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A Nonlinear Random Coefficients Model

for Degradation Testing

Suk Joo Bae Paul H. Kvam

Georgia Institute of Technology

April 29, 2004

Abstract

As an alternative to traditional life testing, degradation tests can be effective in assessing

product reliability when measurements of degradation leading to failure can be observed. This

article presents a degradation model for highly reliable light displays, such as plasma display

panels (PDPs) or vacuum fluorescent displays (VFDs). Standard degradation models fail to

capture the burn-in characteristics of VFDs, when emitted light actually increases up to a

certain point in time before it decreases (or degrades) continuously. Random coefficients are

used to model this phenomenon in a nonlinear way which allows for a nonmonotonic degradation

path. In many situations, the relative efficiency of the lifetime estimate is improved over the

standard estimators based on transformed linear models.

Keywords: Adaptive Gaussian Quadrature Approximation, Plasma Display Panel, Vacuum Fluo-

rescent Displays, Reliability.
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1 Introduction

Product testing presents a significant challenge to manufacturers of highly reliable components, such

as integrated circuits, semiconductors, fiber optics in high speed computer networks or communi-

cation systems, plasma display panels (PDPs), vacuum fluorescent displays (VFDs), light emitting

diodes (LEDs) and numerous other dependable systems. While products now are developed to last

longer and perform more reliably, product test times have been reduced to meet the time-to-market

requirements and to maximize a company’s profit and competitiveness. Data gathered from com-

ponent failures cannot always guarantee warranty contracts or safety standards will be satisfied for

the system that contains that component.

If the experimenter can measure useful information about the product, such as performance

degradation, product reliability inference can be greatly improved over regular failure-time data

analysis. In a comparison of simple degradation modeling versus traditional failure-time analysis,

Lu, et al. (1996) found that, in terms of asymptotic efficiency, degradation models are superior

if degradation data are available. Analogous to accelerated life testing (ALT), accelerated degra-

dation testing (ADT) provides the experimenter with more opportunities to draw inference on

highly reliable test items, provided there is a known functional link that relates the harsh testing

environment to the normal use environment.

1.1 Degradation Testing Literature

Degradation modeling has a rich history in the electronics manufacturing, materials testing and

various fields of engineering. Nelson (1990, chapter 11) and Meeker and Escobar (1993) review the

degradation literature, survey applications and describe basic analytical methods on ADT models.

Meeker and Escobar (1998) provide a practical guide for ADT modeling based on transformed

linear degradation models (e.g., log-linear models) along with standard ALT formulas.

There are numerous model developments for more specific degradation test experiments. Lu,

et al. (1997) derive a transformed linear model for hot-carrier-induced degradation of metalized

and oxidized semiconductors. By considering the sample size from degradation paths as random,
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Su et al. (1999) develop a random coefficients model and used the maximum likelihood estimation

(MLE) method to handle inconsistency problems found in least squares estimation (LSE). Shiau

and Lin (1999) derive a nonparametric model for describing degradation of LEDs. Tseng and Wen

(2000) propose a step-stress accelerated degradation test method to reduce experimental costs in

assessing the lifetime distribution of LEDs. Yu and Tseng (1998) suggest an on-line procedure for

determining an appropriate termination time for an ADT. Fagerstorm (1991) derives a differential

equation model to estimate the time-to-failure distribution for lasers.

Important research applications of degradation models include the testing of LEDs (Fukada,

1991), Fluorescent Lamps (Tseng et al., 1995), computer disks and compact discs (Murray, 1994),

and power supplies (Chang, 1992).

1.2 Motivating Example

This research was motivated by degradation data on the PDP, a relatively new “emmissive” flat

panel display which provides rich, accurate color fidelity. However, because the analyzed PDP data

are proprietary, we instead focus on an analogous analysis based on VFDs which share degradation

characteristics with PDPs (see Section 5). A VFD is a variation of the Triode Vacuum Tube under

a high vacuum condition in a glass envelope, and is composed of three basic electrodes: the cathode

(filament), anode (phosphor) and grid. The basic structure of the most commonly used VFDs is

shown schematically in Figure 1. Electrons emitted from a cathode (filament) are accelerated by a

grid, and collide with a phosphor coated surface of an anode electrode, producing luminescence.

PDPs and VFDs have several advantages over other display devices, including excellent visual

recognition, operation at low voltage with lower power consumption, high reliability and a wide

viewing angle. Luminosity (or brightness), measured in candela, is the critical characteristic of

light display quality and effectiveness.

In the manufacture of VFDs, chemical processing produces impurities inside the device’s vacuum

tube. Impurities remain throughout the manufacturing process, degrading the display quality.

Manufacturers burn off some harmful impurities before shipping them to customers. However,
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owing to incomplete burn-in (called “aging” in the industry), the degradation path is not monotonic.

Generally, degradation paths caused by incomplete burn-in appear in two kinds of patterns: a three-

phase and two-phase pattern.

In a three-phase degradation, the accelerated grid powered by high-voltage serves to eliminate

traces of impurities in the VFD, and as a result, the light intensity actually increases up to a certain

unknown point in time. Then, due to a temporary “poisoning effect” of impurities on the cathode

surface, the light intensity decreases rapidly for a short time period (phase two) before following

its inherent path of slow degradation (phase three).

In testing environments where degradation is accelerated by using higher voltage, the first phase

may not be discernable unless frequent early degradation measurements are taken. In this case, the

light intensity decreases rapidly until an unknown point in time (phase one) before the degradation

becomes more gradual (phase two). Eventually, after several hundred of hours of operation, the

filament and phosphor anode will degrade, and the emitted light level decreases below a fixed

threshold, when it is considered to have failed. The current VFD industry’s standard defines this

threshold as the time when a VFD’s luminosity falls below 50% of its initial luminosity. The

degradation measurements in Figure 2 illustrate the lack of stability in the initial “burn-in” stage

of a VFD lifetime with two kinds of non-monotonic patterns.

This phenomenon presents a difficulty in modeling, because current parametric models are based

on the assumption that degradation curves are simply monotonic. If the nonmonotonic behavior in

the degradation data is ignored, the degradation model will likely be poorly fit, and the estimated

lifetime distributions can be highly inaccurate.

To compensate for the lack of stability in observed degradation, Tseng et al. (1995) and Chiao

and Hamada (1996) truncate the first several hundred hours assuming that after this much test

time has been completed, the degradation path will be monotonic. However, this assumption is not

suitable for these light displays. The monotonic model ignores the effects mentioned above that can

cause one or two dramatic changes in the degradation curve, including the loss of monotonicity. Due

to short life-cycles, the reliability evaluation is based on a relatively small amount of degradation
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data measured for a short period of time, and these early truncated measurements can comprise a

significant amount of the data in the experiment. As a consequence, we risk losing efficiency in the

reliability analysis.

The paper is organized as follows. In Section 2, a general nonlinear random coefficients model

is introduced. Estimation is based on the likelihood function of the degradation data. No simple,

closed form expressions result and Section 3 compares various approximation methods. In Section

4, the failure time distribution for the VFD is derived, based on the estimated degradation curve.

Confidence statements for the distribution function are constructed through bootstrap techniques.

We feature the VFD data in Section 5, and compare the nonlinear random coefficients model to the

more standard models in Section 6. In that section, we show conditions in which the nonmonotonic

degradation model is superior.

2 Nonlinear Random coefficients Model

Random coefficients models provide a powerful tool for analyzing repeated-measurement data that

arise in various fields of application, such as economics and pharmacokinetics (Davidian and Gilti-

nan, 1995). Repeated-measurement data are generated by observing a number of individuals (or

test units) repeatedly under differing experimental conditions, where the individuals are assumed to

constitute a random sample from a population of interest. A common type of repeated-measurement

data are longitudinal data, which are ordered by time or spatial position.

Random coefficients models are intuitively appealing because they allow for flexible variance-

covariance structures of the response vector as well as linear random coefficients. Many develop-

ments for linear and nonlinear random coefficients models have occurred in recent years; see, for

example, Beal and Sheiner (1982, 1988, 1992), Lindstrom and Bates (1990), Ramos and Pantula

(1995) and Kim (1997). Davidian and Giltinan (1995) and Vonesh and Chinchilli (1997) provide

thorough overviews as well as some general theoretical developments for nonlinear random coeffi-

cients models.

Although current methods for degradation testing use random coefficients models to handle
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nonlinear forms of degradation (Meeker and Escobar, 1998), those models are linearized through

one-to-one mappings such as the natural logarithm. This affects the model of measurement error

but otherwise preserves the simplicity of a linear model. In this section, we consider nonlinear

functions that cannot be simplified to linear regressions (i.e., nonmonotonic models). While the

resulting degradation curves fit the data more closely, it is up for debate whether the introduction

of a complex model will be justifiable for a particular application. In the case of light displays, we

will see that the nonmonotonic behavior in the degradation supports such a model.

A general, nonlinear random coefficients model for the jth response on the ith individual test

item can be defined as

yij = f(xij , βi) + eij i = 1, . . . , m, j = 1, . . . , ni, (2.1)

where yij is the jth response on the ith individual, xij is the covariate vector for the jth measurement

on the ith individual, f(·) is a nonlinear function of the covariate vector and parameter vector βi

and eij is a normally distributed random error term.

Modeling the ith individual response is accomplished by letting yi and ei be the (ni × 1)

vectors of responses and random within-individual errors for individual i. Define the (ni× 1) mean

response vector f i(βi)= (f(xi1,βi), . . . , f(xini ,βi))
′ for the ith individual test item, depending on

the (p×1) individual-specific regression parameter βi. Suppose that E(ei|βi) = 0 and Cov(ei|βi) =

σ2G
1/2
i (βi)G

1/2
i (βi) = σ2Gi(βi), where G

1/2
i (βi) denotes a (ni×ni) positive definite matrix which

depends on i only through its dimension. The (k × 1) vector bi represents a vector of random

effects, and β is (r × 1) vector of fixed effects.

Based on the set-up in Sheiner and Beal (1985) and Davidian and Giltinan (1995), the general

two-stage nonlinear random coefficients model can be written as follows:

Stage 1 (within-individual variation)

yi = f i(βi) + ei (2.2)

Stage 2 (between-individual variation)

βi = Aiβ + Bibi (2.3)
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where bi are independent and identically distributed as Normal(0, D), and Ai, Bi are known design

matrices of size (p × r) and (p × k) for the fixed and random effects, respectively. D is a (k × k)

covariance matrix and βi in (2.3) is specific to the ith test item through bi, allowing the conditional

moments of ei to be expressed as ei|bi ∼ N(0, σ2Gi(βi)).

Within the framework of (2.2) and (2.3), the random effects are unobserved quantities, and

maximum likelihood estimation in (2.2) is based on the marginal density of y = (y′1, . . . , y
′
m)′

p(y|β,D, σ2) =
∫

p(y|b,β, D, σ2)p(b)db. (2.4)

In general this integral does not have a closed-form expression when the model function f is

nonlinear in b, and approximation methods are used to help solve the estimations.

3 Approximation Methods

In this section, we consider four different approximations to the log-likelihood corresponding to

(2.4): a first-order method (Beal and Sheiner, 1982, 1985), Lindstrom and Bates’s (1990) algorithm,

adaptive importance sampling (Pinheiro and Bates, 1995), and adaptive Gaussian quadrature (Pin-

heiro and Bates, 1995). For two-stage nonlinear models, the marginal distribution of yi is based

on the random effects bi and the individual error vectors ei. Suppose that

ei = G
1/2
i (βi)εi, (3.5)

where the random error εi is assumed to be independent of bi, and normally distributed with mean

zero and covariance matrix σ2Ini . G
1/2
i (βi) is the Cholesky decomposition of Gi(βi), representing

the heteroscedasticity or correlation among within-individual errors. Then, the first-stage model

may be rewritten as

yi = f i(β, bi) + G
1/2
i (β, bi)εi. (3.6)

In many practical applications involving inference on the degradation of individuals, within-

individual heteroscedasticity and correlation are dominated by between-individual variation bi and
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thus can be ignored. Gi(βi) = Ini is the common specification of uncorrelated within-individual

errors with constant variance.

Estimation of the population parameters β can be interpreted as the “typical” fixed-effect value,

and also represents the parameter values producing a “typical” yi response. This issue has been

discussed by Zeger, et al. (1988), who introduced the terminology of population-average models,

where attention focuses on inference in the marginal distribution and subject-specific parameters,

which pertain to inference in the conditional distribution for a given subject (see also Lindstrom

and Bates (1990)).

3.1 First-Order Approximation

The Taylor series expansion of (3.6) about E(bi) = 0 is

yi ≈ f i(β,0) + Λi(β,0)∆bi
(β,0)bi + G

1/2
i (β,0)εi (3.7)

where Λi(β,0) is the (ni × p) matrix of derivatives of f i(βi) with respect to βi and ∆bi(β,0) is

the (p× k) matrix of derivatives of βi with respect to bi, evaluated at bi = 0.

Defining the (ni × k) matrix Zi(β,0) = Λi(β,0)∆bi(β,0) and e∗i = G1/2(β,0)εi, equation

(3.7) may be shortened to yi ≈ f i(β,0) + Zi(β,0)bi + e∗i . The marginal mean and covariance of

yi can be specified as E(yi) ≈ f i(β,0), Cov(yi) ≈ σ2Gi(β,0) + Zi(β,0)DZ ′
i(β,0) ≡ Σi(β,0, ω)

where ω is a vector containing the unknown covariance parameters σ2 and D.

Beal and Sheiner (1982, 1985) utilize extended least squares (ELS) to estimate β and ω. Under

the previous normality assumptions, ELS is equivalent to joint maximum likelihood estimation of

(β,ω), which is known as the first-order method and minimizes the objective function:

QFO(β, ω) =
m∑

i=1

{log |Σi(β,0, ω)|+ (yi − f i(β,0))′Σ−1
i (β,0, ω)(yi − f i(β,0))}. (3.8)

They note that ELS estimators are consistent and asymptotically normal under some regularity

conditions provided that the first and second moments of yi are correctly specified. To minimize

(3.8), Beal and Sheiner (1982) employ a derivative-free quasi-Newton algorithm which avoids the

need for specifying ∂Σi(β,0, ω)/∂β.
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3.2 Lindstrom-Bates Algorithm

Lindstrom and Bates (1990) suggest an alternative to the first-order method by considering a lin-

earization of (3.6) in the random effects about some value b∗i that is closer to bi than its expectation

0. The Taylor series expansion about bi = b∗i yields

yi ≈ f i(β, b∗i ) + Λi(β, b∗i )∆bi
(β, b∗i )(bi − b∗i ) + G

1/2
i (β, b∗i )εi. (3.9)

where Λi(·),∆bi
(·) are defined as in (3.7). This notation makes explicit the fact that the expansion

in bi has been taken about b∗i .

In order to construct an estimation procedure for β and ω, reasonable values of b∗i must first be

selected. Then, treating the estimate as fixed, either generalized least squares (GLS) or maximum

likelihood (ML) can be used to estimate β and ω. Lindstrom and Bates (1990) propose the following

iterated two-step estimation algorithm:

1. Pseudo-data (PD) step: Given the current estimate ω̂ of ω, minimize

m∑

i=1

{log |D̂|+ b
′
iD̂

−1
bi + log |σ̂2Gi(ω̂)|+ σ̂−2 (yi − f i(β, bi))

′G−1
i (ω̂) (yi − f i(β, bi))}(3.10)

with respect to β and bi. The resulting estimates are denoted by b̂i and β̂0.

2. Linear mixed effects (LME) step: Estimate β and ω with the values β̂ and ω̂ that minimize

QLB(β, ω) =
m∑

i=1

{| log Σi(β̂0, b̂i, ω)|+ r′iΣ
−1
i (β̂0, b̂i,ω)ri} (3.11)

where ri ≡ ri(β, b̂i, β̂0) = yi − f i(β, b̂i) + Zi(β̂0, b̂i)b̂i.

As an alternative to (3.11), one can use a restricted maximum likelihood (REML) approach

which minimizes

QLB,REML(β, ω) = QLB(β, ω) + log |X ′
i(β̂0, b̂i)Σ−1

i (β̂0, b̂i, ω̂)Xi(β̂0, b̂i)|, (3.12)

where Xi(β̂0, b̂i) = Λi(β̂0, b̂i)∆βi
(β̂0, b̂i), and ∆βi

(β̂0, b̂i) is the (p × r) matrix of derivatives of

βi with respect to β at bi = b̂i.
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The algorithm alternates between the PD and LME steps until some convergence criterion is

met, with final estimates denoted by (β̂LB, ω̂LB, b̂i,LB). The b̂i,LB may be regarded as empirical

Bayes estimates of the random effects; these estimates are approximate posterior modes for bi, where

the fixed parameters β and ω are replaced by estimates. Wolfinger (1993) also showed that LME

approximation to the restricted log-likelihood (3.12) is equivalent to a Laplacian approximation to

the integral (2.4) when a flat prior is assumed for β.

3.3 Adaptive Importance Sampling Approximation

Importance sampling is a simple and efficient method for performing Monte Carlo integration.

Geweke (1989) developed the methods for the systematic application of Monte Carlo integration

with importance sampling to Bayesian inference in econometric models. Successful convergence

relies mainly upon the choice of the importance distribution from which the sample is drawn and

the importance weights are calculated. If this distribution is hard to find by integrating the marginal

density, an easily sampled approximation can be used. From (2.4), the marginal density of yi can

be written as

p(yi|β, D, σ2) =
∫

(2πσ2)−ni/2|D|−1/2 exp(−vi(β, bi, D)/2)dbi, where

vi(β, bi, D) = b′iD
−1bi + σ−2(yi − f i(β, bi))′G−1

i (β, bi)(yi − f i(β, bi)).

For the nonlinear random coefficients model, this integrand is approximately normally distributed,

giving a natural choice for the importance distribution.

Define NIS as the number of importance samples to be chosen. Importance samples can be

generated by selecting a standard normal vector z∗ and calculating the sample of random effects as

b∗i = b̂
∗
i + V i(β,D)−1/2z∗, where b̂

∗
i is the value of bi minimizing vi(β, bi,D) and V i(β,D) is the

approximation for the second derivatives of vi(β, bi,D) with respect to b̂
∗
i . If we let V i(β, D)−1/2

denote the inverse of the Cholesky factor of V i(β,D), the importance sampling approximation to

the log-likelihood of y can be written as
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QIS(β, D, σ2|y) = −1
2

(
N log(2πσ2) + m log |D|+

m∑

i=1

log |V i(β, D)|
)

+
m∑

i=1

log




NIS∑

j=1

exp{−vi(β, D, b∗ij)/2 + ‖z∗j‖2/2}/NIS


 ,

where N =
∑m

i=1 ni. In the case the model function is linear in b, the right side of (2.4) is

p(yi|bi,β, D, σ2)p(bi) = p(yi|β, D, σ2)φ(b̂i, V i(β,D)−1) where φ is the Gaussian density function.

In this case, the results are exact and the importance sampling weights are equal to p(yi|β, D, σ2).

3.4 Adaptive Gaussian Quadrature Approximation

The Gaussian quadrature approximates the integral of a function with respect to a given kernel by

a weighted sum over predefined abscissas for the random effects. Unlike other numerical integration

techniques, the abscissas are unevenly spaced throughout the interval of integration. With a modest

number of quadrature points, along with appropriate centering and scaling of the abscissas, the

Gaussian quadrature approximation can be highly effective (see Abramowitz and Stegun, 1964 for

details). We consider an importance sample version of the Gaussian quadrature rule, which we

denote by adaptive Gaussian quadrature.

For j = 1, . . . , NGQ, suppose that (z∗j , wj) are, respectively, the standard Gauss-Hermite abscis-

sas and weights for the Gaussian quadrature rule with NGQ points (Golub and Welsch, 1969). The

adaptive Gaussian quadrature is then given by

∫
exp[−vi(β,D, bi)/2]dbi =

∫
|V i(β,D)|−1/2e−vi[β,D,b̂

∗
i +V i(β,D)−1/2z∗]/2+‖z∗‖2/2e−‖z

∗‖2/2dz

' |V i(β, D)|−1/2

NGQ∑

j1=1

. . .

NGQ∑

jk=1

e−vi[β,D,b̂
∗
i +V i(β,D)−1/2z∗j ]/2+‖z∗‖2/2

k∏

q=1

wjq ,

where z∗j = [z∗j1 , . . . , z
∗
jk

]′. The objective function to minimize corresponds to negative log-likelihood:

QAGQ(β, D, σ2) = −1
2

(
N log(2πσ2) + m log |D|+

m∑

i=1

log |bVi(β,D)|
)

+

m∑

i=1

log




NGQ∑

j=1

exp
{
−vi[β,D, b̂

∗
i + V i(β, D)−1/2z∗j ]/2 + ‖zj‖2/2

} k∏

q=1

wjq


 .
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When NGQ = 1, adaptive Gaussian quadrature approximation is equivalent to Laplacian ap-

proximation, which serves as a Bayesian method for estimating marginal posterior densities and

predictive distributions, because in this case z1 = 0 and w1 = 1. This Adaptive Gaussian quadra-

ture approximation is similar to the approximation obtained from adaptive importance sampling;

the basic difference is that the former uses fixed abscissas and weights, but the latter allows them to

be determined by a pseudo-random mechanism. As with the importance sampling approximation,

the adaptive Gaussian quadrature produces the exact log-likelihood when the model function is

linear in random effects b. In practice, NGQ ≤ 7 generally suffices and NGQ = 1 often provides a

reasonable approximation (Pinheiro and Bates, 1995).

4 Failure-Time Distribution

To derive the failure-time distribution and its quantiles, define failure time T as the time that

the actual degradation path τ(t; β, b, e) reaches the prespecified degradation level τf . Then the

distribution of the failure time is

FT (t) = Pr(T ≤ t) = Pr[τ(t; β, b,e) ≤ τf ]. (4.13)

The failure-time distribution depends on the distribution of the random coefficient b, which is de-

termined by the variance-covariance matrix D. In this section, the failure-time distributions under

two different approaches to degradation modeling are considered: the linear random coefficients

(LRC) model and the nonlinear random coefficients (NRC) model.

In many cases, the LRC model reveals a closed-form expression FT (t) and the computations

are straightforward. Tseng et al. (1995) and Chiao and Hamada (1996) modeled (transformed)

luminosity degradation for fluorescent lamps and LEDs using a linear random coefficients model

after truncating the first few hundred hours on the test when degradation was unstable.

Let y(t) be the luminosity at time t and y(t0) be the baseline luminosity measured at the burn-in
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time t0. The LRC model for observed degradation, i = 1, . . . , m, j = 1, . . . , ni, is

τ(tij ;β, bi, eij) = log(y(tij)) = (β0 + b0i) + (β1 + b1i)(tij − t0) + eij , (4.14)

with fixed effect β = (β0, β1) and random coefficient bi = (b0i, b1i) which characterizes the item-

to-item variation. We assume bi ∼ N (0,D) with elements D00 = σ2
0, D11 = σ2

1, and D01 = D10 =

ρσ0σ1, and bi is independent of the error term eij ∼ N (0, σ2). The failure-time distribution for

model (4.14) is

FT (t) = Pr[(β0 + b0i) + (β1 + b1i)(t− t0) ≤ τf ]

≈ Φ
{

[β0 + β1(t− t0)]− τf

[σ2
0 + (t− t0)2σ2

1 + 2(t− t0)ρσ0σ1]1/2

}
t > t0, (4.15)

where Φ{·} is the standard normal distribution function. The pth quantile of the failure-time

distribution is the value of tp such that Pr(T ≤ tp) = p, so that

zp =
(β0 + β1t

′
p)− τf

[σ2
0 + t′2p σ2

1 + 2t′pρσ0σ1]1/2
, (4.16)

where t′p = tp − t0 and zp is the pth quantile of the standard normal distribution.

The MLEs for the parameters in the failure-time distribution can be computed by using the

Newton-Raphson procedure described in Lindstrom and Bates (1988). MLEs of the FT (t) and tp

are then found by replacing the model parameters in (4.15) and (4.16), respectively, with their

estimates. In the case τf is a relative threshold (e.g., set to 50% of the starting degradation

level), estimation of FT (t) is complicated due to τf depending on the degradation so Monte Carlo

simulation is used to evaluate F̂T (t). Pointwise confidence intervals for FT (t) can be obtained

by using a parametric bootstrap procedure, similar to Meeker and Escobar (1998). Confidence

intervals for quantiles are established from these methods. The procedure for generating F̂T (t),

and confidence intervals for FT (t) are similar as that in the NRC model, illustrated below.

In the NRC model (2.1), if there is no closed-form expression for F̂T (t) or if the numerical

transformation methods are overly complicated, we can choose to evaluate F̂T (t) using Monte

Carlo simulation. For this evaluation, we first use the model parameter estimates β̂, b̂, and D̂

(obtained from the m sample paths) to generate the N simulated realizations β̃, b̃. From N values

13



of β̃ and b̃, compute the N failure times t̃ by substituting β̃ and b̃ into τ(t;β, b), and then solve

for τf . For any desired values of t, FT (t) is estimated from the simulated empirical distribution

F̂T (t) ≈ number of t̃ ≤ t

N
. (4.17)

The procedure for constructing parametric bootstrap confidence intervals is implemented with

the following steps.

Step 1. From the estimates β̂, b̂, D̂, and σ̂2 (hereafter, assuming that Gi(βi) = Ini) obtained by using

ML or approximation methods, generate m simulated realizations of β∗i , b∗i , i = 1, . . . , m.

Step 2. Compute m simulated degradation pathes

y∗ij = τ(tij ;β∗, b∗i ) + e∗ij (4.18)

up to the specified stopping time tc, where the e∗ij values are generated from N (0, σ̂2), giving

bootstrap estimates β̂
∗
, b̂

∗
, and D̂

∗
.

Step 3. Following the Monte Carlo simulation mentioned above, compute the bootstrap estimates

F̂ ∗
T (t) at desired values of t with β̂

∗
, b̂

∗
, and D̂

∗
.

Step 4. Repeat Step 1-3 B times (B ≥ 1, 000), then obtain the bootstrap estimates F̂ ∗
T (t)1,F̂ ∗

T (t)2,

. . ., F̂ ∗
T (t)B. Sort the B bootstrap estimates in increasing order giving F̂ ∗

T (t)[b], b = 1, . . . , B.

Step 5. Following Efron and Tibshirani (1993), determine the lower and upper bounds of pointwise

100(1− α)% confidence intervals for the distribution function FT (t):

[FT (t), FT (t)] = [F̂ ∗
T (t)[l], F̂

∗
T (t)[u]], (4.19)

where l = B × Φ[2Φ−1(q) + Φ−1(α/2)], u = B × Φ[2Φ−1(q) + Φ−1(1− α/2)] and

q =
number of F̂ ∗

T (t)b ≤ F̂T (t)
B

, b = 1, . . . , B. (4.20)
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5 VFD example

As mentioned in Section 1.2, this NRC model (2.1) is motivated by degradation of PDPs, but due

to the proprietary nature of the experiment, we focus instead on VFDs, which have analogous

degradation characteristics. Unfortunately, the VFD data are relatively sparse compared to the

more recent PDP data that motivated the study (more PDP units were tested at a larger variety

of test levels). As a consequence, the example below admits a casual disregard for parsimony for

the sake of illustration.

The VFD degradation was accelerated by using both increased voltage and temperature during

product testing. Because the ALT link function was assumed to be completely known in the

manufacturer’s lifetime analyses, the information from the link function is not necessary to illustrate

the nonlinear random coefficients model. In this example degradation is observed at a single test

level. Degradation tests of VFD luminosity are generally executed up to 1,000 hours for customer

warranty purposes. In a special extended test, luminosity was also measured at 3,000 hours to

check the accuracy of the failure-time estimates derived from the field degradation tests that are

censored at 1,000 hours.

5.1 Comparison of Approximation Methods

In this subsection, the four approximation methods are compared using the VFD testing data. The

individual VFD degradation paths consist of measurements of VFD luminosity (at six different time

points) for five VFDs, taken over a period of 3,000 hours. Model fitting is especially challenging

here due to the sparseness of the data and the complexities required of a nonlinear model.

The lifetime of VFDs is limited by the evaporation of electrons deposited on the cathode. The

degradation (evaporation) rate is constant over time, that is, dA/dt = −λ, where λ > 0. Con-

sequently the amount of degradation in luminosity at time t is A = β1exp[−β2t], β1, β2, t > 0,

where β1 denotes initial luminosity. However, some impurities remain during the initial operation,

degrading the display quality. Because the impurities decrease gradually during operation (“oper-

ation burn-in”), the brightness can increase in time. Combining the cathode degradation and the
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effect of burn-in, the degradation model of a luminosity can be expressed by

E[yt] =
β1t

β2

exp[β3t]
. (5.21)

The impurity burn-in rate and the cathode degradation rate are not separable; to model this

conflictive behavior in luminosity degradation explicitly, we introduce the following four-parameter

(nonmonotonic) model to the degradation data:

E[yt] =
β1t

β2

exp[β3tβ4 ]
, t > 0. (5.22)

With both β2 and β4 in the model, (5.22) provides great flexibility in describing two and three-phase

degradation patterns.

This model has precedence in analyzing longitudinal data as described in Vonesh and Chinchilli

(1997). As a practical consideration, models with fewer than four parameters failed to characterize

the nonmonotonic degradation in VFD and PDP data. Furthermore, a fixed effects model (with four

parameters) also fails to adequately describe the degradation; if we ignore the grouping of brightness

measurements according to individual units and fit a single model to the collective VFD paths, then

using nonlinear least squares, we would estimate E[yt] = (11259.7 · t0.416)/(exp[2.560 · t0.116]), t > 0.

Figure 3 shows boxplots for the computed residuals resulting from fitting this model for each VFD,

and clearly indicates inadequate model fit. If a single brightness curve represents the collective

VFDs, the differences between units are confounded with the measurement error in the residuals,

thus inflating the residual standard error estimate (see Pinheiro and Bates, 2000, p. 279). To

accommodate this between-unit variation, a separate nonlinear model was fitted to each unit; the

individual specific nonlinear model shows an improved fit; the resulting boxplots of the residuals

are displayed in Figure 4.

Despite the improved fit, Table 1 shows that from this separate nonlinear model fitting to each

VFD, the parameter estimates for the second and third subjects are highly unstable and resulting

residual variance is higher, which is a consequence of overfitting sparse data with a complex model.

As a result, the two-stage estimation method suggested by Lu and Meeker (1993), under the

assumption that individual-specific regression parameters are estimable for each subject, is less
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suited for the VFD example. Instead, an approximation method should be used to compute the

nonlinear model.

To recap, the data suggest that the VFD degradation model should include variability among

and within individual units, which is modeled most effectively using random coefficients. Param-

eters of the nonlinear random coefficients model can be estimated using one of the approximation

methods outlined in the last section. An adaptive Gaussian quadrature (with NGQ = 1) was used

to decide which of the coefficients in the model require random effects to account for between-unit

variation (this is the default method in SASTM NLMIXED procedure).

The degradation model must simultaneously reflect the variation in initial luminosity as well

as the degradation rate, thus initial luminosity (β1 by assuming t = 1) varies from unit to unit.

Further analysis revealed that a model with two random coefficients provides a superior fit to the

model with just one; the average prediction error was 10 times larger for the simpler model. The

final selected nonlinear model, then, is based on four unknown parameters (β1, ..., β4) and two

random effects (b1, b2):

yij =
(β1 + bi1) · tβ2

ij

exp[(β3 + bi2) · tβ4
ij ]

+ eij , (5.23)

where yij and tij represent the jth luminosity response and measurement time on the ith VFD,

respectively. The random effects (bi1, bi2), i = 1, . . . , 5 are i.i.d. N (0, σ2
bI2), and independent of

the error term.

Table 2 shows estimation results using the first-order approximation, the Laplacian approxi-

mation, the adaptive importance sampling approximation, and the adaptive Gaussian quadrature

approximation. The NLMIXED procedure and NLINMIX macro program in SASTM were used for

all of the approximations. The adaptive Gaussian approximation method is based on three quadra-

ture points; when NGQ > 5, the method fails to converge consistently. The parameter estimates

from the Laplacian method are based on the adaptive Gaussian quadrature with NGQ = 1. The

Lindstrom-Bates algorithm does not converge in some regions of the parameter space, so results

from the LB approximation are not listed in the table. The correlation between random effects was

computed to be negligible over all approximation methods.
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For this example, Table 2 shows that the results are similar for all approximations except the

first-order approximation, for which the variance of the error term is 17 times larger than the other

approximations. Estimates of the fixed-effects in the VFD degradation model are dramatically

different for the first-order approximation because the random-effect parameters (bi1, bi2) do not

enter the model linearly.

Three criteria for selecting the most suitable approximation are listed in Table 3. Comparisons

are based on log-likelihood, relative bias and the computational efficiency. The relative bias is the

absolute difference between the real response and prediction value divided by the real response.

Computational efficiency is measured in terms the number of function evaluations until convergence

is achieved. Of the three approximation methods still under consideration (Laplacian, Adaptive

Importance Sampling, Adaptive Gaussian Quadrature), the Laplacian approximation is considered

the best under each of the three criteria. Obviously, the computational efficiency for the first-

order approximation is not directly comparable to other approximations. The final parameter

estimates and their standard errors, based on the Laplacian approximation, are tabulated in Table

4. The standard errors are constructed from the variance-covariance matrix computed as the

inverse Hessian matrix. In the Laplacian approximation, Hessian matrix ∂2vi(β, D, bi)/∂bi∂b′i is

approximated by

' ∂f i(β, bi)
∂bi

∣∣∣
b̂i

∂f i(β, bi)
∂b′i

∣∣∣
b̂i

+ σ2D−1, (5.24)

where b̂i = arg minbi
vi(β,D, bi). The statistical inference about the parameters and their asymp-

totic properties are demonstrated in detail by Pinheiro and Bates (2000).

5.2 Comparison of Degradation Models

For the LRC model in (4.14), degradation measurements earlier than t0 = 240 hours (10 days) are

discarded to increase the chance that the resulting degradation process is monotonically decreasing.

Parameters were estimated using maximum likelihood: β̂ = (6.7,−1.92×10−4)′, D̂00 = 2.38×10−3,

D̂11 = 4.99× 10−10, D̂01 = D̂10 = −5.13× 10−8, σ2 = 6.88× 10−3.

The LRC model failed to accurately fit an individual degradation path, even after the initial
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measurements from the burn-in stage are discarded. This is because the LRC model ignores the

poisoning effect (with steep degradation) that follows the initial burn-in stage. In contrast, the NRC

model fit (based on parameter estimates resulting from the Laplacian approximation) successfully

captured the burn-in characteristic of VFDs. The predicted values for response, along with the

average relative prediction biases are obtained by plugging the estimates into the LRC model along

with the estimates in Table 4 from the NRC model. Prediction bias is much higher in the LRC

model, especially for samples 2 and 3 which have an obvious nonmonotonic behavior. The average

prediction bias for the LRC model (0.0627) is 60% higher than that of the NRC model (0.0393),

which shows that the prediction from the NRC model is substantially more reliable.

For comparison, using Monte Carlo simulation (with N = 50, 000), the failure-time distributions

using were derived for both LRC and NRC models. Both failure-time distributions were based on

the threshold τf with the extended lines of five degradation paths censored at 3, 000 hours. Applied

to the procedure in Section 4, F̂T (t) and its 90% bootstrap confidence intervals are plotted in Figure

5. The point estimates and 90% confidence intervals (in parenthesis) of pth quantiles of failure-

time distribution are summarized in Table 5, for p = .05, .1, and .5. The intervals are based on

B = 2, 000 bootstrap samples.

6 Monte Carlo Results

In this section, we use simulated VFD data to compare the analytical results of the random co-

efficients degradation model to more standard degradation models. Data are generated from two

different nonlinear models: the random coefficients model (5.23) introduced in the last section

Model I : yij =
(β1 + bi1) · tβ2

ij

exp[(β3 + bi2) · tβ4
ij ]

+ εij

and an alternative nonlinear degradation model based on a mixture of three simpler degradation

functions:
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Model II : yij = [β1 + (β2 + bi2)tij ] · I(0, 250] + [(β3 + bi1) + (β4 + bi2)tij ] · I(250, 1000)

+[β5 + β6tij ] · I[1000, 3000] + εij ,

where yij represents the measured (natural) logarithm of the luminosity at jth measurement on

the ith individual and I[·] is an index function for time. Model II is simulated on the basis of the

intercept and slope estimates obtained by fitting five degradation paths in separate (transformed)

linear models in corresponding time intervals. Model II is constructed in such a way that neither

the NRC nor LRC could fit the model particularly well. For model I, β = (900, 0.06, 0.04, 0.424),

bi1 ∼ N(0, σ2
1), bi2 ∼ N(0, σ2

2), and Cov(bi1, bi2) = 0. It reaches a peak luminosity at 19.7 hours, on

average. Model II is generated with β = (6.7, 2.0× 10−4, 6.9,−5.0× 10−4, 6.65,−2.0× 10−4), and

has two random effects as Model I, with different values of σ2
1 and σ2

2. The error variance σ2
ε = 100

is the same for both models.

To compare the NRC model to the LRC model, we fit (5.23) to the generated data, so that

the NRC model will fit data generated from Model I by design. For the LRC model, degradation

measurements earlier than t = 240 hours (10 days) are discarded to increase the chance that the

resulting degradation process is monotonically decreasing.

Three sampling schemes are based on six, seven and nine measurement points. Sample I uses

the same time points (in hours) from the VFD example: (0, 250, 500, 800, 1000, 3000). Sample II

includes one additional time point at 125 hours. Sample III consists of three different additional

time points: (1500, 2000, 2500). Table 6 lists the percentage increase in average relative bias when

the (truncated) log-linear model is used with varying random coefficients. The absolute relative

bias, |y − ŷ|/y, is aggregated over every simulated degradation point y in the simulation.

The efficiency gained from NRC model is significant, especially at large values of (σ2
1, σ

2
2) in

Model II. In addition, when the data were generated from Model II, the NRC model is more

robust, especially in sample II, when an earlier degradation measurement is taken. The results

suggest that sampling more degradation measurements at the beginning of the test has potential
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to improve model precision dramatically. The simulations are obviously computationally intensive,

and each table value is based on just 250 simulations.

7 Conclusion and Future Research

The nonlinear random coefficients model was derived to characterize the nonmonotonic behavior

of light display degradation. Admittedly, most degradation phenomenon can be described with

simpler linear regressions. Only in unusual circumstances, such as the problems with unstable light

display degradation described in Section 1, are more complex models justified. In this paper we

found the NRC model to adequately describe this effect of burn-in and showed the data analysis

with the refined model can be significantly more efficient than a simpler model that ignores the

initial measurements during the burn-in period. This improvement is apparent in simulation studies

that contrast linear and nonlinear random coefficients models under different types of degradation.

Further study is needed to determine when and how frequently the units should be inspected

during that time interval. With the nonmonotonic model, measurement spacing is not apparent

from standard regression results; extra measurements close to time of phase change might be more

valuable than previously assumed. Estimating and testing this unknown phase change time can be

useful for studying the “burn-in” process, in particular.
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Figure 1: Basic structure of a Vacuum Fluorescent Display
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Figure 2: Nonmonotonic degradation paths for VFDs
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Figure 3: Boxplots of residuals from a fixed-effects degradation model
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Figure 4: Boxplots of residuals from individually fitted models

27



2500 3000 3500 4000 4500 5000

Failure_time (Hours)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
df

Figure 5: Estimated CDF of VFD unit lifetime along with 90% (pointwise) confidence intervals

Subject β1 β2 β3 β4

1 1091.8 0.1203 0.1617 0.2928

2 2.9× 107 0.8578 10.5036 0.0664

3 8.0× 107 0.7450 9.4013 0.0636

4 887.3 0.0475 0.0362 0.4182

5 980.0 0.0542 0.0677 0.3306

Table 1: Parameter estimates for individual VFD degradation paths

Approximation method β1 β2 β3 β4 σ2
b1

σ2
b2

σ2
e

First-order 1825.96 0.2324 0.7376 0.1824 253.75 5× 10−5 1729.24

Laplace 900.02 0.0810 0.0620 0.3828 10.0056 8.411× 10−6 100.10

Importance sampling 900.80 0.0634 0.0409 0.4244 10.4036 1.4× 10−5 102.90

Adap. Gaussian 901.09 0.0660 0.0415 0.4185 10.7038 5.4× 10−6 104.20

Table 2: VFD parameter estimates and error variances for four approximation methods
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Approximation method logL Average relative bias # of evaluations

First-order -156.55 0.0823 2855

Laplace -363.65 0.0476 427

Importance sampling -356.35 0.0478 632

Adap. Gaussian -364.65 0.0476 1924

Table 3: Log-likelihood, average relative bias, and computational efficiency for four approximation

methods

Parameter Estimate Standard error

β1 900.02 0.6759

β2 0.081 0.0038

β3 0.062 0.0053

β4 0.3828 0.0073

σ2
b1

10.0056 0.02023

σ2
b2

8.411× 10−6 2.458× 10−6

σ2
e 100.10 4.5227

Table 4: Laplace approximation parameter estimates and their standard errors

quantile

.05 .1 .5

LRC model 3,000 3,125 3,675

(2,892.5 , 3,062.5 ) (3,042.5 , 3,197.5) (3,587.5 , 3,787.5 )

NRC model 2,905 3,045 3,615

(2,842.5 , 3,007.5 ) (2,967.5 , 3,137.5 ) (3,497.5 , 3,707.5 )

Table 5: Quantiles and their bootstrap confidence intervals for estimated failure-time distributions.
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Model σ2
1 σ2

2 Sample I Sample II Sample III

I 5 7× 10−6 +18% +16% +17%

I 10 1.4× 10−5 +9% +6% +8%

I 20 2.8× 10−5 -4% +14% +17%

II 0.01 2.5× 10−11 +3% +4% +4%

II 0.02 1.0× 10−10 +23% +30% +13%

II 0.04 4.0× 10−10 +46% +62% +19%

Table 6: Increase in absolute relative error with respect to truncated log-linear model
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