter,1 0.57 0.21 <.01 bhomework,2 0.84 0.25 <.01

bsomeone else,1 0.26 0.20 .21 bsame feelings,2 1.37 0.27 <.01

bcompetition,1 0.12 0.20 .55 bnoise,2 0.97 0.22 <.01

bill,1 0.35 0.57 .54 bnobodyhome,2 0.62 0.23 <.01

bson,1 1.60 0.31 <.01 btest,2 1.28 0.27 <.01

bloss,1 1.29 0.23 <.01 bswim,2 1.13 0.25 <.01

bglasses,1 0.62 0.25 .01 bbike,2 0.40 0.29 .16

bdisk,1 1.51 0.28 <.01 bgossip,2 0.52 0.30 .09

bmess,1 1.46 0.25 <.01 bcoma,2 0.94 0.21 <.01

bjobstudent,1 1.62 0.27 <.01 btrousers,2 1.31 0.27 <.01

bcrossing,1 0.59 0.17 <.01 
2
�n1

b 1 / /

bhome,1 0.27 0.32 .40 
2
�n2

b 1 / /

bold man,1 1.13 0.20 <.01 
�n1�n2

b 0 / /

bborrow,1 1.67 0.31 <.01

a Significance probabilities for t statistic. bParameters set to the indicated value to identify the model. Slashes indicate that no standard errors
and significance probabilities can be computed.
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mulated. However, instead of filling up the structure,

we advocate that a psychometrician should define his

or her own model, customized to his or her particular

data set and/or the theory he or she is modeling. We

followed the latter approach in the application on

modeling anger, especially in the first analysis, in

which the rating scale model was extended with a

latent regression and a decomposition of the item pa-

rameters.
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Appendix A 

 

Estimation of the Rating Scale Model With Latent Regression and 

Decomposition of the Item Parameters With the SAS NLMIXED Procedure 

 
The model was estimated using the following code: 

 

PROC NLMIXED data=ratscal method = gauss technique=newrap noad

qpoints=20;

PARMS intcpt = 0 beta_anger =0 beta_self= 0 beta_irritation = 0

beta_gender=0

beta_control=0 beta_change=0 beta_predict=0 beta_conseq3=0

beta_conseq1=0 beta_threat=0 beta_blame=0 beta_touch=0

beta_clear=0 beta_loss=0 delta2 =0 delta3 =0 st2=1;

beta= intcpt+beta_anger*anger+beta_self*self+beta_irritation*irritation

+beta_gender*gender+beta_control*control+beta_change*change

+beta_predict*predict+beta_conseq3*conseq3+beta_conseq1*conseq1

+beta_threat*threat+beta_blame*blame+beta_touch*touch+beta_clear*

clear

+beta_loss*loss;

ex1=th1+beta;

ex2=2*(th1+beta)+delta2;

ex3=3*(th1+beta)+delta2+delta3;

if (y=0)then ex=0;

else if (y=1) then ex=ex1;

else if (y=2) then ex=ex2;

else ex=ex3;

p=exp(ex)/(1+exp(ex1)+exp(ex2)+exp(ex3));

ll=log(p);

MODEL y~general(ll);

RANDOM th1~normal(0 ,st2) subject = pp;

RUN;

The NLMIXED procedure is started with the PROC NLMIXED statement.  The “data=” option 

specifies the data set.  The first 30 lines of the SAS data set, named “ratscal, ” are presented in Figure A1. 

 

pp is an indicator variable for the participants. y is a column vector of length 510×24 = 12240 that 

results from stacking the 510 individual response vectors one below the other.  Anger, self, irritation, and 

gender are person covariates, the other 10 variables are item covariates.  Note that the number of rows of 

the dataset equals 12,240 and not 3×12,240 = 36,720, the number of rows of X (see text).  This is because 

the different response categories of y are not recoded into three dichotomous variables but instead are 

treated separately in the program code.   For the same reason, no category covariates are included either.  

This way, the size of the data set was kept much smaller. 

 

The nonadaptive (“noad”) Gaussian quadrature method (“method = gauss”) was chosen to approximate 

the likelihood numerically, with 20 nodes (“qpoints=20”).  The optimization algorithm was the Newton–

Raphson technique (“technique=newrap”).  Starting values for the parameters were specified in the 

PARMS statement.  In the following lines, the loglikelihood (ll) of an individual response is defined and 
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parsed to the NLMIXED procedure by the MODEL statement.  This procedure is followed because a 

multinomial distribution, which is the conditional distribution of y, is currently not available in the 

NLMIXED procedure.  Finally, the RANDOM statement defines the random effect to be th1 and specifies 

it to follow a normal distribution with mean zero and variance st2.  “subject=pp” specifies that the 

distribution of the random effects is defined over the population of participants. 

 

 
Figure A1. The first 30 lines of the ratscal dataset for the rating scale model with latent regression and 

decomposition of the item location parameters. 
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Appendix B 

 

Estimation of the Two-Dimensional Two-Parameter Logistic Model 

 
The model was estimated using the following code: 

PROC NLMIXED data=twopl method = gauss technique=quanew noad

qpoints=10;

PARMS beta_waiter=0 beta_someoneelse=0 beta_competition=0 beta_ill=0

beta_son=0 beta_loss=0 beta_glasses=0

beta_disk=0 beta_mess=0

beta_jobstudent=0 beta_crossing=0 beta_home=0 beta_oldman=0

beta_borrow=0 beta_homework=0

beta_samefeelings=0 beta_noise=0

beta_nobodyhome=0 beta_test=0 beta_swim=0 beta_bike=0

beta_gossip=0 beta_coma=0 beta_trousers=0

b_waiter1=1 b_someoneelse1=1 b_competition1=1 b_ill1=1 b_son1=1

b_loss1=1 b_glasses1=1 b_disk1=1 b_mess1=1 b_jobstudent1=1

b_crossing1=1 b_home1=1 b_oldman1=1 b_borrow1=1 b_homework1=1

b_samefeelings1=1 b_noise1=1 b_nobodyhome1=1 b_test1=1 b_swim1=1

b_bike1=1 b_gossip1=1 b_coma1=1 b_trousers1=1 b_someoneelse2=1

b_competition2=1 b_ill2=1 b_son2=1 b_loss2=1 b_glasses2=1

b_disk2=1 b_mess2=1 b_jobstudent2=1 b_crossing2=1 b_home2=1

b_oldman2=1

b_borrow2=1 b_homework2=1 b_samefeelings2=1 b_noise2=1

b_nobodyhome2=1

b_test2=1 b_swim2=1 b_bike2=1 b_gossip2=1 b_coma2=1

b_trousers2=1;

b1 = b_waiter1*waiter + b_someoneelse1*someoneelse +

b_competition1*competition + b_ill1*ill + b_son1*son +

b_loss1*loss

+ b_glasses1*glasses + b_disk1*disk + b_mess1*mess +

b_jobstudent1*jobstudent + b_crossing1*crossing + b_home1*home +

b_oldman1*oldman + b_borrow1*borrow + b_homework1*homework +

b_samefeelings1*samefeelings + b_noise1*noise +

b_nobodyhome1*nobodyhome + b_test1*test + b_swim1*swim +

b_bike1*bike + b_gossip1*gossip + b_coma1*coma +

b_trousers1*trousers;

b2= 1*waiter+b_someoneelse2*someoneelse + b_competition2*competition

+

b_ill2*ill + b_son2*son + b_loss2*loss +b_glasses2*glasses +

b_disk2*disk + b_mess2*mess + b_jobstudent2*jobstudent +

b_crossing2*crossing + b_home2*home + b_oldman2*oldman +

b_borrow2*borrow + b_homework2*homework +

b_samefeelings2*samefeelings + b_noise2*noise +

b_nobodyhome2*nobodyhome + b_test2*test + b_swim2*swim +

b_bike2*bike + b_gossip2*gossip + b_coma2*coma +

b_trousers2*trousers;

beta= beta_waiter*waiter + beta_someoneelse*someoneelse +

beta_competition*competition + beta_ill*ill + beta_son*son +
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beta_loss*loss +beta_glasses*glasses + beta_disk*disk +

beta_mess*mess + beta_jobstudent*jobstudent +

beta_crossing*crossing +

beta_home*home + beta_oldman*oldman + beta_borrow*borrow +

beta_homework*homework + beta_samefeelings*samefeelings +

beta_noise*noise + beta_nobodyhome*nobodyhome + beta_test*test +

beta_swim*swim + beta_bike*bike + beta_gossip*gossip +

beta_coma*coma +

beta_trousers*trousers;

ex=exp(th1*b1+th2*b2+beta);

p=ex/(1+ex);

model y~binary(p);

random th1 th2 ~normal([0,0],[1,0,1]) subject=pp;

RUN;

 
The first 30 lines of the SAS data set, named “twopl, ” are presented in Figure B1. pp is an indicator 

variable for the participants. y is a column vector of length 510 ×  24 = 12,240 that results from stacking 

the 510 individual response vectors one below the other.  The other variables are dummies coding for the 

items.   

 

The nonadaptive (“noad”) Gaussian quadrature method (“method = gauss”) was chosen to approximate 

the likelihood numerically (“method = gauss noad”), with 10 nodes per dimension (“qpoints=10”).  The 

optimization algorithm was a quasi-Newton technique (“technique=quanew”), which turned out to be 

somewhat faster than the Newton–Raphson technique.  Starting values for the parameters were specified in 

the PARMS statement.  In the following lines, the probability of success (p) of an individual response is 

defined, and then it is parsed to the NLMIXED procedure by the MODEL statement that the conditional 

distribution of y is the Bernoulli distribution with probability p.  Finally, the RANDOM statement defines 

the random effects to be th1 and th2 and specifies them to follow a bivariate normal distribution with mean 

zero, variances of one, and zero covariance.  “subject=pp” specifies that the distribution of the random 

effects is defined over the population of participants.  
 

 

Continued on next page 
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Figure B1. The first 30 lines of the twopl dataset for the 2-dimensional 2-parameter logistic model. 

 




