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[1] A morphodynamic model is analyzed to gain further knowledge about the finite
amplitude behavior of shore face–connected sand ridges observed on storm-dominated
inner shelves. The present work elaborates on previous studies in which it was
demonstrated that ridge formation may be due to an instability of a storm-driven current
moving over a sandy inner shelf with a transverse slope. Here, the long-term evolution of
the ridges is studied by performing a nonlinear stability analysis in which the physical
variables are expanded in eigenmodes of the linear stability problem. New physical
aspects are that the longshore pressure gradient in the momentum equations and settling
lag in the suspended load sediment transport are incorporated. Furthermore, along-shelf
uniform shelf modes and subharmonic eigenmodes are accounted for. The model shows
that after the transient stage the competition between the modes results in saturation
behavior that is dominated by a few modes only. The characteristic height of the final bed
forms increases with increasing transverse slopes of the shelf, while the timescale of
transient behavior decreases. The longshore uniform modes, pressure gradient, and settling
lag effects only have a minor effect on the dynamics. A process analysis reveals that the
mechanism responsible for the saturation behavior is the sediment transport related to the
bottom slope and the effect of small-scale bed forms. Subharmonic modes significantly
affect the transient behavior of the ridges and cause the final bed forms to have larger
amplitudes and longer wavelengths. INDEX TERMS: 4219 Oceanography: General: Continental

shelf processes; 4255 Oceanography: General: Numerical modeling; 4558 Oceanography: Physical: Sediment

transport; 3220 Mathematical Geophysics: Nonlinear dynamics; 3022 Marine Geology and Geophysics:
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1. Introduction

[2] Many inner continental shelves are characterized by
the presence of large-scale bed forms, called shore face–
connected sand ridges. Examples are the shelves along the
east coast of the United States [Swift et al., 1978; Swift and
Field, 1981; Swift et al., 1985], Germany [Swift et al., 1978;
Antia, 1996], Argentina [Parker et al., 1982] and Holland
[van de Meene and van Rijn, 2000]. The ridges are observed
in water depths between 4 and 20 m and they extend from
the offshore end of the shore face to the beginning of
the outer shelf, forming an angle of 20�–35� with respect
to the coastline. Their orientation appears to be related to the
direction of the dominant storm-driven current: the seaward
ends of the crests are shifted upstream with respect to their
attachments to the shore face. Furthermore, an offshore

veering of the current has been measured over the North
American sand ridges. The along-shelf spacing between
successive crests of shore face–connected ridges ranges
between 4 and 10 km. Their height is between 1 and 6 m
and they migrate in the downstream direction with velo-
cities of (1–10) m yr�1. The ridges have asymmetrical
profiles, with their steepest slope on the landward sides.
There is geological evidence that many shore face–con-
nected ridges are not relict features. For example, both the
ridges along the east coast of the US and on Dutch inner
shelf started to form several thousands years ago and they
are active under the present hydrodynamic conditions [Swift
et al., 1978; van de Meene and van Rijn, 2000; Duane et al.,
1972].
[3] These observations suggest that, for gaining further

knowledge about the behavior of shore face–connected
ridges, it is worthwhile analyzing models which describe
the feedback between storm-driven currents and the sandy
bottom of the inner shelf. This was first done by [Trow-
bridge, 1995]. He used depth-averaged shallow water
equations for irrotational flow, supplemented with a bottom
evolution equation and a simple parametrization of the
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sediment transport (linear in the net current). He demon-
strated that bed forms resembling shore face–connected
ridges spontaneously form as inherent instabilities of an
along-shelf uniform, storm-driven flow over a sandy micro-
tidal inner shelf with a transverse slope. The underlying
physical mechanism is the offshore deflection of the flow
over the shoals and the related loss of sediment carrying
capacity in the offshore direction. The latter is due to the
transverse bottom slope. In subsequent studies the model of
[Trowbridge, 1995] was extended with additional physical
effects. [Falqués et al., 1998a, 1998b] included bottom
friction and Coriolis forces in the momentum equations
and they also modified the sediment transport by including
the tendency of the sediment to move downhill. As a result
they were able to demonstrate the presence of preferred
bottom modes which initially have the largest growth rates.
[Calvete et al., 2001b] showed that tidal currents only have
a small effect on the growth of shore face–connected
ridges. [Calvete et al., 2001a] incorporated suspended load
sediment transport and depth-dependent stirring of sediment
by waves in the model. They showed that these aspects are
important for obtaining realistic spatial patterns, migration
speeds and e-folding timescales of growth.
[4] A major limitation of the models listed above is that

perturbations are assumed to have very small amplitudes,
hence they only describe the initial formation of the ridges.
In order to study their long-term evolution the model has to
account for nonlinear effects like mode competition. This
problem was studied by [Calvete et al., 1999, 2002], where
in the latter study significant improvements in the physical
model formulation were made. Their method involves a
spectral expansion of the physical variables (like velocity,
bottom level) in a truncated series of linear eigenmodes. In
this way the method provides for a natural extension of the
linear analysis. It was found that nonlinear dynamics results
in saturation behavior of shore face–connected ridges; that
is, after a transient stage the height of the bed forms
becomes constant. The final height is roughly linearly
correlated with the slope of the inner shelf, while the time-
scale of the transients decreases. However, in none of these
studies was the physics causing the saturation behavior
discussed.
[5] The first objective of the present paper is therefore to

analyze the physical processes that are responsible for the
saturation behavior of shore face–connected sand ridges.
The second is to study the influence on the amplitude
behavior of new physical processes in the morphodynamic
model. These include the forcing of the storm-driven
current by a longshore pressure gradient and the finite
settling time of the suspended sediment particles. These
new processes affect the cross-shelf profile of the storm-
driven current and the erosion/deposition of sediment,
respectively, and thereby the properties of the ridges. The
third objective is to investigate the role of new types of
modes in the spectral expansions. One of them is the so-
called k = 0 mode, which has an along-shelf uniform
structure. This mode is generated by self-interaction of
the wave-like perturbations. Examples of k = 0 phenomena
are wave-induced setup/setdown of water levels in the
nearshore zone and net currents driven by radiation stresses
and/or tidal stresses. The relevance of the k = 0 mode for
long-term morphodynamics has been shown by [Komarova

and Newell, 2000]. The other new modes that are inves-
tigated are subharmonic modes, having wavelengths that
are longer than that of the preferred mode. They are
included by considering an along-shelf domain length that
is a multiple of the preferred wavelength. Their incorpo-
ration in the spectral expansions results in new and poten-
tially important nonlinear interactions.
[6] The nonlinear stability method applied in this paper

requires the formulation of a morphodynamic model, the
determination of a basic state and knowledge about the
characteristics of the eigenmodes that can initially
develop as free instabilities on this basic state. These
aspects are all discussed in the next section, including an
outline of the subsequent nonlinear solution method. The
model is restricted to microtidal storm-driven inner
shelves like the shelf of Long Island (east US coast),
described in section 3. Model results are discussed in
section 4. The final section contains a discussion and
concluding remarks.

2. Model

[7] In subsections 2.12.2 to 2.3, we give an outline of
the model equations, which are used to describe the long-
term evolution of shore face–connected ridges on storm-
dominated inner shelves [for details see Calvete et al.,
2001a]. Since these ridges merely evolve during stormy
weather, we assume that our model equations are repre-
sentative for the situation during storms. In subsection 2.4
the basic state and the linear stability analysis is dis-
cussed. The nonlinear solution method is outlined in
subsection 2.5.

2.1. Equations of Motion

[8] The hydrodynamics is modelled by the depth- and
wave-averaged shallow water equations:

@~v

@t
þ ~v � ~r
� �

~vþ f~ez �~v ¼ �g ~rzs þ
~ts~tb
rD

; ð1aÞ

@D

@t
þ ~r � D~vð Þ ¼ 0 : ð1bÞ

[9] Here~v is the velocity vector, D the total depth of the
fluid and zs the elevation of the free surface with respect to
its undisturbed level. Furthermore, f (	10�4 s�1) is the
Coriolis parameter, g(	10 m s�2) the acceleration due to
gravity, r(	103 kg m�3) the density of the water, ~ts the
wind stress at the surface and ~tb the bed shear stress. Finally
t is time and ~r the horizontal nabla operator.
[10] The location of the bottom with respect to the still

water level is denoted by zb. Conservation of total sediment
mass yields the bottom evolution equation

1� pð Þ
@zb
@t

þ ~r �~q ¼ 0 : ð2Þ

Here p(	0.4) is the bed porosity and ~q the volumetric
sediment flux (excluding the pores) per unit width. The
parameterizations of the bed shear stress vector ~tb and the
sediment flux ~q are discussed in the next subsection.
[11] These equations of motion are solved in a domain as

shown in Figure 1. It represents an idealized inner shelf that
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is bounded on its shallow side (at x = 0) by the shore face
and on its deep side (at x = L) by the outer shelf. A Cartesian
coordinate system is used with x, y, and z axis pointing in
the cross-shelf, along-shelf, and vertical direction, respec-
tively. The x and y components of the velocity vector~v are
denoted by u and v, respectively.
[12] The boundary conditions are that the cross-shelf

velocity component u vanishes at the boundaries x = 0
and x ! 1. Moreover, the undisturbed water depths
H(x = 0) and H(x > L) are kept fixed at their values H0

and HL, respectively. In the along-shelf direction periodic
boundary conditions will be used where the basic length, Ly,
will be fixed later on.

2.2. Bed Shear Stress and Sediment Transport During
Storms

[13] During storms the water motion on the inner shelf is
characterized by large wave orbital motion with respect to
the magnitude of the depth- and wave-averaged currents.
This allows for a linearization of the quadratic bottom
friction law, yielding the bed shear stress formulation

~tb ¼ rr*~v :

Here r* is a friction coefficient which is proportional to the
drag parameter cd and the velocity amplitude uw of the wave
orbital motion. We will assume that the latter quantity
depends on the local water depth as follows:

u2w ¼ u2w0
zbh i

H0

� ��m

; r* ¼ r*0
zbh i

H0

� ��m=2

:

The brackets h.i indicate an average in the along-shelf (y)
direction and the subscript 0 indicates the value of a variable
at x = 0. In this model the intensity of the wave orbital
motion decays algebraically with increasing values of the
along-shelf-averaged water depth hzbi with an exponent m.
Typical values are uw0 	 1 m s�1, r*0 	 10�3 m s�1 and
m 	 1.6.
[14] The volumetric sediment flux per unit width during

storms reads

~q ¼~qb þ~qs ;

where ~qb and ~qs denote the bed load and suspended load
part. Expressions for the latter are derived from the
formulations originally introduced by [Bailard, 1981], but
modified such they apply to depth-averaged flow during

storms and account for settling lag effects and depth-
dependent deposition in the suspended load transport. For
the bed load flux this yields

~qb ¼ nb u2w~v� lbu
3
w
~rh

h i

;

where nb 	 4 � 10�5 s2 m�1, lb 	 0.4 and h the bottom
perturbation with respect to the undisturbed level z = �H(x).
The first contribution describes the stirring of sediment by
waves and the subsequent transport by the net current. The
quantity nbuw

2 is the wave stirring coefficient. The second
accounts for the tendency of the sediment to move
downslope. Note that the downslope component of the
sediment transport due to the reference bathymetry z =
�H(x) is not modelled. It is assumed that the equilibrium
profile is maintained by processes (such as wave asym-
metry) which are not explicitly considered in the present
model.
[15] The suspended load flux is modelled as

~qs ¼~vC � lsu
5
w
~rh ;

where C is the depth-averaged relative concentration of
suspended sediment. The latter obeys the equation

@C

@t
þ ~r � ~vCð Þ ¼ ws ca � cbð Þ ; ð3Þ

with ws the settling velocity of the sediment particles, ca the
reference concentration and cb the concentration at the top
of the active layer. Here ca is parameterized according to
[van Rijn, 1993] and a relation between cb and C is obtained
from the equilibrium sediment concentration profile by
using a depth-dependent turbulent vertical diffusion coeffi-
cient. This yields

ca ¼
uw

û

� �3

; cb ¼
C

dH
; d�1 ¼ d0ð Þ�1

1þ
h

H

� �

:

Here û is a velocity proportional to the depth-averaged
critical velocity of erosion, dH is the thickness of the
suspended load sediment layer and d0H is its along-shelf
averaged value. Typical values are ws 	 0.05 m s�1, û 	 10
m s�1, d0 	 0.15 and lsuw0

5 	 1 � 10�4 m2 s�1.

2.3. Approximations

[16] In [Calvete et al., 2001a] the equations of motion
were made nondimensional by using appropriate scales of
motion, resulting in several simplifications. The first is the
so-called quasi-steady approximation: time derivatives are
neglected in all equations, except in the bed evolution
equation. The reason is that the bottom changes take place
on a much longer timescale (order of decades) than that of
the fluid (order of days). Thus, if the focus is on morpho-
dynamic developments, it can be assumed that the fluid
instantaneously adjusts to changes in the bottom profile.
The second simplification is the rigid lid approximation:
variations of the free surface are neglected, except in the
pressure gradient terms in the momentum equations. This is
implied by the fact that the typical amplitude of the sea
surface elevations is much smaller than the undisturbed

Figure 1. Sketch of the geometry and the coordinate
system. For explanation of the symbols see the text.
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water depth, hence the Froude number of the flow is very
small.

2.4. Basic State and Linear Stability Analysis

[17] The model allows for a basic state which has a
uniform structure in the along-shelf direction. It is charac-
terized by

~v ¼ 0;V xð Þð Þ ; zs ¼ s* yþ x xð Þ ;

C ¼ C xð Þ ; zb ¼ �H xð Þ :

Substituting these expressions in equations (1a) and (3), and
using the assumptions listed in section 2.3, it follows that

f V ¼ g
dx

dx
; 0 ¼ �g s* þ

tsy � tby
� �

rH
;

uw

û

� �3

�
C

dH
¼ 0 :

The first equation given above describes the cross-shelf
setup (or setdown) of the mean water level due to a cross-
shelf water level gradient and Coriolis effects. The second
equation is the along-shelf momentum balance due to the
water level gradient s*, the wind stress component tsy and
bottom friction, which determines the along-shelf current
profile V(x). The final equation shows a balance between
the pickup and deposition of sediment near the bed.
Substitution of the relations given above in equation (1b)
shows that mass conservation is verified identically. Since
this basic state obeys the bottom evolution equation (2) for
a fixed bed level, it represents a morphodynamic
equilibrium.
[18] Next, we consider the dynamics of small perturba-

tions evolving on this basic state. This is done by defining

� ¼ ~v; h; C; zbð Þ

as the solution vector of our model equations (1a), (1b), (2),
and (3). Now consider solutions of the form

� ¼ �b þ f ;

where �b = (0, V(x), s*y + x(x), C(x),�H(x)) denotes the
basic state and f = (u, v, h, c, h) the perturbations.
Substitution of these solutions in the equations of motion
yields the results as shown in appendix A. These equations
can be symbolically written as

S
@f

@t
¼ LfþN fð Þ ; ð4Þ

where S is a matrix and L a linear operator involving spatial
derivatives. Finally N includes all nonlinear terms in the
equations of motion for the perturbations.
[19] The linear system, i.e N (f) = 0 in equation (4),

allows for wave-like solutions which travel in the y direction:
f(x, y, t) = Re (~f(x)eiky+wt), where Re denotes the real part.
Here k is a wave number in the alongshore direction with l =
2p/k the corresponding wavelength. Furthermore, w is a
complex frequency, which can be written as w = s � ikvmi,
with s the growth rate and vmi the migration speed in the y

direction. Exponentially growing solutions have a positive
growth rate, i.e., s > 0, with an e-folding time t = s�1.
[20] The complex frequency, w, and the cross-shelf struc-

ture of the perturbations, ~f, follow as solutions of the
eigenvalue problem

wS~f ¼ Lk
~f : ð5Þ

Operator Lk is obtained from operator L in equation (4) by
replacing derivatives @/@y by ik. Solutions of the eigenvalue
problem equation (5) depend on the model parameters (the
transverse slope b of the shelf, forcing conditions, storm
fraction, bottom friction parameter, Coriolis parameter,
settling time, wave orbital motion). They are obtained
numerically by applying a collocation method.

2.5. Nonlinear Analysis: Derivation of Amplitude
Equations

[21] To model the long-term behavior of the perturba-
tions, we return to the full equations of motion (4).
Approximate solutions of such a system can be obtained
by applying spectral methods [cf. Canuto et al., 1988]. This
means that the solutions are expanded in a suitable set of
spatial modes. In the present study we will use eigenmodes
of the linear problem as the expansion modes and perform a
Galerkin procedure to derive the amplitude equations. This
is done by first writing the perturbations as

f x; y; tð Þ ¼ fh i x; tð Þ þ f0 x; y; tð Þ ð6Þ

where hfi are the contributions having an along-shelf
uniform structure. The contributions f0(x, y, t) are expanded
in eigenmodes of the linear problem with specific nonzero
along-shelf wave numbers kj:

f0 x; y; tð Þ ¼
X

j

X

nj

û tð Þ~u xð Þ

v̂ tð Þ~v xð Þ

ĥ tð Þ~h xð Þ

ĉ tð Þ~c xð Þ

ĥ tð Þ~h xð Þ

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

A

j nj

eikjy þ c:c: ð7Þ

An individual mode is denoted by ( j, nj), where j and nj
refer to the along-shelf, Fourier, mode kj and cross-shelf
mode number, respectively. Increasing cross-shelf mode
numbers imply decreasing growth rates. Furthermore ~u, ~v,
etc. denote the known cross-shelf structures of the
eigenfunctions. The unknowns are the functions hfi(x, t)
and the amplitudes û, v̂, ĥ, ĉ, ĥ, for all the ( j, nj) modes.
[22] Second, the expansions (6)–(7) are substituted in the

nonlinear equations of motion (4) (see appendix A). Next,
the equations are averaged over the along-shelf y direction.
This yields a differential equation for the longshore uniform
bottom mode hhi(x, t) and four algebraic equations for the
longshore uniform flow modes hui, hvi, hhi and hci, see
appendix B. Finally, the equations for the k = 0 mode are
substracted from the original equations and the results are
projected onto the adjoint eigenfunctions of the linear
problem. The result of this Galerkin projection is a system
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of nonlinear differential equations for the amplitudes of the
bottom modes ĥj,nj and algebraic equations for the corre-
sponding amplitudes ûj,nj, v̂j,nj, ĥj;nj and ĉj,nj. In a symbolic
form they read

0 ¼ L1U þM1hþ f U ; h; fh ið Þ ð8aÞ

dh

dt
¼ L2U þM2hþ g U ; h; fh ið Þ ð8bÞ

where L1, L2, M1 and M2 are matrices, h is a vector
including all bottom amplitudes and U is a vector with all
other amplitudes.
[23] A finite dimensional system is obtained when a finite

number of eigenmodes is included in the expansion (7).
This is done by considering solutions in a domain with
length Ly in the along-shelf direction and with periodic
boundary conditions. Consequently, only specific values of
the along-shelf wave numbers are allowed for. If we assume
that a total number J of different longshore wave numbers kj
(=2pj/Ly) is included and NJ is the maximum cross-shelf
mode number, then system of equations (8a) and (8b)
contains 5 � J � NJ equations. The resulting system is
solved by using a third-order time integration scheme [see
Karniadakis et al., 1991]. The numerical model that solves
this problem is called MORFO45. The solutions are
assumed to give an accurate description of the solution of
the original model if their characteristics do not change with
further increase of the truncation numbers J and NJ.

3. An Example Case: Long Island Inner Shelf

[24] The Long Island inner shelf is located at 40� latitude
on the Northern Hemisphere. This is a prototype storm-
dominated inner shelf on which a clearly recognizable patch
of shore face–connected ridges is observed [cf. Swift et al.,
1985]. Its depth varies from H0 = 14 m at the shore face side
to HL = 20 m on the seaward side over a distance L = 5.5
km. Field data indicate that the along-shelf-averaged water
depth almost linearly increases with increasing distance
from the coast. Hence the bottom profile can be described
by

H xð Þ ¼
H0 þ bx 0 � x � Lð Þ

HL x > Lð Þ

8

<

:

where the slope is b 	 1 � 10�3. The sediment in this area
has a mean grain size of about 4 � 10�4 m. The shore face–
connected sand ridges on this shelf have an along-shelf
spacing of about 3.5 km, their height is 	4 m and they
migrate southward with a typical velocity of (2–3) m yr�1.
[Duane et al., 1972] state that the age of these ridges is
younger than 11000 yr and the time that they needed to
develop was of the order of 1000 yr.
[25] At this location storms typically occur about 5% of

the total time and are characterized by waves coming from
the north east, a southward directed wind stress of about
0.4 N m�2 and a small longshore pressure gradient of about
s* = 2 � 10�7. This induces both a strong wave orbital
motion (characteristic velocity amplitude at the shore face
of about uw0 = 1 m s�1) and a southward net flow with a

typical velocity of 0.4 m s�1 that increases in the offshore
direction [see Niedoroda and Swift, 1981; Niedoroda et al.,
1984]. Moderate tidal currents, of the order of 0.2 m s�1,
were reported by [Scott and Csanady, 1976] from a moored
buoy at 11 km from the shore of Long Island. The tidal
range is 0.7–1.0 m. The bottom friction coefficient is r*0 =
1 � 10�3 m s�1. An exponent m = 1.6 is used in the
expression of the wave orbital motion (see section 2.2) and
d0 = 0.15 is taken for the relative thickness of the suspended
load layer. The characteristic magnitudes of suspended load
transport and bed load transport then read QS 	 8 � 10�4

m2 s�1 and QB 	 2 � 10�5 m2 s�1, respectively.

4. Results

[26] Runs were performed with the nonlinear model for
parameter values representative for the Long Island shelf.
The default experiment includes the k = 0 mode, the effect
of a finite settling time in the concentration equation and the
longshore pressure gradient. The longest wavelength
included in the eigenfunction expansion is that of the
initially fastest growing mode.
[27] In section 4.1 we present the results of the linear

analysis, which are necessary for the subsequent study of
the long-term evolution of the ridges. In section 4.2 the
effect of new physical processes and the k = 0 mode on
the model behavior is studied. This is done by exploring the
dependence of the solutions on the transverse slope b. The
results are then compared with the ones obtained by
[Calvete et al., 2002]. As will be explained below, this
procedure is necessary to predict the model behavior for a
measured value of the transverse slope. The information is
also used in section 4.3 to select a specific value of b, for
which the saturation behavior of the ridges is analyzed.
Finally, in section 4.4 the influence of adding subharmonic
modes in the spectral expansions is investigated.

4.1. Basic State and Linear Stability Analysis

[28] The profiles of V(x) and the concentration C(x) of the
basic state for the bathymetry H(x) of the Long Island inner
shelf are shown in Figure 2. The growth rate and migration
speed of the linear perturbations for different cross-shelf
mode numbers are shown in Figure 3 as functions of the
along-shelf wave number k. The fastest growing mode (also
called the most preferred mode) has a wave number k 	 1.5
km�1 (l = 4.1 km) and a growth rate s 	 8 � 10�3 yr�1

(t 	 125 yr). This mode migrates 	2 m yr�1 in the
downstream direction and has an up-current orientation
(Figure 4), consistent with field observations of shore
face–connected ridges (section 3).
[29] In Figure 5 the e-folding timescale t, longshore

spacing l and migration speed vmi of the most preferred
mode are shown as functions of the transverse slope b.
Ridges only grow for slopes larger than the critical value bc.
For parameter values representative for the Long Island
shelf, bc 	 0.5 � 10�4, lc = 11 km and vmic = �2.6 m yr�1.
Both the growth rate, spacing and migration speed decrease
with increasing values of the transverse slope.

4.2. Role of New Physical Processes and of the
k = 0 Mode

[30] In this study the values of the spectral parameters are
J = 20, NJ = 16, and 100 collocation points. A time step of
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�t = 0.4 yr resulted in computational stability in all the runs
discussed here.
[31] Experiments revealed that, if the measured transverse

slope was taken as a value for parameter b, the run could not

be fully analyzed. Simulations performed with smaller
values of b did not encounter this limitation. These results
motivated the application of a procedure in which b was
increased with small steps and the dependence of the model
properties on this parameter was systematically explored.
These findings could then be extrapolated to predict the
model behavior for large values of b (section 5).
[32] It was found that, consistent with the linear analysis,

perturbations only grow if b is larger than its critical value
bc. In that case their amplitudes reach saturation values after
a finite period of time, i.e., the saturation time. Thus the
model describes the tendency to form migrating shore face–
connected ridges with finite and constant amplitudes. In
Figure 6 the amplitude of the final bottom perturbations and
the saturation time are shown as functions of b. For large
values of the transverse slope (b > 5.0 � 10�4), solutions
become unbounded some time before the saturation is
reached.
[33] Figure 6 indicates an almost linear relation between

the final amplitude and b. The amplitude of the perturbation
is 	65% of the depth difference between the depth at the
end of the shore face and the depth at the transition to the
outer shelf. The saturation time decreases with increasing
values of the transverse slope. The time needed to reach an
equilibrium is approximately 6 times the e-folding timescale
of the initially most preferred mode. For b = 5.0 � 10�4 the
saturation time is 	2000 yr with an amplitude of the ridges
of 	1.7 m.
[34] The spatial pattern of the bottom perturbation and

that of the total depth are shown in Figure 7 for b = 1.0 �
10�4, 2.5 � 10�4 and 5.0 � 10�4. The profiles in the along-
shelf direction are asymmetrical with steeper slopes on the
downstream sides. This degree of asymmetry increases with
increasing b. For large values of the transverse slope also

Figure 2. Basic state (top) bathymetry, (middle) along-
shelf velocity profile, and (bottom) concentration profile for
the default inner shelf (Long Island).

Figure 3. (left) Growth rate and (right) migration speed of small perturbations evolving on the basic
state as a function of the along-shelf wave number k. Different curves represent different cross-shelf mode
numbers. Parameter values are representative for the Long Island inner shelf.
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relatively small-scale bed forms, with wavelengths in the
order of a few hundred meters, are present. The migration
speed of the saturated bed forms is almost identical to the
one of the initially fastest growing mode.
[35] Comparison of these results with those obtained by

[Calvete et al., 2002] reveals that adding an along-shelf
pressure gradient and taking account of finite settling times
of suspended sediment particles do not have a large effect
on the finite amplitude behavior of the ridges. A large
number of experiments were carried out in which the
magnitude of the along-shelf pressure gradient was varied
(hence the profile of the current V(x) was changed) and all
other parameter values were fixed. It was found that these
changes have only a small influence on the final results.
Besides, runs were performed in which the settling time of
the sediment was varied. Again, results were almost iden-
tical to those shown in this section.
[36] The k = 0 mode does not play an important role in

the dynamics since its amplitude is only about 5% of that of
the nonuniform perturbations (k 6¼ 0). Physically this means
that there is hardly any exchange of sediment between inner
shelf and shore face. The along-shelf-averaged profile
becomes slightly deeper near the shore face and slightly
shallower on the seaward side.

4.3. Physics of the Saturation Processs

[37] The saturation behavior of the model is investigated
for a fixed value (b = 2.5 � 10�4) of the transverse slope.
This relatively small value for b will yield a clear insight
into the mechanisms at work. The time evolution of the
amplitudes of the bottom modes and of the height of the
perturbation are shown in Figure 8. A similar analysis has
been made for a more realistic value of the transverse slope,
i.e., b = 5.0 � 10�4, resulting in identical conclusions. The
analysis in this case is more complicated, because the
prominent presence of small-scale bottom features causes
significant small-scale erosion-deposition patterns. The sol-
utions are analyzed at t = 2400 yr, when the ridges are still
growing, and at t = 4800 yr, when the ridges have reached
their final height and are only migrating. The total depth and

Figure 4. First three bottom modes (different cross-shelf mode numbers) in case of the default shelf and
along-shelf wave number k = 1.5 km�1. Mode 1 has the largest growth rate; the current is directed from
top to bottom. For illustrative reasons, two ridges are shown.

Figure 5. The e-folding timescale, along-shelf wave-
length, and migration speed of the initially most preferred
mode as a function of the transverse slope b. Other
parameter values representative for the Long Island shelf.
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perturbation of the bottom at these two times are shown in
Figure 9. The dashed lines indicate sections along which
profiles of the physical variables will be made.
[38] The bottom pattern at t = 2400 yr resembles that of

the initially most preferred mode. The total depth is char-
acterized by a smooth along-shelf pattern. At t = 4800 yr the
bottom has a more asymmetrical profile and small-scale
perturbations are superimposed on the large-scale ridges.
An inspection of the cross-shelf and along-shelf profiles of
the velocity, the concentration and the bottom at t = 2400 yr

along two sections shows that there is an almost linear
relationship between the perturbed hydrodynamic variables
and the perturbed bottom. The along-shelf and cross-shelf
velocity increase above the ridges whereas the depth-inte-
grated concentration becomes smaller above the crests. At
t = 4800 yr, see profiles in Figure 10, similar relations are
observed.
[39] The subplots in Figure 10 indicate that the current

has an offshore deflection over the ridges. This deflection is
responsible for the initial ridge growth, as was already

Figure 6. Amplitude of the bed forms at the (left) final state and (right) saturation time as a function of
the transverse slope b. Parameter values representative for the Long Island shelf.

Figure 7. Contour plots of the (top) bottom perturbation and (bottom) total depth after saturation for
different values of b. The current is directed from top to bottom.
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pointed out by [Trowbridge, 1995]. It is remarkable that the
positive feedback between the current and bottom is still
present at the saturated state. Clearly, the saturation behav-
ior of the ridges is not related to a change in the hydro-
dynamic conditions due for example to a frictional effect or
bar reorientation.
[40] Insight into the saturation process is obtained by

determining the various contributions to the divergence of
the total sediment transport (erosion-deposition) and com-
paring their profiles with that of the corresponding bottom
perturbation. In Figures 11 and 12 such profiles are shown
along the two sections indicated in Figure 9. The divergence
of the sediment flux is split into different terms: advection
of suspended load (subplots a and g), advection of bed load
(b, h) and diffusive terms (c, i). The divergence of the total
sediment transport (d, j) is the superposition of the various
contributions. Finally, in subplots (e) and (k) the profiles of
erosion-deposition related to the advective terms (solid line)
and the diffusive ones (dashed line) are plotted.
[41] At t = 2400 yr, the suspended load terms produce a

deposition over the highest part of the ridge and erosion in
the lower part. Maximum deposition and erosion take place
at the leeward sides and this forces the slope to become
steeper. The overall effect of this term is a further increase
of the amplitude and a more asymmetrical ridge. The
deposition related to the advective part of the bed load
takes place only at the leeward sides and small erosion
occurs at the stoss sides. This term is responsible for the
migration of the ridges. Diffusive terms related to both
suspended and bed load processes on the other hand tend to
reduce both the along-shelf asymmetry of the ridge and its
amplitude. At this stage of the ridge growth, diffusive terms
are already quite large, when compared with their values at
the initial growth stage. The net pattern of erosion-deposi-
tion of the total sediment transport at this stage will cause
the ridge to become higher and steeper, while it keeps on
migrating.
[42] At t = 4800 yr (Figure 12) the general behavior of

the different terms is similar, with the exception of two
new phenomena that are important for the saturation. One
is that there are now small-scale oscillations superimposed
on the global trend; the other is that the magnitude of the
diffusive contributions is similar to that of advective terms.

The small-scale features are generated by nonlinear pro-
cesses. The latter originate from the advective terms in the
suspended load transport, since the other terms are linear.
In Figure 13 the total and linear contribution to the
divergence of the advective part of the suspended load
flux are plotted. Apart from enhancing small-scale features,
the nonlinear terms cause a shift in the erosion-deposition
pattern toward the leeward sides of the ridges. Because of
the larger asymmetry, the diffusive contributions in the
sediment transport increase and compensate the advective
contributions.

4.4. Effect of Subharmonic Modes

[43] So far we have presented results for the resolved
modes consisting of the initially most preferred mode (with
along-shelf wavelength lM) and its superharmonics (wave-
lengths lM/2, lM/3, etc). However, modes with wavelengths
longer than lM (defined as subharmonic modes) may also
be present and influence the behavior of the ridges. We

Figure 8. (left) Time evolution of the amplitude of the different bottom modes for b = 2.5 � 10�4.
(right) As the left subplot, but for the maximum and minimum elevation, as well as for the total height of
the bottom perturbation.

Figure 9. Total depth for b = 2.5 � 10�4 (left) at t = 2400
yr and (right) at t = 4800 yr. Other parameter values
representative for the Long Island inner shelf.
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study this aspect below for a small transverse slope, i.e., b =
1.0 � 10�4.
[44] The initially most preferred mode for b = 1.0 � 10�4

has an along-shelf wavelength lM = 9 km and an e-folding
timescale t = 2000 yr. Computations without subharmonic
modes show that only a few modes (J = 8 and NJ = 10) are
needed to describe the solution. Nonlinear saturation occurs
after 	15000 yr and the bottom perturbation resembles an
oblique ridge with the periodicity of 9 km, see Figure 7. By
including (N � 1) subharmonic modes, the length of the
domain in the y direction becomes Ly = N � lM. The
initially most preferred mode is then the (N, 1) mode. To
keep the same resolution in the experiments, the number of
resolved Fourier modes was taken to be N � J.
[45] In Figure 14 results are shown for N = 8, which is a

characteristic value of the ratio between the horizontal
extent of a patch of ridges and the wavelength of an
individual ridge. The upper left plot shows the time evolu-
tion of the different modal amplitudes. The evolution of the
maximum and minimum elevation, as well as the total
height, of the bottom perturbation is shown in the upper
right subplot. Similar results are found for other numbers of
subharmonics; experiments were performed up to N = 15.
All these experiments show that there is still saturation
behavior; that is, the amplitudes become steady in the
nontransient stage. Furthermore, the pattern of the pertur-
bation is qualitatively similar to that found for N = 1 (no
subharmonics). One effect of adding subharmonic modes is
that they cause the saturation time of the individual modes

to become considerably longer, so that for instance, when
N = 8 it becomes 50000 yr, and hence a factor 3 longer than
that obtained for N = 1. On the other hand, the height of the
ridges saturates faster if subharmonics are included (see
upper right subplot of Figure 14). During the first stage (up
to 20000 yr) bottom perturbations resemble shore face–
connected ridges with an amplitude and an along-shelf
spacing similar to the ones at the final state for N = 1.
During the transient state, between 20000 yr and 50000 yr,
both the amplitude and the along-shelf spacing of the ridges
increase. The values of the individual modes still undergo
major changes until 50000 yr. The final height is approx-
imately 0.5 m, i.e., 70% larger than the saturation height
obtained for N = 1.
[46] In the saturated state the (5, 1) mode has the largest

amplitude (see the Figure 14c). Hence the mode that
initially has the largest growth rate is not the dominant
mode in the saturated state; in fact it yields no significant
contribution to the final perturbation. The shape of the bed
forms is almost the same as without subharmonics but with
larger wavelength; in this case 	14 km.
[47] Subharmonic modes strongly influence the transi-

ent behavior of the perturbations. This can be seen in
Figure 14d, which shows the time evolution of the
amplitudes of the 5 modes that are dominant at t = 20000
yr. During the first 15000 years the evolution is dominated
by linear growth, with the (8, 1) mode having the largest
amplitude. After that nonlinear interactions become effec-
tive and they cause the excitation of subharmonic modes

Figure 10. (left) Cross-shelf profiles at y = 9.0 km and (right) along-shelf profiles at x = 3.0 km of
velocity components u and V + v, total concentration C + c, and bottom level �H + h (from top to bottom)
at t = 4800 yr for b = 2.5 � 10�4.
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and a considerable decay of the initially most preferred
mode.

5. Discussion and Conclusions

[48] In this paper a model has been used to investigate the
long-term, finite amplitude behavior of shore face–con-
nected sand ridges on storm-dominated microtidal inner
shelves. The model is based on concepts introduced by
[Trowbridge, 1995] and further developed by [Calvete et
al., 2001a, 2001b]. In the present study the nonlinear
behavior of the perturbations evolving on the basic state
has been analyzed by expanding physical variables in
eigenmodes of the linearized system. Application of a
Galerkin method then yields equations that describe the
time evolution of the modal amplitudes. The specific
objectives of this paper were threefold. The first was to

analyze the physical processes that cause the saturation
behavior of the perturbations; that is, after a transient stage
their heights become constant. The second was to inves-
tigate the effects of adding an along-shelf pressure gradient
and taking account of finite settling times of suspended
sediment particles in the morphodynamic model on the
finite amplitude behavior of the ridges. The last objective
was to study the influence of adding new modes in the
spectral expansions. The latter include the k = 0 mode
(generated by self-interactions of wave-like perturbations)
and subharmonic modes (which occur if the along-shelf
length of the domain is a multiple of the wavelength of the
linearly most preferred mode.
[49] The model was analyzed for values of the parameters

that are representative for the inner shelf of Long Island.
Results indicate that the model describes the tendency to
form migrating shore face–connected sand ridges with

Figure 11. (left) Cross-shelf profiles at y = 7.0 km and (right) along-shelf profiles at x = 3.0 km of
different contributions to the divergence of the sediment flux at t = 2400 yr for b = 2.5 � 10�4.
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constant amplitudes. Full runs could be carried out for
values of the transverse slope up to b = 5.0 � 10�4, which
is 50% of the measured slope of Long Island inner shelf. For
higher values of b runs are still partly successful. The
behavior of the solutions is similar to that found in case
of smaller values of b, but some time before the saturation
stage is reached the solution becomes unbounded. The
ridges start to form if b � bc 	 0.5 � 10�4 and their final
height increases almost linearly up to 	1.8 m for b = 5.0 �
10�4. Furthermore, the saturation timescale decreases with
increasing b; for b = 5.0 � 10�4 a value of 2000 yr is found.
[50] A physical analysis of the model output has shown

that saturation is caused by two effects. First, small-scale
bed forms are generated by nonlinear processes. These bed
forms modify the advective part of the suspended load flux,
thereby causing a reduction of the growth of the ridges.
Second, the transport of sediment induced by bed slopes

Figure 12. As Figure 11, but at t = 4800 yr and (left) at y = 9.0 km and (right) at x = 3.0 km.

Figure 13. Convergence of the advective part of the
suspended load flux at x = 3.0 km as a function of the along-
shelf coordinate y at t = 4800 yr. The solid line represents
the full quantity (see also Figure 12g), the dashed line
shows the contribution, which is linear in the bottom
perturbation. The corresponding bottom perturbation is
shown in Figure 12l.

38 - 12 CALVETE AND DE SWART: LONG-TERM BEHAVIOR OF SHORE FACE RIDGES



increases during the evolution of the ridges, because the
bottom slopes become steeper.
[51] Sensitivity experiments revealed that adding a long-

shore pressure gradient, which affects the cross-shelf profile
of the storm-driven flow, and a finite settling time of
suspended load particles, have only a minor effect on the
dynamics. Also the incorporation of the k = 0 mode (along-
shelf uniform structure) has little effect on the results.
[52] Subharmonic modes significantly affect the dyna-

mics of the ridges. Saturation behavior is still obtained, the
shape of the bed forms is almost the same as without
subharmonics but with a larger wavelength. The initially
most preferred mode is not the dominant mode in the
saturated state. The presence of subharmonic modes results
in longer saturation times of individual modes, while the
height of the ridges saturates on a shorter timescale (com-
pared to that of the modes). In this case, full runs could be
performed for transverse slopes up to b = 1.0 � 10�4.
[53] We now compare the model results with the field

data available for Long Island inner shelf. The obtained
dependencies of the final height of the ridges and saturation
timescale on the transverse slope (no subharmonics
included) allow for an extrapolation to the measured slope.
In that case the final height is 	3.5 m, which compares well
with the observed height of 	4 m. The corresponding
saturation time is 	1000 yr, which is consistent with the
lifetime of the ridges. The saturation time is a factor of 15
smaller than that for a slope b = 1.0 � 10�4. This

information can be used to estimate the saturation time of
the ridges in the case that subharmonic modes are included
and a measured value of the slope is taken. The result is then
	1300 yr for the saturation time and the final height will be
	5 m.
[54] The present model is subject to various limitations.

One problem is that, in case of using a measured value of the
transverse slope, solutions become unbounded before the
saturation stage is reached. It has been shown that the range
of values of the slope for which the model was successful
was sufficient to extrapolate the results to higher values of b,
thereby allowing for a comparison with field data. Second,
the analysis of the saturation process has revealed the
importance of small-scale bed forms. It is plausible that
these small-scale features can also form as inherent free
morphodynamic instabilities, as shown for quasi-steady
flow by Richards [1980] [see also Hulscher et al., 1993].
In this process secondary circulation in the vertical plane is
important. This suggests the use of a three-dimensional
model and this is considered as a key topic for future
studies. Support for this also comes from field data analyzed
by [Niedoroda et al., 1984], which show a clear circulation
in the vertical plane perpendicular to the coast. Finally, the
effect of sea level changes (	2 m during the last 2000 yr)
may be important, considering the timescales on which the
ridges evolve. Therefore the sensitivity of the model results
to different (but fixed) values of the sea level was inves-
tigated. All other parameter values were assumed to be equal

Figure 14. (a) Time evolution of the modal amplitudes in case of N = 8 (i.e., seven subharmonic modes)
and b = 1.0 � 10�4. (b) As Figure 14a but of the maximum and minimum elevation, as well as of the total
height, of the bottom perturbation. (c) Time evolution of the amplitudes of the five modes that are the
dominant modes in the nontransient stage. (d) As Figure 14c but for the five modes that are dominant at
t = 20000 yr. For realistic b values the timescales are a factor of 15 smaller.
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to their values used to simulate the present conditions at the
Long Island shelf. Two different values of the transverse
bottom slope were investigated: b = 2.5 � 10�4 and b = 4 �
10�4. The water depth H0 was decreased from its present
14.4 m to 12.0 m. The results show a weak increase of the
height of the ridges and a weak decrease of the saturation
time of the height. For example, in case that b = 4 � 10�4,
the height (saturation time) was 1.31 m (4000 yr) for
H0 = 14.4 m and it was 1.55 m (3000 yr) for H0 = 12 m.
Since the solutions of all these runs showed similar behavior
and mutual differences are rather small, we conclude that the
model is not very sensitive to changes in sea level within the
range of values that we have investigated.

Appendix A: Nonlinear Equations

[55] In the appendices subscripts x, y and t denote differ-
entiation with respect to that variable.
[56] Cross-shelf momentum equation,

u@xuþ V þ vð Þ@yu� fv ¼ �@xh�
r̂*0

H � h0ð Þ
m
2

u

H � h
;

along-shelf momentum equation,

u@x V þ vð Þ þ V þ vð Þ@yvþ fu ¼

� @yh �
r̂*0
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m
2

V þ v
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H
m
2

V

H � h
;

mass equation,

@x H � hð Þuð Þ þ @y H � hð Þ V þ vð Þð Þ ¼ 0 ;

concentration equation,
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;

and sediment equation,

@thþ ~r �~qb þ ~r �~qs ¼ 0 ;

where
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2
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The coefficients in the equations listed above are

r̂*0 ¼ r*0 H
m
2

0 ; ûw0 ¼ uw0 H
m
2

0 ;

and

ĉa0 ¼
ûw0

û

� �3

; l̂b0 ¼ lbû
3
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5
w0 :

Appendix B: Equations for Mode k = 0

[57] Cross-shelf momentum equation,
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D E
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along-shelf momentum equation,
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mass equation,
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concentration equation,
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