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Mathematical models can enhance our understanding of childhood infectious disease dynamics,
but these models depend on appropriate parameter values that are often unknown and must be
estimated from disease case data. In this paper, we develop a framework for efficient estimation
of childhood infectious disease models with seasonal transmission parameters using continuous
differential equations containing model and measurement noise. The problem is formulated
using the simultaneous approach where all state variables are discretized, and the discretized
differential equations are included as constraints, giving a large-scale algebraic nonlinear pro-
gramming problem that is solved using a nonlinear primal—dual interior-point solver. The
technique is demonstrated using measles case data from three different locations having differ-
ent school holiday schedules, and our estimates of the seasonality of the transmission parameter
show strong correlation to school term holidays. Our approach gives dramatic efficiency gains,
showing a 40—400-fold reduction in solution time over other published methods. While our
approach has an increased susceptibility to bias over techniques that integrate over the
entire unknown state-space, a detailed simulation study shows no evidence of bias. Further-
more, the computational efficiency of our approach allows for investigation of a large model
space compared with more computationally intensive approaches.
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1. INTRODUCTION

The development of reliable, mechanistic models for the
spread of infectious diseases remains the subject of
extensive research. Such models are desirable for scien-
tists to enhance the identification and understanding of
factors that affect infectious disease dynamics, and for
public health officials who would find a long-term,
quantitative, dynamic model valuable for predicting
disease outbreak risk and performing response plan-
ning. In addition, reliable models can be used to
quantify the effectiveness of previous response tactics
and predict the benefit of future planned responses.
To ensure the reliability of these models, they must be
able to describe past system behaviour.

Owing to the availability of case data, measles has
been widely studied using mathematical modelling.
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The reporting interval for measles case data differs by
origin, and is commonly weekly, monthly or quarterly.
The number of cases that are reported can be signifi-
cantly lower than the actual number of cases, and the
level of under-reporting can differ widely over long
time horizons, even in the same location [1]. The
challenges inherent in the data have led to a number
of proposed modelling and parameter estimation
approaches. While the spread of measles is a continuous
process, discrete time generation-based models have
been formulated in addition to continuous time
models, and, while spread of measles is inherently sto-
chastic, this characteristic is included in some models
and ignored in others. An examination of the data
shows strong seasonality in the reported cases, leading
many models to include a seasonally varying trans-
mission parameter. Identifying correlations between
potential system inputs and transmission dynamics is
important for understanding factors that affect disease
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dynamics. This is especially apparent in long-term
models where we expect social structure and environ-
mental factors to have changed significantly over the
time horizon studied. A better understanding of these
factors is important for improving public health policy
and aiding public health officials to establish appropriate
control strategies.

In this paper, we develop a framework for efficient
estimation of seasonal transmission profiles using a
continuous differential equation model of the disease
dynamics. While existing discrete time approaches
require that the reporting interval be an integer fraction
of the serial interval of the disease, continuous time
models allow for the use of case counts in their native
form. Our estimation formulation is a nonlinear
optimization problem subject to differential equation
constraints arising from the infectious disease model.
There are several strategies for solving optimization
problems subject to differential constraints. Here, we
use a simultaneous approach where the state variables
in the infectious disease model are discretized, and the
discretized differential equations are included as con-
straints in the optimization problem. We discretize
the differential equations using high-order Gauss—
Lobatto collocation on finite elements, resulting in a
large-scale algebraic nonlinear programming problem.
This estimation formulation is then solved using a non-
linear primal—dual interior-point method. The use of
general nonlinear programming tools allows for an
approach that is flexible to proposed model changes.
We show that this technique is very efficient for the esti-
mation of seasonal transmission parameters in
continuous time infectious disease models using case
count data over long time horizons. The technique is
demonstrated using measles case data from three differ-
ent locations—London, New York City and Bangkok.
These locations form an excellent test bed for the esti-
mation given the availability of data, and our results
strengthen the evidence that the dynamics of measles
are strongly dependent on school term holidays, but
differ from recent findings that show the dynamics
being captured with large estimates for transmission
parameters [2,3].

A brief review of infectious disease modelling and
estimation is given in §2. Section 3 introduces the
formulation of our example susceptibleinfectedrecov-
ered (SIR) model and the estimation approach.
Section 4 gives estimation results for both simulated
data and data from three cities, and in §5 we discuss
the significance of these results and offer conclusions.

2. BACKGROUND

Infectious disease spread is typically described by one of
two fundamental classes of mechanistic models. Agent-
based or individual modelling approaches, which have
been used to propose control strategies [4], can suffer
from a model parameter space that is too large for the
available data to successfully specify parameters. Alter-
natively, compartment-based modelling approaches
describe the behaviour with a small number of differen-
tial equations and parameters. These models categorize
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the population with respect to various stages of disease
infection. For example, individuals can be considered
susceptible to the disease (5), infected with the disease
(I) or recovered from the disease and therefore immune
(R). Many additional compartments can be added to
represent other stages, such as an (F) compartment
to represent those individuals who have contracted
the disease but are not yet infectious, or an (M) com-
partment to represent individuals with maternal
immunity. The classification of the model is determined
by the progression of the population from one compart-
ment to the next [5]. Compartment-based modelling is
the approach used in this work.

It is clear from measles case data that measles inci-
dence follows strong seasonal patterns. As early as
1929, Soper [6] estimated transmission rates from
monthly measles case data and proposed that the sea-
sonality was correlated with school terms. In 1982,
Fine & Clarkson [7] used measles data from the years
1950 to 1965 in England and Wales to estimate a
time-varying transmission profile. Over this time hor-
izon, the data show a biennial pattern of alternating
large and small measles outbreaks, yet the estimated
transmission profile remained very similar from year
to year. In addition, the estimated transmission profile
appeared to be correlated with school holidays.

Reliable estimation from the available data can be
challenging. Typically, the only disease data available
are the case counts (or incidence) of the disease. How-
ever, the number of susceptible individuals in the
population also has a significant effect on the dynamics
of disease spread, and little quantitative data are typi-
cally available describing this population. In addition,
owing to passive collection, the number of reported
cases is often significantly lower than the actual
number of cases. This can lead to significant under-
reporting in the data with some datasets reporting
fewer than 5 per cent of the actual number of cases.
This has led researchers to consider two-stage
approaches where the susceptible dynamics and report-
ing factor are estimated first [1] and are then treated as
known inputs for estimating transmission parameters
[8]. In this work, we estimate the degree of under-
reporting in case counts using a procedure similar to
susceptible  reconstruction, but the susceptible
dynamics themselves are estimated simultaneously
with the transmission parameters.

Finkenstddt & Grenfell [8] developed a time-series
SIR (TSIR) model as a discrete time model with 26
discretizations per year, which is consistent with the
serial interval of measles. This model uses a time-vary-
ing transmission parameter B with yearly periodicity
to give 26 unique values for 8 to describe the time pro-
file. Although the transmission parameter is assumed
to have yearly periodicity, no strong assumption is
made regarding the functional form of the parameter.
Instead, the parameter profile is treated as an
unknown input to be estimated using case count
data by finding a one-step-ahead solution to the esti-
mation problem. The estimates from this model
using data from England and Wales strengthened the
claim that transmission of measles is correlated to
school holidays.
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While discrete time models like these have proven
useful, they suffer from significant drawbacks. These
models are discretized over the serial interval of the dis-
ease, and the estimation approach requires that the
reporting interval of the disease data be an integer frac-
tion of the serial interval. The England and Wales
measles data are reported weekly and the serial interval
is two weeks, making the approach suitable for this
dataset, but most existing datasets have reporting inter-
vals longer than the serial interval of the disease.
Furthermore, the TSIR model includes a parameter «
as an exponent on the incidence (I;;, = B; I} S;). This
parameter is difficult to interpret physically, and it
has been conjectured that it simply serves to correct
for the fact that the model is discrete and not
continuous [9,10].

Continuous models not only are a more natural
framework for modelling the continuous nature of dis-
ease dynamics, but also they overcome some of the
challenges inherent in many discrete time models. Con-
tinuous time models allow for varying discretization
strategies and also for the discretization to differ from
the reporting interval of data and the serial interval
of the disease. This allows the data to be used in its
native form rather than requiring that the data fit a
specific reporting interval, as is required in the TSIR
approach of Finkenstddt & Grenfell [8]. In addition,
for this work, no exponent « is included on the inci-
dence term, reducing the number of parameters to be
estimated by 1. Despite this reduction in parameters,
these models have been shown to capture the observed
disease dynamics comparably [11,12].

Several continuous time disease models have been
developed. Greenhalgh & Moneim [13] examined the
stability properties of different transmission forms
and used simulations to show that different periodic sol-
utions are possible with different types of seasonally
varying transmission rates. Schenzle [14] developed an
age- and time-dependent differential equation model
and used simulations to demonstrate that an age-
dependent transmission rate more accurately reproduced
actual measles data. Cauchemez & Ferguson [11]
developed a stochastic continuous time SIR model and
used it to estimate transmission profiles from London
measles data. Cintrén-Arias et al. [15] studied parameter
subset selection using a continuous time SEIRS model
with a sinusoidally periodic transmission parameter.
This work explored parameter identifiability using
synthetic data.

Another challenge of disease modelling is that the
transmission of infectious disease is an inherently sto-
chastic process. The use of deterministic models has
proven reasonable for use in large cities above a critical
community size, but in smaller cities fade-out is seen
and deterministic models perform poorly. For measles,
the critical community size has been estimated to be
around 300000 people [16,17]. When fade-out is
observed, reappearance of the disease is caused by an
influx of an infected individual into the susceptible
population. Finkenstadt et al. [18] modified their
TSIR model to allow for stochasticity and used Monte
Carlo simulations to study the effect of the latent
stochastic variability of influx.
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Other models have been developed to allow for
stochasticity using various Monte Carlo techniques.
While useful, Monte Carlo techniques suffer from
high cost of computation, making them unreasonable
for large-scale models. For example, Cauchemez &
Ferguson [11] presented a stochastic continuous time
model using a statistical approach to analyse time-
series epidemic data. This approach used a data
augmentation method to overcome difficulties in
inference and presented a diffusion process that
mimics the epidemic process. These systems contain
stochasticity in the model along with unmeasured
states. Therefore, Cauchemez & Ferguson constructed
the likelihood of the parameters conditional on the
data including an integration over the unknown state
space. This approach provides a guarantee against
bias in the estimated parameters; however, the Metro-
polis—Hastings Markov chain Monte Carlo (MCMC)
sampling is very computationally expensive, requiring
20h per run [11]. Hooker et al. [3] presented an
SEIR model to perform parameter estimation with
measles data from Ontario using generalized profiling
[19]. This approach estimates state variable trajec-
tories and model parameters using a sequential
numerical optimization approach that is much
more efficient than MCMC techniques, but this
approach can still require about 2 h per estimation
[3], although part of this time was owing to the itera-
tive process of setting the smoothing parameter in the
problem formulation.

He et al. [2] demonstrated their plug-and-play
method as a framework for modelling and inference by
performing estimates using weekly measles case count
data from the 10 largest cities and 10 small cities in
England and Wales. This work used an SEIR model
with a seasonally varying transmission parameter.
The seasonality of the transmission parameters was
fixed to correspond with school term holidays, but the
amplitude of the seasonality was estimated. Addition-
ally, the durations of the latent and infectious periods
were estimated. This approach required approximately
5 h per estimation, but reductions in the time require-
ments could be made by tailoring the procedure
specifically for a given problem.

3. PROBLEM FORMULATION AND
ESTIMATION APPROACH

In this paper, we use an SIR compartment modelling
framework to develop a continuous time model that
includes both model and measurement noise. This is
then used to estimate model parameters and seasonal
transmission profiles from measles case count data. It
is assumed the individuals enter the susceptible
compartment S when born, move to the infected com-
partment I upon acquiring the infection and progress
to the recovered compartment R upon recovery from
the infection. After recovery from measles, individuals
are assumed to attain lifelong immunity from the dis-
ease so that there is no movement of individuals from
the recovered compartment to the susceptible com-
partment [20]. The infection transmission assumes
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frequency dependence [5], and the transmission par-
ameter is assumed to be seasonal with a periodicity of
1 year. The assumption of frequency-dependent trans-
mission is not reasonable for all diseases. While it may
make intuitive sense that in larger populations one
would have more contacts in a day, for childhood dis-
eases like measles this is often not the case. Given
that most children are in school systems with similar
school structures, we assume they have a consistent
number of contacts per day regardless of city size.
This assumption is consistent with recent findings for
measles in the UK [21].

3.1. Problem formulation

The differential equations describing the continuous
time seasonal SIR model are

ds _ —B(y(t)S()1(t)
dt N(t)

cen(t) + B(1) (3.1)

and

g_w-sﬁ/{(t) — yI(t)

dt N(t) (32)

where S is the number of susceptibles, I is the number
of infectives, N is the total population and B(¢) is the
time-varying transmission parameter. The function
y(t) maps the overall horizon time with the elapsed
time within the current year, making B(y(t)) a seaso-
nal transmission parameter with periodicity of 1 year.
Births into the population, B, and the population, N,
are known time-varying system inputs, and the recov-
ery rate (y=1/14 day) is a known scalar input. The
variable &;; represents multiplicative model noise,
which is assumed to be log-normally distributed with
a mean of 1. Additive noise was investigated, but, in
those cases, the estimated values for the model noise
showed an obvious temporal correlation with the
data, indicating an unlikely model structure. However,
the technique that we use can easily be modified to
support different assumptions on the stochastic
noise. Note that while this distribution can be an
acceptable approximation for large datasets, where
the number of cases never nears zero, for small data-
sets this distribution becomes invalid, as it does not
allow for zero cases. In addition, as the reported
number of cases must always be non-negative, the
assumption of normally distributed measurement
noise is only a reasonable approximation when the
reported number of cases is not near zero. Given
the size of the cities examined in this work and the
number of reported cases over the given time hori-
zons in the datasets, we find these assumptions
acceptable here.

It is important to distinguish between incidence
and prevalence in this problem formulation. The case
count data are available for the incidence or the
number of new cases reported over a given time inter-
val. The model contains a state variable I(¢) that is
the prevalence of the disease, or the number of cases
present at a given point in time. In a given reporting
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interval, integrating over the number of new cases
gives the incidence,

"By SMI()

. N(/\) SM(/\> dA.

incidence = J (3.3)

To account for the difference in incidence and pre-
valence, a new state variable is introduced into the
system through the following differential equation:

dQ _ Bly(1)S(I(?)

=N en(t). (3.4)

Here, Q(t) represents the cumulative incidence at time
t and provides a state variable that can be used to
evaluate the incidence over a particular interval.

Not every individual that becomes infected is
reported, which leads to case counts being under-
reported. While there are various methods to estimate
the reporting fraction m(t), in this work, we use a
straightforward approach to estimate a linearly varying
reporting fraction that is similar to the susceptible
reconstruction approach described in Finkenstadt &
Grenfell [8]. At the start of the estimation horizon,
we assume that the number of cumulative cases, Cj,
and cumulative births, Y;, are unknown. Prior to
widespread vaccination, almost every individual even-
tually contracted the disease. Therefore, on average,
the cumulative number of new cases should equal the
cumulative number of new births. For a constant
reporting fraction, the cumulative cases and births are
given by

¢
Y= Z Bi+ Y (3.5)
=1
and
LR,
Ci=> ;‘Jr Co, (3.6)
=1

where B; is the reported number of births at time 4, Y;is
the cumulative number of births at time ¢, R, is the
reported number of cases at time i and C} is the cumu-
lative number of cases at time ¢. We then minimize the
sum-squared error between Y; and C, to estimate
the reporting fraction n. For the case of our estimations
with data from London and Bangkok, we extend this
basic formulation to estimate a reporting fraction that
varies linearly in time.

In our problem formulation, the estimated reporting
fraction is treated as a known input for the estimation
of the disease model parameters. To obtain a fit,
the estimation formulation requires that we minimize
some measure of the model and/or measurement noise
subject to the infectious disease model described by
the differential equations given in equations (3.1),
(3.2) and (3.4).

There are two general approaches for the solution of
large-scale dynamic parameter estimation problems
similar to that considered here. The sequential approach
considers only the degrees of freedom as optimization
variables. This includes the initial conditions for (%)
and S(t), as well as a discretized time profile for the
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seasonal transmission parameter, B(¢). A complete
simulation of the forward problem is performed at each
iteration of the optimization. To make use of modern
gradient-based methods, derivative information must
also be calculated along the entire time-series simu-
lation. These derivatives can be expensive to calculate,
especially for problems with many degrees of freedom.
Furthermore, these derivatives can be noisy unless care
is taken to ensure consistency of the integrator between
runs [22]. Noise in the evaluation of sensitivities through
the integrator can make these problems very challenging
for the optimization solver. The simultaneous approach
can be used to overcome these difficulties. In the simul-
taneous approach, all variables, including the states and
the parameters, are discretized and treated as optimi-
zation variables. The entire discretized model is
included as algebraic constraints in the optimization
problem. The optimization problem resulting from the
simultaneous approach can be larger than the sequential
approach. However, this approach can be significantly
faster than the sequential approach as the differential
equation model is not converged at every iteration of
the optimizer, but rather it is converged simultaneously
as constraints to the optimization. Furthermore, accu-
rate derivative information is easily obtained using
modern automatic differentiation tools coupled with
existing modelling frameworks. Recent advancements
in nonlinear programming tools [23] allow efficient sol-
ution of sparse problems with hundreds of thousands
of variables and constraints using standard desktop
computing power [24—27]. In addition to potential
efficiency gains, this simultaneous approach allows
intuitive specification of additional constraints on the
parameters and the state variables, including restric-
tions on the form of time-varying parameters. The
flexibility of general nonlinear formulations coupled
with the efficiency of large-scale algorithms make the
simultaneous discretization approach coupled with
general nonlinear programming tools an appropriate
framework for efficient parameter estimation in
nonlinear infectious disease models.

In this work, we use the simultaneous approach.
We use collocation on finite elements to discretize the
states into finite elements with fixed stepsize across the
entire time horizon [28]. This converts the continuous
differential equation model into an algebraic model that
can be formulated as a nonlinear programming problem.
A fifth-degree Gauss—Lobatto collocation technique is
used to discretize the dynamics within these finite
elements [29], and the discretized equations are included
as equality constraints in the optimization problem. The
effect of the instantaneous model noise, &,,(t), on the
system is approximated by introducing an unknown
noise term between each of the finite elements.

We illustrate this approach by showing the dis-
cretization of equation (3.4) within a single finite
element 7. Let t;; be the time associated with finite
element 4 and collocatlon point j. With the fifth
degree Gauss—Lobatto strategy, there are five colloca-
tion points for each finite element ¢ (¢;o to t;4). The
times t,o to ;4 correspond to the locations of the
collocation points within the finite element, where ¢,
is the central collocation point located at the centre
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of the finite element. The time at ¢,; is equal
to tio— /3 1Atl, and the time at t3 is equal to
th ++/3 %At,7 where At; is the length of finite element
i. Letting @;; be the value of Q(t;;) and letting f;; be
the value of d@/dt[,  (equation (3.4)), the collocation
equations become

Qin = —{(39V21 + 231) Qi + 224Q;»

1
686
+ (—39v/21 + 231) Qiq + AL[(3V21 4 21)fig
—16V21f5 + (3v/21 — 21)f,4]}

1
686

+ (39v/21 + 231) Qi + At[(—3V21 + 21)fig
+16\/_ﬁ2+(—3\/——21)ﬁ I}
(32v/21 + 180) Q;p — 64v21Qi»

(3.7)
Qiz = (—39v21 4 231) Q0 + 224Q; 2
(3.8)

0__
360

+(32v21 — 180) Qi + AK[(9 + V21) fi
—|—98ﬁ1 +64fi2 + (9 — V21)fiu]}

and 0_% (—32V/21 4 180) Qi0 + 64v/21Q;

+ (—32v/21 — 180) Qiq + AL;[(9 — V21)fig
+98f.5 + 64fi0 + (9 + V21)f4]}. (3.10)

(3.9)

In our formulation, we include model noise between
these finite elements so that, while inside a finite
element, equations (3.7)—(3.10) are exact and between
finite elements there can be state discontinuities. With
model noise between finite elements, there is little
benefit in the use of a higher order method. However,
we initialize our problem using the deterministic case
where no model noise is present (model noise terms
are fixed to zero), and, for this case, this discretization
is a high-order method.

Our estimation formulation becomes,

min wMZ (In(eyp) +wQZ(8Qk)2

= kET

v 95 —B(y(j\)])(f;(t)l(t) e(t) + B(1),
% B@(%i&t”” eur(t) = VI(1),
dQ _ BuS®I)
dt N(t) e

(3.11)

& _ ieF
5= len(F)’
Y
p= len(7)’

and 0 < B(y(t), A1),
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where the differential equations are discretized using
equations (3.7)—(3.10) and are shown here in their differ-
ential form for simplicity. The index k is a time point
within the set of reporting times, 7, while F is the set of
all finite elements used in the discretization. The reporting
fraction 7, accounts for under-reporting over a given time
interval spanning k — 1to k, Rz isthe actual reported inci-
dence over a given time interval, £¢, is the measurement
noise, and wy; and wg are weights for the noise terms.
Based on the assumption of normality in &g, and
In(eyy), the ratio of these weights should be equal to the
inverse ratio of the variance in the estimated noise
terms. Since the variances are not known a priori, a
simple bisection approach is used to solve for the ratio of
weights until wy/wg = O'ZQ /o>, where 02Q is the calcu-
lated variance of the estimated noise terms &¢,, and o3,
is the calculated variance of the estimated noise terms
In(ey;,) (using standard mean squares). The estimation
formulation is solved completely for each iteration of the
bisection method. These weights determine the trade-off
between model and measurement noise in the objective
function. This straightforward approach was used since
sensitivity studies (presented later in the paper) show
that the estimates are relatively insensitive to the selection
of these weights. However, other techniques have been
proposed for determining these weights [3,30] and could
also be used. Two additional variables are added to the
problem formulation for use in calculating confidence
regions. Here, S is the average population of susceptibles
over the time horizon and S is the average value of 8
across the yearly set of discretizations 7.

It is important to point out that the objective
function used in this formulation is the extended
log-likelihood and only an approximation of the true
log-likelihood for the parameters. The use of this likeli-
hood for estimating parameters can cause considerable
bias in both the parameters and their uncertainty
[31]. In practice, bias may not always be observed, but
care should be taken when evaluating results from this
approach. The simulation study discussed in §4.1
shows no significant bias. However, if bias is a concern,
then this efficient formulation and approach can still
be used to initialize an unbiased approach.

This research focuses on the estimation of the seaso-
nal transmission profile B(y(t)). While the case data
show strong seasonality, the functional form of the
transmission profile is unknown, so it is undesirable to
force B to take the form of a particular periodic function
(e.g. a sine function). Therefore, we discretize the trans-
mission profile along finite-element boundaries,
assuming a constant value through the finite element.
In previous work, B(y(t)) was further restricted using
total variation regularization [12]. However, in this
work, it was found that regularization was unnecessary
when the discretization of B matched the reporting
interval of the case data. Some form of regularization
or restriction of 8 would be necessary if B is discretized
more finely than the reporting interval.

3.2. Estimation approach
The nonlinear programming formulation described

above was written in AMPL [32] and solved using
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IrorT [33]. AMPL is an algebraic modelling language
for optimization problems that provides first- and
second-order derivatives using automatic differentiation.
IropT is an open source primal-dual interior-point
algorithm for solving nonlinear programming problems
with inequality constraints, and is available through
the COIN-OR foundation. This algorithm considers
problems of the form,

min  f(z)
st. ¢(z)=0

(3.12)

xLSCL’SCL’U,

where f(z) and ¢(z) are assumed to be twice differenti-
able, d“ and dY are lower and upper bounds on a
general function d, and z;, and zy are lower and upper
variable bounds on z. For ease of notation, the algor-
ithm is described for the following problem formulation:

min  f(z)
st. c(z)=0 (3.13)
x> 0.

Note that general inequalities can be mapped to equality
constraints and simple variable bounds through the
addition of slack variables.

A significant challenge in the solution of these pro-
blems is identifying the active and inactive sets of
variables (i.e. the set of variable bounds that are satis-
fied with equality at the solution versus the variables
that are inside their bounds at the solution). With
interior point methods, the inequality constraints are
moved into the objective function using a log-barrier
term to form the barrier subproblem,

Ty

min - f(z) - py In(z)
TE —1

(3.14)
s.t. ¢(x) =0.

This barrier subproblem is solved (approximately) for a
sequence of barrier parameters. It can be shown, under
mild conditions, that the sequence of solutions of the
barrier subproblem converges to the solution of the
original problem. From the first-order optimality con-
ditions for (3.14), the following equations can be
derived [33]:

Vfi(z) = Ve(x)h—v =0,
c(z) =0
and XVe— ue=0,

(3.15)

where Vf (z) is the gradient of the objective function,
Ve(z) is the transpose of the constraint Jacobian, A
and v are the Lagrange multipliers for the equality con-
straints and inequalities, respectively, X is the diagonal
matrix of x;’s, Vis the diagonal matrix of v;’s, and eis a
vector of ones. A variant of Newton’s method is used to
solve equation (3.15) (with modifications to ensure that
the directions are descent). Calculating the step
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Figure 1. The reported number of cases for (a) London (1948—-1964), (b) New York City (1944—-1963) and (¢) Bangkok (1975-1984).

[AzTAATAVT] requires the solution of the following
linear system at each iteration:

H Ve(z) —I][Ax
Ve(z)* 0 0 AA
14 0 X Av

Vf(z) —Ve(z)d —v]

= - C($) )
XVe— e

(3.16)

where H is the Hessian of the Lagrange function and
I is the identity matrix. This linear system is solved
by first symmetrizing (3.16) and solving the so-called
augmented system. Exact Hessian and Jacobian infor-
mation is provided through AMPL. A filter-based
line-search strategy is used to ensure global conver-
gence. Further details concerning IpopT can be found
in the literature [33]. This approach has been used effec-
tively on numerous large-scale nonlinear optimization
problems [33-36].

4. ESTIMATION RESULTS

To demonstrate the effectiveness of our approach, we
first estimate parameters using simulated data from
an SIR model. We then perform estimation using
three real datasets from different settings. In our esti-
mations, we use existing measles case count data for
London [21], New York City [37,38] and Bangkok,
which have been made available to us by the Thailand
Ministry of Public Health [39]. These datasets also
include yearly birth records and populations. The
London dataset was chosen as it has been widely
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studied and provides a comparison of our model results
with literature results. The New York City and Bang-
kok datasets are from cities with very different social
settings and entirely different school holiday schedules.
This allows us to compare estimated transmission pro-
files on locations with different school term schedules.
The New York City data contain monthly reported
case counts. The Bangkok data include monthly case
counts and annual age distributions. There is regular
active surveillance coupled to the passive surveillance
in order to assess the performance of the passive surveil-
lance system. The data are fully anonymized and
laboratory confirmation is reported when available.
The populations are assumed to vary linearly through-
out the year, and the birth rates are assumed to be
uniform throughout the year (figure 1).

To perform these estimations, we first format the
data as required by the AMPL input data file format.
We formulated the model shown in equation (3.11)
with discretized differential equations using the alge-
braic modelling language AMPL [32]. Any modelling
language coupled with a reliable large-scale nonlinear
optimization solver could be used. We solve the problem
using the open-source nonlinear solver IropT [33]. The
weights for the objective function are found using the
iterative process discussed previously. These weights
are then fixed to find the confidence intervals and
confidence regions.

Effective initialization is important for successful
solution of general non-convex nonlinear programming
problems. Here, all problems were initialized simply
by setting all S;;=1x10% [;=1x10% and
Qi; =0 Vi€ F and j collocation points, and B; =
1Vi € 7. Here, F is the set of finite elements and B is
the set of discretizations of B. While this is a very
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Figure 2. The estimated transmission profile 8 (triangles) for a single dataset with 95% confidence intervals (dashed line) found
using likelihoods. The true values of 8 used in the stochastic SIR simulation (solid line). The 2.5th, 50th and 97.5th quantiles of
the estimates from the simulation (circles). (Online version in colour.)

crude initialization, the formulation is robust, and we
first solve the deterministic problem, fixing the model
noise terms to zero, before solving the formulation
with model noise terms included. ~

Our estimates showed a strong correlation between S
and B, and the quality of our fit to the data differs
dramatically outside of a narrow range of values. Confi-
dence regions, derived from the likelihood-ratio test
[40,41], are constructed as described by Rooney & Biegler
[42] to show the region in which these values could
be expected to lie. The regions are constructed over
pairs of parameters by fixing the two parameters and
reoptimizing over the remaining variables. In addition,
likelihood ratios are used to construct confidence intervals
for B by fixing each B; independently and allowing optim-
ization over all other B;'s. These confidence regions and
intervals were calculated using the extended likelihood,
which is only an approximation of the true likelihood.
The simulation study performed in §4.1 indicates that
this approximation still provides reasonable confidence
intervals. In the simulation study, the estimated confi-
dence intervals are slightly more conservative than what
the simulations would suggest as necessary.

4.1. Stmulation

In order to test the estimation procedure using known
parameter values, we perform stochastic simulations
with an SIR model. The simulations were perfor-
med using Matlab. Our simulations used a constant
population of 10 002 000, a recovery rate of 1/14 day,
a birth rate of 2.95 per cent of the population per
year and a reporting fraction of 1. To generate 20
years of case data, the deterministic model was inte-
grated for 100 years to achieve a cyclic steady state.
The final values from this simulation were used as the
initial values for the stochastic simulation. The simu-
lations were performed with the same model as that
used for the estimation except that the time step used
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within the Matlab integration routine was a half day.
Model noise was drawn from a log-normal distribution
with mean 1 and o= 0.05. Measurement noise was
applied to the reported cases and was drawn from a
normal distribution with mean 0 and an s.d. of 1000.
While the assumption of normally distributed noise is
not valid for datasets with a low number of reported
cases, we assume it to be a reasonable distribution for
our simulations since, in 10000 simulations, the
reported number of cases never fell below 2000.

The simulation was run 10 000 times with a reporting
fraction of 1 to generate simulated case data, and esti-
mations were run on each of these simulations using 12
finite elements per year. Figure 2 demonstrates that
our estimation approach gives an extremely good esti-
mate for B using data from the SIR simulations. The
solid line shows the true parameter values used for all
10 000 simulations. The circles show the mean of the esti-
mated values for the parameters as well as the 2.5 and
97.5 quantiles for the parameters estimated from all
the simulations (giving the 95% confidence intervals
for these estimates). The triangles show the estimated
parameters from an estimation on a single randomly
selected simulated dataset, and the dashed lines show
the 95% confidence intervals generated for this esti-
mation using the likelihood-ratio test. The true
parameter values are included well inside these confi-
dence intervals. The confidence intervals calculated
from the likelihood-ratio test give more conservative
intervals than what the 10000 simulations would
suggest are necessary and actually cover over
97 per cent of the values estimated from all 10000
simulations. This is not unexpected given that the
likelihood-ratio test confidence intervals are determined
by fixing only one parameter at a time, allowing the
other parameters to be optimized.

Furthermore, the mean values of the estimated
parameters over all 10000 simulations agree with the
true values used in the simulation. There is no
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Figure 3. The transmission profile estimated for London by Finkenstidt & Grenfell [8] (dashed line), Cauchemez & Ferguson [11]
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Figure 4. The estimated transmission profile 8 with confidence intervals. School term holidays are shaded.

significant bias observed in the estimate of the seasonal
transmission parameters for the simulated data used in
this study.

4.2. London

The time horizon studied for London was 1948—1964. The
reporting fraction estimated using our approach varies lin-
early from 50.65 to 42.55 per cent over the time horizon
studied. This dataset originally had case counts reported
weekly; however, the dataset used here has combined
the data so that case counts are given biweekly. These
aggregated data were also used by Finkenstadt & Grenfell
[8]. The estimation for London was performed using 26
finite elements per year, and the transmission profile
was discretized so that each B, contained one finite
element, giving 26 discretizations in 8. The normalized
estimated seasonal transmission profile for London is
shown in figure 3. This figure also compares this result
with the findings from Finkenstddt & Grenfell [8] and
Cauchemez & Ferguson [11]. The time horizon used in
this work and by Cauchemez & Ferguson [11] was
the years 1948-1964, but the time horizon used by
Finkenstddt & Grenfell [8] was the years 1944—1964.
Despite the differing time horizons, it is clear that the sea-
sonal pattern estimated from our approach is similar to
these other results. The estimated profile appears to be
correlated with school term holidays with the trans-
mission profile decreasing during the school breaks that
occur during the Easter holiday around biweek 8 and
the summer holiday over biweeks 15—18. The Christmas

J. R. Soc. Interface (2012)

holiday occurs at biweek 25, but there is no immediate
effect captured in our estimates. The lack of any immedi-
ate effect could be owing to delays in reporting over the
Christmas holidays [7].

Figure 4 shows the non-normalized pattern for the
estimated seasonal transmission profile. The estimated
seasonal transmission parameter B(¢) is on a per day
basis, and the mean estimated value is 8= 0.95. It
does appear that our estimates may be shifted by one
biweek relative to the school holidays, but this could
be owing to a slight delay in reporting.

In figure 5a, we show nonlinear confidence regions for
the mean transmission parameter value 8/y against the
mean susceptible fraction over the mean population,
S/Pop, where the means were taken over the entire
time horizon. As expected, this shows a dependence
between the estimated values for 8 and S. The shape
of these confidence regions provides some insight into
why it may be difficult to accurately estimate the absol-
ute magnitude of the transmission parameter. An
increase in B can be offset by a decrease in S with
little change in the objective function value. However,
even though there is a difference in the absolute magni-
tude of the transmission parameter, we see little
difference in the seasonal pattern estimated for the
points within the indicated confidence region.

4.3. New York City

The estimation for New York City was performed using
monthly reported data from 1944 to 1963. The reporting
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Figure 6. The estimated transmission profile 8 for New York City with shaded school term holidays.

fraction estimated using our approach was almost con-
stant around 11 per cent throughout the time horizon
studied, and the reporting fraction was assumed con-
stant in our estimates. The discretization strategy used
12 finite elements per year, and B is again assumed to
be constant within each finite element. This gave 12 dis-
cretizations for the seasonal transmission profile 8. The
estimated seasonal transmission profile for New York
City is shown in figure 6. This profile also shows strong
correlation with the summer school term holidays that
the New York City Board of Education reported occur-
ring from mid-June to mid-September, or over the
finite elements of approximately 6.5—9.5. There are
school holidays around the end of the year; however,
these holidays are much shorter than the reporting
interval of the data.

Figure 5b shows the 95% confidence region for 8 and
S. The optimal estimated S was 11.1 per cent of the
mean population, and the optimal estimated 8 was
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0.65. Our approach successfully estimates a seasonal
transmission pattern that shows strong correlation to
school terms.

4.4. Bangkok

In addition to data obtained from locations with a
single large summer break, we also performed estimates
using measles data for Bangkok, Thailand. Thailand
has two school term holidays—one in the spring and
one in the autumn. The estimation for Bangkok was
performed using monthly reported case count data
from the years 1975 to 1984. This dataset contains sig-
nificant under-reporting with the estimated reporting
fraction varying linearly from 1.1 per cent at the start
of the time series to 4.5 per cent at the end of the
time series. In addition, case counts are missing for
the year 1979. The discretization strategy used 12
finite elements per year with B discretized by finite
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elements, giving 12 discretizations for 8. As no data are
available for the year 1979, these points were excluded
in the objective function so that they would not affect
the estimation while still allowing the model to simulate
the states through this year. The estimated seasonal
transmission profile B for Bangkok is shown in
figure 7. This profile shows correlation with the two
school term holidays that occur from the beginning of
March until mid-May and the entirety of October, or
over the finite elements of approximately 3—-5 and
10—-11. There is an obvious lag between our estimated
drop in B and the start of the school holidays. This
lag is probably owing to a lag in the reporting of case
data. There are consistently extra cases reported in Jan-
uary resulting from a backlog of reports that are not
processed at the end of the year owing to worker holi-
days. This suggests that cases are being reported as
occurring when reports are processed rather than
when the cases actually occurred, which would cause
a lag in the estimates.

_ Figure 5¢ shows the 95% confidence region for B and
S. The optimal estimated S was 5.5 per cent of the
mean population, and the optimal estimated 8 was 1.28.

4.5. Input sensitivity analysis

Our estimates are dependent upon the inputs we use in
our model. We use recorded data for birth inputs and
for population inputs, but no data are available for
the reporting fraction and recovery rate, and we
would like to know how sensitive our estimates are to
the values used for these inputs. In addition, we use
an iterative approach to set the weights in the objective
function, and we would like to know how changing
these weights will affect our estimates.
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We first examined the effect of varying the reporting
fraction on our estimates of B. To investigate this, we
varied the value of the reporting fraction over a wide
range about our estimated value. Using each new
reporting fraction, we solved the same problem as
before. Figure 8 shows the estimated average value of
B for New York and the optimal objective function
value as the reporting fraction changes. This plot
shows that, even for small changes in the reporting
fraction away from the estimated value, there is a signi-
ficant decrease in the average value of 8. The objective
function values show that the best data fit occurs when
the reporting fraction is where we also get the highest 3,
and this reporting fraction is the same as that estimated
using the approach described in §3.1.

In Bangkok, there is a significant difference in the
reporting fraction at the beginning and at the end of
the time horizon studied and a time-varying reporting
fraction is needed. We use a linearly varying report-
ing fraction throughout the time horizon, and, for our
sensitivity study, we keep the same slope as we estimated
before. Figure 9 shows the estimated B and optimal
objective function values as the initial value of the
reporting fraction is varied. Since the reporting fraction
estimated previously is so low at the beginning of the
time horizon and must be positive, we are unable to
lower the initial value by more than about half of a per
cent. Where we see the minimum in the optimal objective
function value is also where we find the initial value of the
reporting fraction that we estimated previously.

The recovery rate can also affect the dynamics of the
system, and different sources use different values (typi-
cally 1/13 or 1/14). Figure 10 shows the change in the
estimated B’s for New York City and Bangkok as
the recovery rates are varied. For both cities, the
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changes in 8 are not dramatic at any point, but simply
change slowly throughout the range examined. This
indicates that, for reasonable values for the recovery
rate, our estimates are not dramatically affected.

Finally, we also show the estimation results as a func-
tion of the ratio of the weights in the objective function.
Here, we vary this ratio by two orders of magnitude on
either side of the value found using our iterative
procedure. Figure 11 shows the value of B for both
New York City and Bangkok as the weights are
varied. The mean value of the transmission parameter
changes little over a range of values near the estimated
weights. Furthermore, the pattern exhibited by the esti-
mated transmission parameter is nearly identical over
this entire range.

5. DISCUSSION AND CONCLUSIONS

Successful estimation of parameters in dynamic models
for childhood infectious diseases from time-series data
presents several challenges. Typically, reported cases
(the incidence) are the only available data, while there
is little information about the susceptible population.
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Therefore, approaches must simultaneously estimate
the prevalence and the unknown susceptible states.
Furthermore, the case data are often significantly
under-reported, the reporting interval is often longer
than the serial interval of the disease and the models
are highly nonlinear. This paper presented a nonlinear
programming approach for estimating the unknown
states and the seasonal transmission parameter using
a continuous time model with both measurement and
model noise.

Continuous time formulations offer several advan-
tages over discrete time formulations for estimation
of infectious disease models. Data can be handled in
their native form regardless of the reporting interval.
This was demonstrated by using biweekly reported
data from London and monthly reported data from
New York City and Bangkok. Using data in their
native form is a significant advantage for diseases with
short serial intervals, where it would be unreasonable
to have data reported at the same interval.

The estimation approach outlined in this paper is
highly efficient. The estimation formulation using
continuous SIR models is a nonlinear optimization
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Table 1. Problem sizes and solution times of the London,
New York City (NYC) and Bangkok (BKK) estimation
problems studied in this paper.

variables constraints CPU time (s)*
London 16 459 15 963 190
NYC 8929 8663 300
BKK 4477 4331 76

*All problems were solved on a 3 GHz Intel Xeon processor
and times are reported is seconds.

problem subject to differential equations as constraints.
The use of the simultaneous or full-discretization
approach produces a large-scale algebraic nonlinear pro-
gramming problem. Nevertheless, efficient solutions are
possible as the simulation is not converged at each iter-
ation. The solution times for all estimations are shown
in table 1. These are the full solution times, including
the times required to initialize the problems and find
the weights to be used in the objective functions. Sig-
nificant reductions could be made by initializing the
problem well and by giving good initial guesses for
the objective function weights. Recent work by
Hooker et al. [3] solves a similar problem formulation
in approximately 2 h, the MCMC estimation performed
by Cauchemez & Ferguson required approximately 20 h
per run [11] and the plug-and-play method of He et al.
[2] requires approximately 5 h. None of our estimations
take longer than 5 min. The efficiency of this fully sim-
ultaneous approach opens the door to explore many
more model structures efficiently and provides a frame-
work that is scalable to large spatially distributed
estimations.

Figure 5a—c shows a strong inverse correlation
between the estimated 8 and S as seen by the narrow,
elongated confidence regions. This result is not unex-
pected when compared with the approximate
expression relating B to S given by 1/S =8/y [20].
This relation gives a curve lying approximately through
the middle of the 95% confidence region in figure 5a—c.
These elongated regions indicate that the estimation
is sensitive along this line and that care should be
taken when interpreting absolute values for B or S.
It should also be noted that the estimations produ-
ced nearly identical patterns in B(t) within these
confidence regions.

More importantly, several recent publications have
reported estimated values of the seasonal transmission
parameter, and corresponding R, values, that are
higher than estimates provided by Anderson & May
[20]. For example, the reported estimates of He et al.
[2] for London give Ry = 57 with 95% confidence inter-
vals of 37 and 60. There is significant complexity in
finding R, values while considering seasonal trans-
mission rates, and it is difficult to compare results
arising from different model structures. Using the
approximate relationship Ry =p(t)/y, we estimate
Ry =13.3 in London with 95% confidence intervals of
12.1 and 14.3. Our estimates for New York City
(Ro=09.1) and Bangkok (R,=17.9) also give values
for R, that appear consistent with values reported
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for measles by Anderson & May for other cities [20]
and with values approximated using the average age
of infection.

The estimated transmission profiles from all three
cities show strong correlation with school holidays
despite the very different holiday schedules seen
between London, New York City and Bangkok. For
Bangkok and New York City, there was a lag observed
in the estimated transmission profiles that showed the
drop in transmission as occurring after the holiday
had begun. This is probably owing to a lag in reporting
causing cases to be reported well after their occurrence
and the incubation period of measles causing cases to be
observed after the start of the holiday even though the
infection occurred before the holiday.

This overall approach for estimating continuous time
infectious disease models is reliable, flexible and effi-
cient. Although the use of extended likelihood may
not be guaranteed to provide unbiased estimates, the
simulation results showed no evidence of bias. Solutions
to the nonlinear programming problem were possible
with a general initialization strategy, and effective par-
ameter estimates are possible, even in the face of
challenging sets of data that contain missing years,
severe under-reporting and significant noise. It is
straightforward to switch between diseases with differ-
ent serial intervals or datasets with different reporting
intervals. The approach is independent of model speci-
fics. For example, it would be straightforward to add
additional compartments to the model, such as
adding an E compartment to make an SEIR model
that would account for individuals that have been
exposed to a disease but cannot yet infect susceptibles.
One could also add a compartment to account for por-
tions of the population that were vaccinated against a
disease. Furthermore, the approach is highly efficient,
making it appropriate for much larger problem formu-
lations, or for rapid exploration and comparison of
multiple model structures. Using this flexible frame-
work, we propose to address two important advances
in future work. First, standard assumptions with the
SIR model give exponential distributions in age depen-
dence of cases. This is contrary to the age-distributed
case data we have for these locations. We propose to
develop an age- and time-discretized model to estimate
seasonal age-dependent transmission parameters using
this approach.

Also, while this work focused on estimating trans-
mission parameters for individual large cities, another
interesting problem for health officials is looking at a
spatial model of disease spread. For accurate estimation
of disease dynamics in small cities where fade-out is
observed, information is needed regarding the trans-
mission of the disease from a large city where the
disease is endemic to the small city. The approach
described in this paper is appropriate for the estimation
of large-scale, spatially distributed, nonlinear differen-
tial equation models and will be a subject of future
research.
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