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Abstract
Awareness plays a vital role in informing and educating people about infection risk dur-
ing an outbreak and hence helps to reduce the epidemic’s health burden by lowering the
peak incidence. Therefore, this paper studies a susceptible-aware-infected-recovered
(SAIR) epidemic model with the novel combinations of Michaelis-Menten functional
type nonlinear incidence rates for unaware and aware susceptible with the inclusion
of time delay as a latent period and a saturated treatment rate for infected people. The
model is analyzed mathematically to describe disease transmission dynamics in two
obtained equilibria: disease-free and endemic. We derive the basic reproduction num-
ber R0 and investigate the local and global stability behavior of obtained equilibria
for the time delay � ≥ 0. A bifurcation analysis is performed using center manifold
theory when there is no time delay, revealing the forward bifurcation when R0 varies
from unity.Moreover, the presence of Hopf bifurcation around EE is shown depending
on the bifurcation parameter time delay. Lastly, the numerical simulations validate the
analytical findings.
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1 Introduction

Epidemics remain a significant challenge for human survival. Every year, more than
8.7 million people die due to infectious diseases such as diarrhea, measles, dengue,
etc. These diseases are the reason for high mortality and morbidity around the world
every year. The compartmental modeling of infectious diseases is valuable in enhanc-
ing the understanding of the mechanisms of disease transmission. By analyzing the
model, we can foresee future outbreaks up to a large extent which helps in evaluating
control methodologies. A compartmental model describes the disease transmission
mechanism by dividing the total population into distinct subclasses according to their
epidemiological status. In 1927, Kermack andMcKendrick [28] presented a determin-
istic epidemic model by considering three epidemiological compartments (classes):
the susceptible compartment (S(t)), which measures the type of those individuals
who can catch the disease and become infectives, the infective compartment (I (t))
that measures those individuals who are infected and can spread it to others, and the
removed compartment (R(t)), that defines the class of those individuals who have
recovered from the disease. Many epidemic models have been formulated with dif-
ferent compartments, such as SIS, SIR, SIRS, SEIS, SEIR, SVIRS, SFIR, etc. [8, 11,
13, 17, 20, 25, 32, 45, 50, 51].

A significant factor in the dynamic study of infectious disease is the incidence
rate by which infection transmits to susceptible individuals. The incidence rate mea-
sures the frequency of occurrence of new infection per unit time. In 1927, Kermack
Mckendrick assumed the bilinear incidence rate of the form g(I )S = k I S, where
g(I ) = k I is unbounded for I ≥ 0. This incidence rate is real for a small population
of infected individuals, but it is unfeasible for a high density of infected populations.
Therefore, numerous authors are keen to deliberate nonlinear incidence rates to study
the transmission dynamics of infectious diseases (e.g., [2, 6, 19, 20, 29, 31, 36, 48,
51]). In the present article, we consider the saturating Michaelis-Menten functional
response type incidence rate in which the number of adequate contacts per infective
in unit time grows less rapidly as the total population increases. Michaelis-Menten
contact rate is of the form g(I ) = βσ I/(1+ I ). It combines the bilinear and standard
incidence rates methods, by assuming that if the number of infectives I is suitably
low, the number of actual per capita infectives g(I ) is proportional to I , whereas, in
the case of a high density of infected individuals I , there is a saturation effect which
makes the number of actual infectives constant [3, 4]. Consideration of time delay
in the epidemic model emphasizes that a person may not be infectious until some
time after becoming infected, which has a significant role in determining the number
of infected individuals during an outbreak. Also, the inclusion of time delay in the
epidemic models can induce oscillations and periodic solutions as the delay increases.
Therefore, many authors focused on considering the time delay in the epidemic [24,
25, 41, 50]. Motivated by the work [3–5], in the present article, we incorporate the
incidence rate of Michaelis-Menten type functional response for both susceptible and
aware classes individuals with time delay representing latent period.

Affordable and safe medical treatments are also necessary, which reduce and pre-
vent the increase in the number of infected individuals. Treatment is a powerfulmethod
that fights against the infection by stopping it from reproducing or killing bacteria.
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Wang and Ruan considered a constant treatment rate in the SIR epidemic model [47].
However, a constant treatment rate is appropriate when humans have rich and bet-
ter treatment resources. Therapeutic amenities and subsequent treatments might need
some time to develop and implement; therefore, the choice of a reasonable treatment
rate is crucial. Due to the limited medical resources, providing treatment to all the
infectives puts a tremendous burden on public health associations. Hence, the saturat-
ing treatment rate, which tends to a finite limit as the number of infected individuals
increases, makes the epidemic model more realistic. Therefore, Wang [46] considered
a SIR epidemic model with a piecewise function type treatment rate given by

h(I ) =
{
r I , 0 < I ≤ I0
r I0, I > I0

In this form, the treatment rate and the number of infected individuals are proportional
if the maximal treatment capacity is not reached. Later, Dubey et al. deliberated dif-
ferent nonlinear treatment rates such as Holling Type II, Holling Type III, and Holling
Type IV and studied the disease dynamics [11, 13, 14]. In the present study, for a
more realistic situation of treatment availability of infected individuals, we employ a
saturated functional type treatment rate given by

h(I ) = aI 2

bI 2 + cI + 1
,

where, a is the maximum cure rate of infected individuals, b is the rate of limitation
in treatment availability and c is the saturation constant in the absence of inhibitory
effect.

Awareness about the spread of a disease is a valuable ally in affecting suscepti-
bles’ behavior and mitigating further infection. Awareness leads to sharing necessary
information about the condition to the general population, getting thought, making the
individuals familiar with the disorder, and providing the most substantial protection
against infectious diseases. During the 2003 SARS outbreak, the Chinese Southern
Weekend newspaper spread the instant message, "There is a fatal flu in Guangzhou"
126 million times in Guangzhou alone, which affected people’s behavior to take nec-
essary preventive measures [42]. This figure remains a distinct difference from the
nearly low number of 5,327 cases recorded in the entire China [49]. If no centralized
information is available, people can be aware of infection risk through word of mouth,
personal communications, and social media like Twitter, Facebook, and other online
tools by which people search out and analyze prescriptions to obtain methods for fast
healing. The disease spread can also be controlled by vaccination, but immunization is
costly, and sometimes vaccinations are temporary, and it is difficult to vaccine all the
individuals due to various limitations. Even some fatal diseases like AIDS, Malaria,
Chikungunya, Plague, andDengue have no vaccination; only a person’s awareness can
prevent the spread of these diseases efficiently and effectively. For instance, the habit
of mosquito nets and mosquito coils helps in preventing Dengue and Chikungunya
[15, 40].Many authors have studied the concept of awareness in their epidemicmodels
[1, 8, 9, 37, 38]. Funk et al., Misra et al., and Dubey et al. [12, 16, 39] deliberate the
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influence and significance of awareness plans on the transmission and control of the
outbreak via nonlinear mathematical models. Kumar et al. [30] incorporated the alert
individuals class into the SIR epidemic model and studied the effect of alertness in
infectious disease transmission dynamics. Goel et al. [18] also deliberate the influ-
ence of the full and partial awareness about the diseases spread among susceptibles
with Holling type II incidences and treatment rates. A multiplicity of studies involv-
ing homogeneous spread qualitative models have been developed to provide a better
understanding of the complex potential provided by awareness for the containment
of epidemics. For example, in 2018, Just et al. [27] introduce awareness in the epi-
demic model through a specific class of aware susceptibles and investigated a reactive
SAIS model in which awareness is imparted via a special class of aware susceptibles.
They demonstrated that in these models, even in the presence of awareness decay, a
constant fraction of aware individuals may be maintained, leading to an elevation of
the epidemic threshold above the basic reproduction number. In Lacitignola et al. [34]
model, awareness is introduced through a system variable ruled by an assigned evo-
lution equation. Das et al. [10] investigate the influence of social awareness spread by
media in TB transmission dynamics and gave the optimal strategy for the prevalence of
tuberculosis. Lacitignola et al. [33] used the Z-control approach to gain insight into the
role of awareness in the management of epidemics through the SEIR epidemic model,
where they considered awareness as a time-dependent variable whose dynamics are
not assigned a priori and used it as an indirect control on the class of infective indi-
viduals, exploiting its potential to produce social-distancing and self-isolation among
susceptibles.

Human awareness during an outbreak is a critical factor that profoundly influ-
ences the transmission pattern of infectious diseases. Therefore, in this study, we
present an infectious disease transmission compartmental model comprising four
subpopulations: fully susceptible, aware susceptible population, infected, and recov-
ered subpopulations, and formulate a mathematical time-delayed epidemic model that
incorporates two explicit nonlinear incidences with a latent period and a nonlinear
treatment rate for the infected individuals. We have considered the Michaelis-Menten
type nonlinear incidence rate that prevents the unboundedness of the infected people
and a saturating treatment rate of infected people, including the limited accessibil-
ity of treatment resources. At the beginning of the infectious disease, there is a time
known as the latency period, before an infected person can transmit the infection to
another person. Therefore, the inclusion of the latent period in the incidence pattern
makes the present model more realistic. After formulating the model, we perform a
mathematical analysis that allows long-term qualitative predictions of outbreaks and
the persistence of the disease. We derive the basic reproduction number and estimate
how an infection can spread in a population. Using R0, the local and global stability
behavior of disease-free and endemic equilibria is investigated, revealing the persis-
tence or eradication of infection. The global stability behavior of both the equilibria
has been proved by using Lyapunov functionals and the Lyapunov-LaSalle invariance
approach. Moreover, the oscillatory and periodic solutions near-endemic equilibrium
has been seen via Hopf bifurcation by considering time delay as a bifurcation param-
eter. The numerical experiments show the significance of the model’s variables and
parameters and suggest strategies that could prevent infection.
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The remainder manuscript is ordered as follows: In Sect. 2, a novel time-delayed
SAIR epidemic model is presented. In Sect. 3, the basic properties of the model are
presented. In Sect. 4, the local stability behavior of the disease-free equilibrium and
the endemic equilibrium is investigated for the time-delay � ≥ 0 by driving the basic
reproduction number R0. The forward bifurcation for the undelayed system is shown
when the R0 varies from unity. Further, the appearance of the periodic solutions is
shown near-endemic equilibrium through Hopf bifurcation. Furthermore, the global
stability of both the equilibria is investigated by employing Lyapunov functionals’
direct Lyapunov method. In Sect. 5, numerical simulations are presented to show the
significance of the analytical findings. To conclude, a discussion of the present study
is given in Sect. 6.

2 Model derivation

Let P denotes the total population and the transmission of infectious diseases
involves four types of subpopulations: Susceptible individuals X p(t), Aware indi-
viduals Ap(t), Infected individuals Ip(t), and Recovered individuals Rp(t). That is,
P = X p(t) + Ap(t) + Ip(t) + Rp(t), which means that the individuals categorized
in X p(t), Ap(t), Ip(t) and Rp(t) may vary with time t and P is a fixed population.
It is assumed that each subpopulation of the SAIR model is well mixed and interact
homogeneously with each other [20].

Let κ denotes the constant recruitment rate of susceptibles. ξ is the awareness rate
in susceptible individuals, and thus the term ξ X p enters the class Ap(t). We con-
sider Michaelis-Menten type two explicit nonlinear incidence rates with the following
interpretation: the term �(X p(t − �), Ip(t − �)) = βσ X p(t−�)Ip(t−�)

1+Ip(t−�)
represents

the incidence rate when susceptible individuals catch the infection from infected indi-
viduals, and the term �(Ap(t − �), Ip(t − �)) = γ σ Ap(t−�)Ip(t−�)

1+Ip(t−�)
represents the

incidence rate when aware individuals catch the infection from infectives. Here, β and
γ denote the force of infection among susceptible and aware individuals, respectively,
and σ denotes the average number of contact partners. We assume that γ < β, as the
aware individuals are at a lower risk of getting infected than fully susceptible individu-
als. The parameter� is the time delay which represents the latent phase having a fixed
duration. The period from the time of infection to becoming infectious is called the
latent period. During the latent period, a host may or may not show symptoms, but the
host cannot infect other hosts in both cases. Thus, the latent period significantly influ-
ences the spreading dynamics of an infectious disease or epidemic. Since the aware
individuals can also become infected, perhaps at a lower rate than fully susceptibles,
they also have some behavioral responses and have a latency phase due to immuno-
logical reasons. Thus, the time delay � is the constant latency time and represents the
time taken by the fully susceptible and aware individuals, that, infected at a time t can
infect other susceptible and aware individuals at time t + � only. The parameters ϑ ,
d, and θ represent the natural death rate, disease-induced death rate, and the recovery

rate of infected individuals, respectively. The nonlinear term h(Ip(t)) = aI 2p
bI 2p+cIp+1
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Table 1 Symbolizations of variables and parameters

Notation Description

P Total constant population

X p(t) Susceptible subpopulation (full vulnerable)

Ap(t) Aware subpopulation

Ip(t) Infected subpopulation

Rp(t) Recovered subpopulation

� Time delay

κ Susceptibles’ recruitment rate

β Rate of transmission of susceptible class to infected class

γ Rate of transmission of aware class to infected class

σ Average contact partners

ξ Awareness rate in susceptibles

ϑ Natural mortality rate

d Death rate due to disease

θ Recovery rate

a Cure rate

b Limitations rate in treatment availability

c Saturation constant

�(X p(t), Ip(t)) Michaelis-Menten incidence rate among susceptibles

�(X p(t), Ip(t)) Michaelis-Menten incidence rate among aware individuals

h(Ip(t)) Saturated treatment rate of infected individuals

represents the saturated treatment rate of infectives, where a denotes the maximum
treatment (cure) rate, b denotes the rate of limitations in treatment availability, and c
denotes the saturation constant. The description of the parameters is given in Table 1
and the transition diagram of the model (1) is shown in Fig. 1.

The resulting mathematical disease-transmission and control model based on the
above assumptions is presented under the following system of delay differential equa-
tions:

dX p

dt
= κ − ϑX p − βσ X p(t − �)Ip(t − �)

1 + Ip(t − �)
− ξ X p,

dAp

dt
= ξ X p − ϑ Ap − γ σ Ap(t − �)Ip(t − �)

1 + Ip(t − �)
,

dIp
dt

= βσ X p(t − �)Ip(t − �)

1 + Ip(t − �)
+ γ σ Ap(t − �)Ip(t − �)

1 + Ip(t − �)

− (ϑ + d + θ)Ip − aI 2p
bI 2p + cIp + 1

,

dRp

dt
= θ Ip − ϑRp + aI 2p

bI 2p + cIp + 1
. (1)
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Fig. 1 Block diagram of the model (1)

subject to the initial conditions φ = (φ1, φ2, φ3, φ4) defined in the Banach space

C+ = {φ ∈ C([−�, 0], R4+) : φ1() = X p(), φ2() = Ap(),

φ3() = Ip(), φ4() = Rp()}, (2)

where R4+ = {(X p, Ap, Ip, Rp) ∈ R4 : X p ≥ 0, Ap ≥ 0, Ip ≥ 0, Rp ≥ 0}.
Biologically, it is assumed that φi > 0 (i = 1, 2, 3, 4).
We observe that the incidence functions �(X p(t − �), Ip(t − �)), �(Ap(t −
�), Ip(t − �)) and the treatment rate function h(Ip(t)) are continuously differen-
tiable, positive, and monotonically increasing for all X p(t), Ap(t), Ip(t) > 0. That
is, the following postulates hold:

P1. �(X p(t), Ip(t)) > 0, � ′
X p

(X p(t), Ip(t)) > 0, � ′
Ip

(X p(t), Ip(t)) > 0 for
X p(t) > 0,
�(Ap(t), Ip(t)) > 0, �′

Ap
(Ap(t), Ip(t)) > 0, �′

Ip
(Ap(t), Ip(t)) > 0 for

Ap(t) > 0 and Ip(t) > 0.

P2. �(X p(t), 0) = �(0, Ip(t)) = 0, � ′
X p

(X p(t), 0) = 0, � ′
Ip

(X p(t), 0) > 0 for
X p(t) > 0, Ip(t) > 0 and,
�(Ap(t), 0) = �(0, Ip(t)) = 0, �′

Ap
(Ap(t), 0) = 0, �′

Ip
(Ap(t), 0) > 0 for

Ap(t) > 0, Ip(t) > 0.

P3. h(0) = 0, h′(0) > 0 for Ip(t) ≥ 0.
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3 Basic properties

Due to biological reasons, all the model’s parameters κ, ϑ, β, σ, ξ, γ, d, θ, a, b, c
are assumed to be positive.
Positivity: We see that the positivity of the above initial conditions for X p, Ap, Ip
and Rp in [−�, 0] implies positivity for all solutions (X p(t), Ap(t), Ip(t), Rp(t)),
t > 0 of model (1). We further note that X p(t) can never vanish since at each time

t > 0 where X p(t) vanishes, it is
dX p
dt = κ > 0.

We prove the following lemma.

Lemma 1 The compact set

D =
{(

X p, Ap, Ip, Rp
) ∈ R4+ : X p(t) + Ap(t) + Ip(t) + Rp(t) ≤ κ

ϑ

}

is globally attractive and invariant for the solutions of (1).

Proof The model (1) is well-posed as the right-hand side of the model (1), and its
derivatives are continuous. Addition of model’s equations results to

d

dt
(X p(t) + Ap(t) + Ip(t) + Rp(t)) = κ − ϑ(X p + Ap + Ip + Rp) − d I

≤ κ − ϑ(X p + Ap + Ip + Rp). (3)

Thus, we obatin

0 < X p(t) + Ap(t) + Ip(t) + Rp(t)

≤ κ

ϑ
−

(
X p(0) + Ap(0) + Ip(0) + Rp(0) − κ

ϑ

)
e−ϑ t (4)

Thus, the solutions of model (1) exists in the invariant region

0 < lim
t→∞(X p(t) + Ap(t) + Ip(t) + Rp(t)) ≤ κ

ϑ
. (5)

Thus, the solutions of the model (1) are closed and bounded. �	

4 Mathematical analysis

This section obtains the disease-free equilibrium (DFE), then the basic reproduction
number R0, and investigates the system’s stability at DFE. We show the existence
of the endemic equilibrium (EE) and examine its stability and show the presence of
Hopf bifurcation around it. Also, the global stability behavior of the DFE and EE is
investigated with the help of R0.
We observe that the first three equations of the model (1) are free from R(t); therefore,
without loss of generality, we can restrict our analysis to the following reduced system
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of delay differential equation:

dX p

dt
= κ − ϑX p − βσ X p(t − �)Ip(t − �)

1 + Ip(t − �)
− ξ X p,

dAp

dt
= ξ X p − ϑ Ap − γ σ Ap(t − �)Ip(t − �)

1 + Ip(t − �)
,

dIp
dt

= βσ X p(t − �)Ip(t − �)

1 + Ip(t − �)
+ γ σ Ap(t − �)Ip(t − �)

1 + Ip(t − �)

− (ϑ + d + θ)Ip − aI 2p
bI 2p + cIp + 1

. (6)

Taking the system (6) into rest, we find that the system (6) has two equilibria:

(i) The disease-free equilibrium (DFE): E0 (X0, A0, I0) = E0

(
κ

ϑ+ξ
,

κξ
ϑ(ϑ+ξ)

, 0
)
.

(ii) The positive or endemic equilibrium (EE): Ee(X∗
p, A

∗
p, I

∗
p),

where X∗
p, A

∗
p and I ∗

p are obtained in Subsect. 4.2.

4.1 Local stability of disease-free equilibrium

The characteristic equation of the system (6) at DFE E0(X0, A0, I0) =
E0

(
κ

ϑ+ξ
,

κξ
ϑ(ϑ+ξ)

, 0
)
is obtained as

(−ϑ − ξ − λ)(−ϑ − λ)

(
κσe−λ�

ϑ(ϑ + ξ)
(βϑ + ξγ ) − (ϑ + d + θ + λ)

)
= 0. (7)

The roots of the Eq. (7) are λ1 = −ϑ − ξ , λ2 = −ϑ , and the solutions of the
transcendental equation

κσ

ϑ(ϑ + ξ)
(βϑ + ξγ )e−λ� − (ϑ + d + θ) − λ = 0. (8)

Assume that

g(λ) := λ + ϑ + d + θ − κσ(βϑ + ξγ )e−λ�

ϑ(ϑ + ξ)
= 0. (9)

We define the term κσ(βϑ+ξγ )e−λ�

ϑ(ϑ+ξ)(ϑ+d+θ)
at � = 0 as the basic reproduction number R0 of

the system (6). The basic reproduction number is defined as “the average number of
secondary infections caused by a single infected agent, during his/her entire infectious
period, in an entirely susceptible population” [43]. Thus, the system (6) has R0 of the
form

R0 = κσ(βϑ + ξγ )

ϑ(ϑ + ξ)(ϑ + d + θ)
.
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4.1.1 Analysis for R0 �= 1

The roots λ1 and λ2 of Eq. (7) preserve negative signs. Therefore, the analysis is now
based on the Eq. (9). We see that

g(0) = ϑ + d + θ − κσ(βϑ + ξγ )

ϑ(ϑ + ξ)
= (ϑ + d + θ)(1 − R0). (10)

If R0 > 1, then g(0) < 0. Also,

g′(λ) = 1 + �
κσ(βϑ + ξγ )e−λ�

ϑ(ϑ + ξ)
> 0. (11)

Hence, g(0) < 0 and g′(λ) > 0 imply that when R0 > 1, then the root of g(λ) = 0 is
unique, real and positive.
Note that,

Re λ = κσ(βϑ + ξγ ) cos(Imλ)�

ϑ(ϑ + ξ)
e−(Re λ)� − (ϑ + d + θ)

<
κσ(βϑ + ξγ )

ϑ(ϑ + ξ)
− (ϑ + d + θ)

< 0, provided R0 < 1. (12)

Therefore, R0 < 1 implies that Eq. (7) has a root λ with negative real part. Thus, the
following theorem is stated:

Theorem 1 For � ≥ 0, the disease-free equilibrium (DFE) E0 is

1. locally asymptotically stable if R0 < 1
2. unstable if R0 > 1.

4.1.2 Analysis at R0 = 1

Now we analyze the system (6) at E0 and R0 = 1 for � > 0 and � = 0, seperately.

Case (i) � > 0
When R0 = 1, then Eq. (9) has a simple characteristic root λ = 0.
It is noticed that R0 = 1 gives κσ(βϑ + ξγ ) = ϑ(ϑ + ξ)(ϑ + d + θ).
Let λ = p + iq be the other solution of Eq. (9), then we get:

p + iq + d + ϑ + θ − (cos q� − i sin q�)(d + ϑ + θ)e−p� = 0. (13)

Applying Euler’s formula and then splitting real part and imaginary part of Eq. (13)
yields

p + d + ϑ + θ = e−p� (d + ϑ + θ) cos q�,

q = −(d + ϑ + θ) e−p� sin q�.
(14)
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A root that satisfies both equations of (14) must be a solution to the equation attained
by squaring and adding these two equations. Hence, we get

(p + d + ϑ + θ)2 + q2 = (d + ϑ + θ)2 e−2p� . (15)

For Eq. (15) to hold, we must have p ≤ 0. Thus, E0 is linearly neutrally stable.
Thus, the following theorem is stated:

Theorem 2 The disease-free equilibrium E0 at R0 = 1 of the system (6) is linearly
nuetrally stable for � > 0.

Case (ii) � = 0
In this case, we study the qualitative behavior of the undelayed system (6) (i.e.,� = 0)
through the stability analysis near critical points, i.e., at E0 and R0 = 1, using the
bifurcation theory approach [7], depending upon the centermanifold theory [21]. Here,
we are keen on evaluating if there is a stable coexistence endemic equilibrium that
bifurcates from E0, and E0 converts its behavior from stable to unstable, which is
known as forward bifurcation.
For simplicity, let X p = x1, Ap = x2, and Ip = x3. So, the system (6) reduces to

dx1
dt

= κ − ϑx1 − βσ x1(t)x3(t)

1 + x3(t)
− ξ x1 ≡ f1,

dx2
dt

= ξ x1 − ϑx2 − γ σ x2(t)x3(t)

1 + x3(t)
≡ f2,

dx3
dt

= βσ x1(t)x3(t)

1 + x3(t)
+ γ σ x2(t)x3(t)

1 + x3(t)
− (ϑ + d + θ)x3 − ax23

bx23 + cx3 + 1
≡ f3.

(16)

Observe that R0 = 1 ⇐⇒ the bifurcation parameter σ = σ ∗ = ϑ(ϑ+ξ)(ϑ+d+θ)
κ(βϑ+ξγ )

.
The Jacobian matrix J (E0, σ ∗) of (16) obtained at E0 and σ ∗ is

J (E0, σ
∗) =

⎡
⎢⎣

−ϑ − ξ 0 −βσ ∗κ
ϑ+ξ

ξ −ϑ − γ σ ∗κξ
ϑ(ϑ+ξ)

0 0 0

⎤
⎥⎦ .

J (E0, σ ∗) has eigenvalues λ1 = −ϑ − ξ , λ2 = −ϑ , and λ3 = 0. Since λ3 is a simple
zero eigenvalue of J (E0, σ ∗). Hence, when R0 = 1, the DFE E0 is a non-hyperbolic
equilibrium.
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The right eigenvector v = (v1, v2, v3) corresponding to λ3 = 0 of the Jacobian matrix
J (E0, σ ∗) is obtained as

v1 = − βκσ ∗

(ϑ + ξ)2
,

v2 = −κϑξσ ∗(β + γ ) + γ κξ2σ ∗

ϑ2(ϑ + ξ)2
,

v3 = 1.

The left eigenvectorw = (w1, w2, w3) of the Jacobian matrix J (E0, σ ∗) correspond-
ing to λ3 = 0 is obtained as

w1 = 0,

w2 = 0,

w3 = 1.

Assume that the right-hand side of the system (16) is denoted by fk . Then, the bifur-
cation cofficients a1 and b1 defined in Theorem 4.1 of [7] are given by:

a1 =
3∑

k,i, j=1

wkviv j

(
∂2 fk

∂xi∂x j

)
E0

,

b1 =
3∑

k,i=1

wkvi

(
∂2 fk

∂xi∂σ ∗

)
E0

.

The non-zero partial derivative of the functions fk’s calculated at E0 are evaluated as

(
∂2 f3

∂x3∂x1

)
E0

= βσ ∗,
(

∂2 f3
∂x3∂x2

)
E0

= γ σ ∗,
(

∂2 f3
∂x1∂x3

)
E0

= βσ ∗,

(
∂2 f3

∂x2∂x3

)
E0

= γ σ ∗,
(

∂2 f3
∂x23

)
E0

= −2a − 2βσ ∗
(

κ

ϑ + ξ

)
− 2γ σ ∗

(
κξ

ϑ(ϑ + ξ)

)
,

and

(
∂2 f3

∂x3∂σ ∗

)
E0

= βκϑ + γ κξ

ϑ(ϑ + ξ)
.

Thus, the coefficients a1 and b1 are computed as

a1 = −2(aϑ2(ϑ + ξ)2 + κσ ∗(β2 ϑ2σ ∗ + γ ξ(ϑ + ξ)(ϑ + γ σ ∗) + βϑ(ϑ2 + ϑξ + γ ξ σ ∗)))
ϑ2(ϑ + ξ)2

,

(17)

b1 = βκϑ + γ κξ

ϑ(ϑ + ξ)
. (18)

By Theorem 4.1 given by Castillo-Chavez and Song [7], the local dynamics of system
(16) around E0 at R0 = 1 is completely determined by the signs of bifurcation
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Fig. 2 R0 vs. I∗p

coefficients a1, and b1. More precisely, if a1 < 0 and b1 > 0, then the bifurcation is
forward; if a1 > 0 and b1 > 0 then the bifurcation is backward. Since, the bifurcation
coefficients obtained in Eqs. (17-18) shows that a1 is always negative, and b1 is always
positive, therefore, the bifurcation is forward. “In the forward bifurcation [22], when
R0 < 1, a small influx of infected individuals will not generate large outbreaks,
and the disease dies out in time, and the corresponding disease-free equilibrium is
asymptotically-stable. On the other hand, when R0 exceeds unity, then the disease
will persist with a stable endemic equilibrium. This phenomenon, where the disease-
free equilibrium loses its stability and a stable endemic equilibrium appears as the
basic reproduction number increases through one, is known as forward bifurcation”
The main characteristics of forward bifurcation are :

1. There is no endemic equilibrium near disease-free equilibrium when R0 < 1. That
is, the disease-free equilibrium is often the only equilibrium when R0 < 1.

2. A low level of endemicity when R0 is slightly above unity.

Thus, the following theorem is concluded:

Theorem 3 The disease-free equilibrium E0 at R0 = 1 of the system (6) exhibits a
forward bifurcation at E0 and R0 = 1 when � = 0.

Figure 2 illustrates the result of Theorem 3 for the following numerical experminetal
data: κ = 2, β = 0.09, ξ = 0.12, σ = 0.08, ϑ = 0.01, γ = 0.009, d = 0.08, θ =
0.03, a = 0.005, b = 0.01, c = 0.03. At these values of parameters, bifurcation
constants a1 = −0.543519 < 0 and b1 = 3.04615 > 0, which satisfies the theoretical
condition for the occurrence of forward bifurcation. This figure provides the qualitative
description of infectives when R0 varies from unity. It depicts that when R0 crosses
unity from below, a small positive asymptotically stable endemic equilibrium exists,
and E0 changes its stability from stable to unstable.
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4.2 Existence and local stability of the endemic equilibrium

Now, we determine the conditions for endemic equilibrium existence. For that, assum-
ing that X p, Ap, Ip �= 0 and setting the system (6) to zero, we get:

κ − ϑX p − βσ X p Ip
1 + Ip

− ξ X p = 0, (19)

ξ X p − ϑ Ap − γ σ Ap Ip
1 + Ip

= 0, (20)

βσ X p Ip
1 + Ip

+ γ σ Ap Ip
1 + Ip

− (ϑ + d + θ)Ip − aI 2p
bI 2p + cIp + 1

= 0. (21)

On obtaining X p from Eq. (19) and Ap from Eq. (20), and then substituting it in (21),
the following quartic equation in Ip is obtained:

F(Ip) := K0 + K1 Ip + K2 I
2
p + K3 I

3
p + K4 I

4
p = 0, (22)

where,

K0 = ϑ(ϑ + ξ)(d + ϑ + θ)(1 − R0),

K1 = aϑ(ξ + ϑ) + (d + θ + ϑ) (σϑ(β + γ ) + γ ξσ + (ξ + ϑ) (c (1 − R0) ϑ + ϑ))

+ (ϑ(ξ + ϑ)(d + θ + ϑ) − κσ(β(γ σ + ϑ) + γ ξ)),

K2 = aσ(βϑ + γ (ξ + ϑ)) + 2aϑ(ξ + ϑ) + b (1 − R0) ϑ(ξ + ϑ)(d + θ + ϑ)

+ (d + θ + ϑ)
(
βγ σ 2 + (c + 1)σ (βϑ + γ (ξ + ϑ)) + (c + 1)ϑ(ξ + ϑ)

)
+ c(ϑ(ξ + ϑ)(d + θ + ϑ) − κσ(β(γ σ + ϑ) + γ ξ)),

K3 = a(γ σ + ϑ)(βσ + ξ + ϑ) + (d + θ + ϑ) (σ (b + c)(βϑ + γ (ξ + ϑ))

+ϑ(b + c)(ξ + ϑ) + βcγ σ 2
)

+ b(ϑ(ξ + ϑ)(d + θ + ϑ) − κσ(β(γ σ + ϑ) + γ ξ)),

K4 = b(σγ + ϑ)(d + θ + ϑ)(σβ + ϑ + ξ).

(23)

For the positive root I ∗
p of polynomial F(Ip), we can make

X∗
p = (1 + I ∗

p)κ

σ I ∗
pβ + (1 + I ∗

p)(ϑ + ξ)
> 0. (24)

and

A∗
p = (1 + I ∗

p)
2κξ

(σ I ∗
pγ + ϑ + I ∗

pϑ)(σ I ∗
pβ + (1 + I ∗

p)(ϑ + ξ))
> 0. (25)

So, Ee(X∗
p, A

∗
p, I

∗
p) is an endemic equilibrium of (6).
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In this paper, we consider the case of the existence of a unique endemic equilibrium
only.

Theorem 4 When R0 < 1, the system (6) has no endemic equilibrium if

(ϑ(ξ + ϑ)(d + θ + ϑ) > κσ(β(γ σ + ϑ) + γ ξ)).

Proof Let R0 < 1, which implies 1 − R0 > 0, and so K0 > 0. Also, K4 > 0.
The coefficients K2, K3, and K4 are positive if

(ϑ(ξ + ϑ)(d + θ + ϑ) − κσ(β(γ σ + ϑ) + γ ξ)) > 0

Or

(ϑ(ξ + ϑ)(d + θ + ϑ) > κσ(β(γ σ + ϑ) + γ ξ)).

Hence, by Descartes’ rule of signs [44], Eq. (22) has no positive root under the con-
dition (ϑ(ξ + ϑ)(d + θ + ϑ) > κσ(β(γ σ + ϑ) + γ ξ)) and so the system (6) has no
positive equilibrium under this condition. �	
Theorem 5 When R0 > 1, there exists either a unique or three endemic equilibria if
all equilibria are simple roots.

Proof Let R0 > 1. Then, the coefficient K0 < 0. Also, K4 > 0. From Eq. (22), we
have

F(Ip) := K0 + K1 Ip + K2 I
2
p + K3 I

3
p + K4 I

4
p = 0.

The conditions U1–U8, given below, define the possibilities for the signs of K1, K2,
and K3 as follows:

U1 : K1 > 0, K2 > 0, and K3 > 0,

U2 : K1 < 0, K2 < 0, and K3 > 0,

U3 : K1 < 0, K2 > 0, and K3 > 0,

U4 : K1 < 0, K2 < 0, and K3 < 0,

U5 : K1 > 0, K2 > 0, and K3 < 0,

U6 : K1 > 0, K2 < 0, and K3 > 0,

U7 : K1 > 0, K2 < 0, and K3 < 0,

U8 : K1 < 0, K2 > 0, and K3 < 0.

(26)

By Descartes’ rule of signs [44], under the conditions U1–U8, the equation F(Ip) can
have either a unique or three positive roots. Under any of the conditions U1–U4, there
exists a unique endemic equilibrium, and under U5–U8, there exsits either a unique
or three endemic equilibria.
Thus, we state the following theorem: �	
Theorem 6 Assume that any of the conditions H1: (U1–U8), and R0 > 1 hold, then
the system (6) has a unique endemic equilibrium.
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Next, we examine the stability behavior of the unique endemic equilibrium.
At Ee, the characteristic equation of the system (6) is obtained as

λ3+L2λ
2+L1λ+L0+

(
M2λ

2 + M1λ + M0

)
e−λ� +(N1λ + N0) e

−2λ� = 0, (27)

where,

L2 = d + aI ∗
p(2 + cI ∗

p)

(1 + I ∗
p(c + bI ∗

p))
2 + θ + 3ϑ + ξ,

L1 = 2θϑ + 3ϑ2 + θξ + 2ϑξ + d(2ϑ + ξ) + a(2ϑ + ξ)I ∗
p(2 + cI ∗

p)

(1 + I ∗
p(c + bI ∗

p))
2 ,

L0 = ϑ

(
d + aI ∗

p(2 + cI ∗
p)

(1 + I ∗
p(c + bI ∗

p))
2 + θ + ϑ

)
(ϑ + ξ),

M2 = (−X∗
pβ − A∗

pγ + I ∗
p(1 + I ∗

p)(β + γ ))σ

(1 + I ∗
p)

2 ,

M1 = aI ∗2
p (2 + cI ∗

p)(β + γ )σ

(1 + I ∗
p)(1 + I ∗

p(c + bI ∗
p))

2 + I ∗
p((β + γ )(d + θ + 2ϑ) + γ ξ)σ

1 + I ∗
p

− (X∗
pβ + A∗

pγ )(2ϑ + ξ)σ

(1 + I ∗
p)

2 ,

M0 = I ∗
p(d + θ + ϑ)(βϑ + γ ( ϑ + ξ))σ

1 + I ∗
p

+ aI ∗2
p (2 + cI ∗

p)(βϑ + γ (ϑ + ξ)) σ

(1 + I ∗
p)(1 + I ∗

p(c + bI ∗
p))

2

− (X∗
pβ + A∗

pγ ) ϑ (ϑ + ξ) σ

(1 + I ∗
p)

2 ,

N1 = I ∗
p(−A∗

p − X∗
p + I ∗

p + I ∗2
p )βγ σ 2

(1 + I ∗
p)

3 ,

N0 = I ∗
pβγ (−(A∗

p + X∗
p)ϑ + I ∗

p(1 + I ∗
p)(d + θ + ϑ))σ 2

(1 + I ∗
p)

3

+ aI ∗3
p (2 + cI ∗

p)βγ σ 2

(1 + I ∗
p)

2(1 + I ∗
p(c + bI ∗

p))
2 .

Multiplying Eq. (27) by eλ� , we get

M2λ
2+M1λ+M0+

(
λ3 + L2λ

2 + L1λ + L0

)
eλ� +(N1λ + N0) e

−λ� = 0. (28)

When � = 0, Eq. (28) becomes

λ3 + L00λ
2 + L01λ + L02 = 0, (29)
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where,

L00 = M2 + L2,

L01 = M1 + L1 + N1,

L02 = M0 + L0 + N0.

By Routh-Hurwitz criterion, Eq. (29) has all the roots with negative real parts under
H2:, given below:

H2: L00 > 0, L02 > 0, and L00L01 > L02. (30)

Hence, we state the following Theorem:

Theorem 7 Assume thatH2 holds. Then, the endemic equilibrium Ee is locally asmp-
totically stable when � = 0.

Now, for� > 0, let Eq. (28) has a root iω (ω > 0). Then, replacing λwith iω (ω > 0)
in Eq. (28) and splitting real and imaginary parts, we obtain

B1(ω) cosω� − B2(ω) sinω� = B3(ω), (31)

B4(ω) sinω� + B5(ω) cosω� = B6(ω). (32)

where,

B1(ω) = −L2ω
2 + L0 + N0,

B2(ω) = ω(L1 − N1) − ω3,

B3(ω) = M2ω
2 − M0,

B4(ω) = −L2ω
2 + L0 − N0,

B5(ω) = (L1 + N1)ω − ω3,

B6(ω) = −M1ω.

(33)

From Eqs. (31) and (32), we obtain

sinω� = B01(ω)

B00(ω)
, (34)

cosω� = B02(ω)

B00(ω)
, (35)

where,

B00 = L2
0 − N 2

0 + (L2
1 − 2L0L2 − N 2

1 )ω2 + (−2L1 + L2
2)ω

4 + ω6,

B01 = (L1M0 − L0M1 − M1N0 + M0N1)ω + (−M0 + L2M1 − L1M2 − M2N1)ω
3 + M2ω

5,

B02 = −L0M0 + M0N0 + (L2M0 − L1M1 + L0M2 − M2N0 + M1N1)ω
2 + (M1 − L2M2)ω

4.

(36)
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On squaring and then adding Eqs. (34) and (35), we obtain

B2
01(ω) + B2

02(ω) − B2
00(ω) = 0. (37)

Let (H3:) There exists at least one positive root ω0 of Eq. (37), i.e., Eq. (28) has a pair
of purely imaginary roots ±iω0.

Forω0, the corresponding critical value of the time delay�k is obtained as follows:

�k = 1

ω0
arccos

(
B02(ω0)

B00(ω0)

)
+ 2kπ

ω0
, k = 0, 1, 2, 3, . . . . (38)

Let �0 = min {�k, k = 0, 1, 2, 3, . . .}.
To estabish Hopf bifurcation, we must have Re

[
dλ

d�

]−1

λ=iω0

�= 0.

Differentiating Eq. (28) with respect to � yields

[
dλ

d�

]−1

= 2λM2 + M1 + N1e−λ� + eλ� (3λ2 + 2λL2 + L1)

λ
(
(N1λ + N0)e−λ� − (λ3 + L2λ2 + L1λ + L0)

)
eλ�

− �

λ
.

From Eq. (28), we have

−(λ3 + L2λ
2 + L1λ + L0)e

λ� = M2λ
2 + M1λ + M0 + (N1λ + N0) e

−λ� .

Thus, we obtain

[
dλ

d�

]−1

= 2λM2 + M1 + N1e−λ� + eλ� (3λ2 + 2λL2 + L1)

λ
(
2(N1λ + N0)e−λ� + (M2λ2 + M1λ + M0)

) − �

λ
.

So,

Re

[
dλ

d�

]−1

λ=iω0

= Y

P2 + Q2 ,

where,

Y = ω0(−M2
1ω0 + 2M0M2ω0 − 2N 2

1ω0 − 2M2
2ω3

0 + ω0(−L1M1 + 4M2N0

− 3M1N1 + 3M1ω
2
0

+ 2L2(M0 − M2ω
2
0)) cos�ω + 2ω(2L2N0 − L1N1

+ 3N1ω
2
0) cos 2�ω + (−M0N1 − 3M0ω

2
0

+ 5M2N1ω
2
0 + 3M2ω

4
0 + 2M1(N0 + L2ω

2
0) + L1(M0 − M2ω

2
0)) sin�ω + 2(L1N0

+ (−3N0 + 2L2N1)ω
2
0) sin 2�ω),

P = − M1ω
2
0 − 2N1ω

2
0 cos�ω0 + 2N0ω0 sin�ω0,

Q = M0ω0 − M2ω
3
0 + 2N0ω0 cos�ω0 + 2N1ω

2
0 sin�ω0.
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Obviously, if H4: Y �= 0, then Re

[
dλ

d�

]−1

λ=iω0

�= 0.

Thus, the following theorem is stated:

Theorem 8 Suppose (H1-H4) holds. Then, the endemic equilibrium Ee(X∗
p, A

∗
p, I

∗
p)

of the system (6) is

1. locally asmptotically stable when � ∈ [0,�0),
2. undergoes a Hopf bifurcation when � = �0, and a family of periodic solutions

bifurcate from Ee(X∗
p, A

∗
p, I

∗
p) when � crosses �0.

4.3 Global stability

In this subsection, we establish the global stability behavior of the DFE and EE.

4.3.1 Global stability behavior of disease-free equilibrium

Weexamine theglobal stability behavior ofDFE E0 (X0, A0, I0) = E0

(
κ

ϑ+ξ
,

κξ
ϑ(ϑ+ξ)

, 0
)

for R0 ≤ 1 by constructing a suitable Lyapunov function. For this, the following pos-
tulates are proposed:

P4. � ′
Ip

(X p(t), 0) is increasing for X p(t) > 0 and �′
Ip

(Ap(t), 0) is increasing for
Ap(t) > 0.

P5.
� ′

I p
(X0,0)

� ′
I p

(X p(t),0)
< 1 for X p(t) > X0,

� ′
I p

(X0,0)

� ′
I p

(X p(t),0)
> 1 for X p(t) ∈ (0, X0),

�′
I p

(A0,0)

�′
I p

(Ap(t),0)
< 1 for Ap(t) > A0,

�′
I p

(X0,0)

�′
I p

(Ap(t),0)
> 1 for Ap(t) ∈ (0, A0).

P6.
�(X p(t), Ip(t)) + �(Ap(t), Ip(t))

≤ Ip(t)

((
∂�(X p(t), Ip(t))

∂ Ip

)
(X0,0)

+
(

∂�(Ap(t), Ip(t))

∂ Ip

))
(A0,0)

−
(

∂H(Ip)

∂ Ip

)
Ip=0

+H(Ip(t)), where H(Ip(t)) = (ϑ + d + ζ )Ip(t) + h(Ip(t)) and Ip(t) > 0.

P7. X p
X0

>
Ap
A0

if X p
X0

> 1 and X p
X0

<
Ap
A0

if X p
X0

< 1.

Under these postulates, the following theorem is being proposed:

Theorem 9 Suppose that (P1.)–(P7.) and R0 ≤ 1 hold. Then, DFE E0(X0, A0, 0) of
the system (6) is globally asymptotically stable for � ≥ 0.

The proof has been given in Appendix.

4.3.2 Global stability behavior of endemic equilibrium

Now, we examine the global stability behavior of Ee(X∗, A∗, I ∗) of the system (6)
by constructing a Lyapunov functional and employing the Lyapunov direct method.
To proceed, we propose the following postulates:
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P8.
(

�(X∗
p, I

∗
p)

�(X p(t), I ∗
p)

− I ∗
p

Ip(t)

)
≤ 0;

(
�(X p(t), Ip(t))

�(X∗
p, I

∗
p)

− 1

)
≤ 0;

(
�(X p(t), I ∗

p)

�(X p(t), Ip(t))
− Ip(t)

I ∗
p

)
≤ 0;

(
�(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

− I ∗
p

Ip(t)

)
≤ 0;

(
�(Ap(t), Ip(t))

�(A∗
p, I

∗
p)

− 1

)
≤ 0;

(
�(Ap(t), I ∗

p)

�(Ap(t), Ip(t))
− Ip(t)

I ∗
p

)
≤ 0 for Ip ≥ I ∗

p .

P9.

(
h(I ∗

p)

h(Ip(t))
− I ∗

p

Ip(t)

) (
Ip(t)

I ∗ − 1

)
≤ 0 for Ip ≥ I ∗

p .

P10.

X p

X∗
p

− Ap

A∗
p

> 0 for
X p

X∗
p

> 1 and
X p

X∗
p

− Ap

A∗
p

< 0 for
X p

X∗
p

< 1.

The following theorem is proposed under these postulates:

Theorem 10 Suppose that (P1.)–(P3.), (P8.)–(P10.), and R0 > 1 hold. Then, the EE
Ee(X∗

p, A
∗
p, I

∗
p) of the system (6) is globally asymptotically stable for � ≥ 0.

The proof has been given in Appendix.

5 Numerical simulation

This section aims to validate the theoretical findings which we have discussed in
previous sections and show the significance of various parameters by considering
numerical experimental data. For this, we assume that all the parameters are positive.
Two examples have been considered herein:-

1. Example 1 illustrates the existence of a unique endemic equilibrium and its stability.
Also, it shows the significance of considering various parameters such as time delay,
treatment rate, awareness rate, and the corporation of the aware compartment in
the SIR epidemic model.

2. Example 2 illustrates the occurrence ofHopf bifurcation via oscillatory andperiodic
solutions.

Example 1 We consider the following experimental data: κ = 2, β = 0.09, ξ =
0.12, σ = 1, ϑ = 0.01, γ = 0.009, d = 0.08, θ = 0.03, a = 0.005, b =
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Fig. 3 The temporal behavior of susceptible, alert, and infected populations for time-delay � = 2

0.01, c = 0.03. At these values of parameters, we calculate that R0 = 25.3846 > 1
and the coefficients of the polynomial F(Ip) := K0+K1 Ip+K2 I 2p+K3 I 3p+K4 I 4p =
0, given in Eq. (22) have the value K0 = −0.003804 < 0, K1 = −0.00512722 < 0,
K2 = 0.000336322 > 0, K3 = −0.000014248 < 0, and K4 = 5.016 ∗ 10−6 > 0.
So, one of the conditions U8 given in Eq. (26) is satisfied. Further, the solutions of
the polynomial equation F(Ip) = 0 are Ip = −2.73341 − 10.5534i, − 2.73341 +
10.5534i, − 0.707827 and 9.01515. So, the only positive root of F(Ip) = 0 is
I ∗
p = 9.01515. Thus, the conditions of Theorem 6 are satisfied and there exists a

unique endemic equilibrium Ee(9.47806, 62.8333, 9.01515).

Figure 3 shows the qualitative behavior of susceptible, alert, and infected popula-
tions for a time delay � = 2. It is depicted that the susceptible population decreases
over time and a large population gets aware of the disease, and as time passes, they
become less serious, and finally both the populations settle down to a steady state.
Also, it elucidates that infectives increase at a high rate and then start decreasing and
eventually reach their steady state.

Figure 4 indicates the impact of latent period � on infected individuals Ip(t). We
can see the variation in the number of infectives for higher values of time delay. This
figure confirms that the longer the latent period (time delay) of infection, the higher its
spread, which shows the importance of considering time delay in studying infectious
disease’s dynamical behavior.

Figure 5 shows the influence of transmission rates β of susceptibles and γ of aware
individuals on infectives. The higher the transmission rates, the higher the possibility
of spreading infection. Therefore, it is imperative to minimize the interaction rate of
susceptible and aware people with infected individuals.

Figure 6 shows the power of cure rate (a) in declining the number of infected
individuals. An increased cure rate can reduce the infection level efficiently. Thus, the
accessibility of treatment resources and adequate treatment is significant in declining
the cases of infected individuals.
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Fig. 4 Infected population Ip(t) when time delay � varies

Fig. 5 Variation in the number of infected individuals when transmission rates β and γ vary

Fig. 6 Effect of cure rate (a) on I∗p
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Fig. 7 Effect of saturating treatment rate (H(Ip(t))) on infected population (Ip(t))

Fig. 8 Effect of incorporating awareness class on the infected population Ip(t) for � = 2

Figure 7 demonstrates the impact of nonlinear saturating treatment rate on infected
individuals. The infected population, drawn for the a = 0.05, reveals the significance
of the availability of treatment to infected people. If the health system has sufficient
treatment facilities, then the spread of infection can be controlled on a large scale.

Figure 8 shows the difference in the number of infected individuals with the inclu-
sion and exclusion of aware individuals’ compartment, deliberating that unaware
individuals are becoming infected faster than those individuals who are familiar with
the disease spread. It shows the relationship between human awareness and the spread
of infection. The graph of infected individuals with awareness class is drawn for the
awareness rate ξ = 0.6, revealing that a considerable value of awareness rate causes
more individuals to be safe from illnesses. The disease spread awareness alerts people
and helps them to take necessary protection measures against disease which reduce
the occurrence of infection on a large scale. Thus, the significance of incorporating an
alert compartment in the SIR model is vital.
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Fig. 9 Effect of both awareness class Ap(t) and saturated treatment rate on Ip(t) for � = 2

Figure 9 depicts the number of the infected population for the cases: neither aware-
ness nor treatment is available (shown by the solid purple line); people are aware of
the disease, but treatment for infectives is not available (indicated by the dotted red
line); and when both treatment and awareness are present (indicated thru the dashed
blue line). This figure captures the impact of both awareness, and treatment on infec-
tives. When awareness and treatment are absent, the infected population stabilizes at a
high level. If the treatment is not available, then the awareness among people reduces
the spread of infection with a big difference. For eradicating disease or lowering it
to the lowest level, the presence of both awareness among susceptibles and sufficient
availability of treatment resources has a vital role.

Example 2 The following numerical experimental data is considered to validate the
occurrence of Hopf bifurcation:

κ = 5, ξ = 0.001, ϑ = 0.01, β = 0.009, γ = 0.001, σ = 10.

d = 0.08, θ = 0.03, a = 0.005, b = 0.01, c = 0.03.

At these values of parameters, it has been verified that Eq. (37) has a unique positive
root ω0 = 0.08524468136097717. For this value of ω0, the corresponding critical
value of the time delay �0 given in the formula of Eq. (38), is obtained as �0 =
19.7113.

Figure 10 shows the time series solution and respective phase portraits of sus-
ceptible, aware and infected populations. Figures. 10(a)-10(d) have been plotted for
� = 17, and � = 19, which reveals that the endemic equilibrium is stable when the
time delay is less than its critical value �0 = 19.7113. On the other hand, Figs. 10(e)
and 10(f) have been plotted for the time delay � = 19.8 which reveals that the
orbits spiral goes away from endemic equilibrium as � crosses its critical value
�0 = 19.7113, and the endemic equilibrium turns into unstable. These figures con-
firm the result of the Theorem 8.
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Fig. 10 The time series solutions and respective phase portraits of susceptible, aware and infected subpop-
ulations
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6 Discussion

During an outbreak, awareness about the transmission routes and interventions of a dis-
ease can alert individuals regarding the infection risk, resulting in a change in human
behavior and disease transmission patterns. Therefore, the present article studies a
mathematical epidemic model with awareness effects to study disease transmission
and control dynamics. We comprised four dynamical variables in our model: suscepti-
ble, aware, infected, and recovered individual; and proposed a nonlinear time-delayed
SAIR epidemic model by incorporatingMichaelis-Menten type incidences with latent
period and a saturating treatment rate.We assume that aware individuals can also catch
the infection, probably at a lower rate than the fully vulnerable population. We ana-
lyze the model mathematically, revealing that it has two equilibria: the disease-free
equilibrium (complete eradication of infection) and the endemic equilibrium (persis-
tence of disease at a certain level). We obtain the model’s threshold quantity, the basic
reproduction number R0, and perform the stability analysis to determine whether the
disease eliminates or persists. The basic reproduction number determines the potential
for an infectious agent to start an outbreak, the degree of transmission without control
measures, and the capacity of control measures to diminish spread. The delayed sys-
tem analysis reveals that the disease-free equilibrium is locally asymptotically stable
when R0 < 1, unstable when R0 > 1, and neutrally linearly stable when R0 = 1.
However, using the center manifold theory approach, we show that the undelayed
system exhibits a forward bifurcation at R0 = 1, meaning that reducing R0 below
unity is enough to eradicate society’s infection. Further, we investigate the endemic
equilibrium’s local stability, and prove the existence of oscillating and periodic solu-
tions near-endemic equilibrium throughHopf bifurcation, concerning time delay as the
bifurcation parameter. Furthermore, the global stability behavior of the disease-free
and endemic equilibria is also examined using the Lyapunov functionals by employing
the Lyapunov method. It is shown that the disease-free equilibrium is globally asymp-
totically stable when R0 < 1, and the endemic equilibrium is globally asymptotically
stable when R0 > 1.

The numerical simulations validate the effectiveness of theoretical findings and
show the impact of the model’s parameters. It is observed that the longer the time
delay, the higher the number of individuals who catch the infection. The oscillatory
solutions for various values of time delay establish Hopf bifurcations near-endemic
equilibrium. Moreover, if the time delay crosses its critical value, then the trajectories
of the solutions bifurcate from endemic equilibrium and destabilize the system. We
show that the number of infected individuals is much higher in the SIR model (i.e.,
without awareness) in comparison to the number of infected in the SAIR model (i.e.,
with awareness). If susceptible individuals are aware of infection risk, they will be
on high alert and choose not to go to crowded areas, avoid unnecessary contact with
infected individuals, and implement other anti-epidemic inhibition measures which
reduce the infection spread effectively. The numerical result shows the impact of
saturating treatment rate, which reveals that adequate treatment availability is crucial
in controlling infection spread. If the treatment facilities are not enough, individuals’
awareness and their willingness to adopt anti-epidemic measures are the only way to
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reduce infection. Individuals’ awareness together with sufficient treatment facilities
for infectives can reduce or even eradicate the infectious disease from society.

The present study consisting of nonlinear incidences of unaware and aware suscep-
tibles with the latent period, and saturated treatment rate, signifies the substantial role
of the latent period in the disease transmission process, susceptibles’ behavior in pre-
venting disease spread, and limitation in treatment facilities in curing infectives. The
results indicate that awareness about the spread of infection in susceptible individuals
is vital in preventing disease transmission and is a potential policy for controlling the
disease spread in the absence of treatment availabilities. The public health authorities
and the government have a significant contribution to raising awareness among people
and encouraging them to adopt anti-epidemic measures. For example, the government
is enforcing different non-pharmaceutical interventions to obstruct COVID-19 trans-
mission due to the absence of proper therapeutics or vaccines. Several countries focus
on raising awareness through media advertising campaigns to encourage people to
maintain social distance, wear a face mask, adopt healthy sanitation practices, wear
hand gloves, avoid touching surfaces, regular hand washing, etc. These behaviors urge
people to adopt preventive measures, reduce contact with others, and so reduce dis-
ease spread, consequently suppressing disease spread burden. Thus, awareness about
the disease with the encouragement of adopting preventive measures and appropriate
treatment facilities for infectives can efficiently reduce disease spread.
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Appendix

Proof of Theorem 9

Proof (P1.) and (P2.) establish that E0(X0, A0, 0) is the only equilibriumof the system
(6).
The Lyapunov functional is given as

V (t) = V1(t) + V2(t),

where,

V1(t) = X p(t) + Ap(t) − X0 − A0 −
∫ X p(t)

X0

lim
Ip→0+

�(X0, Ip(t))

�(ε, Ip(t))
dε

−
∫ Ap(t)

A0

lim
Ip→0+

�(A0, Ip(t))

�(ε, Ip(t))
dε + Ip(t),

V2(t) =
∫ �

0
(�(X p(t − ρ), Ip(t − ρ)) + �(Ap(t − ρ), Ip(t − ρ))) dρ.
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Using the postulates (P1.)–(P3.), it follows that V1(t) is well-defined and continuously
differentiable function ∀ X p(t) > 0, Ap(t) > 0, Ip(t) > 0, and V (t) = 0 at
E0(X0, A0, 0). Now, we show that dV (t)

dt ≤ 0 for all t ≥ 0. First, we compute dV1(t)
dt

as follows:

dV1(t)

dt
=

(
1 − lim

I→0+
�(X0, I (t))

�(X p, Ip(t))

)
X ′

p(t) +
(
1 − lim

Ip→0+
�(A0, Ip(t))

�(Ap, Ip(t))

)
A′
p(t) + I ′

p(t)

=
(
1 − lim

Ip→0+
�(X0, Ip(t))

�(X p, Ip(t))

) (
κ − ϑX p − �(X p(t − �), Ip(t − �)) − ξ X p

)

+
(
1 − lim

Ip→0+
�(A0, Ip(t))

�(Ap, Ip(t))

) (
ξ X p − ϑ Ap − �(Ap(t − �)Ip(t − �))

)

+ �(X p(t − �), Ip(t − �))

+ �(Ap(t − �)Ip(t − �)) − (ϑ + d + θ)Ip − aI 2p
bI 2p + cIp + 1

.

Since κ − (ϑ + ξ)X p = (ϑ + ξ)(X0 − X p), thus, we obtain:

dV1(t)

dt
=

(
1 − lim

I→0+
�(X0, Ip(t))

�(X p, Ip(t))

) (
(ϑ + ξ)(X0 − X p) − �(X p(t − �), Ip(t − �))

)

+
(
1 − lim

Ip→0+
�(A0, Ip(t))

�(Ap, Ip(t))

) (
(ξ X p − ϑ Ap) − �(Ap(t − �)Ip(t − �))

)

+ �(X p(t − �), Ip(t − �))

+ �(Ap(t − �)Ip(t − �)) − H(Ip(t)).

We now obtain the derivative of V2(t) as below:

dV2(t)

dt
= −�(X p(t − �), Ip(t − �)) + �(X p(t), Ip(t))

− �(Ap(t − �), Ip(t − �)) + �(Ap(t), Ip(t)).

Thus, the derivative of V (t) is obtained as:

dV (t)

dt
= dV1(t)

dt
+ dV2(t)

dt

=
(
1 − lim

Ip→0+
�(X0, Ip(t))

�(X p, Ip(t))

) (
(ϑ + ξ)(X0 − X p) − �(X p(t − �), Ip(t − �))

)

+
(
1 − lim

Ip→0+
�(A0, Ip(t))

�(Ap, Ip(t))

) (
(ξ X p − ϑ Ap) − �(Ap(t − �)Ip(t − �))

)

+ �(X p(t − �), Ip(t − �))

+ �(Ap(t − �)Ip(t − �)) − H(Ip(t)) − �(X p(t − �), Ip(t − �))

+ �(X p(t), Ip(t))

− �(Ap(t − �), Ip(t − �)) + �(Ap(t), Ip(t)).
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The postulates P4–P6 imply that

dV (t)

dt
≤ (ϑ + ξ)

(
1 −

� ′
Ip

(X0, 0)

� ′
Ip

(X p(t), 0)

) (
X0 − X p

)

+ �(X p(t − �), Ip(t − �))

(
� ′

Ip
(X0, 0)

� ′
Ip

(X p(t), 0)
− 1

)

+
(
1 −

�′
Ip

(A0, 0)

�′
Ip

(Ap(t), 0)

) (
ξ X p − ϑ Ap

)

+ �(Ap(t − �), Ip(t − �))

(
�′

Ip
(A0, 0)

�′
Ip

(Ap(t), 0)
− 1

)

+ Ip(t)

ϑ + d + θ
(R0 − 1)

= ϑ

(
1 −

� ′
Ip

(X0, 0)

� ′
Ip

(X p(t), 0)

) (
X0 − X p

) + ξ X0

(
1 − X p

X0

)
A0

Ap

X0

X p

(
X p

X0
− Ap

A0

)

+ �(X p(t − �), Ip(t − �))

(
� ′

Ip
(X0, 0)

� ′
Ip

(X p(t), 0)
− 1

)

+ ϑ
(
A0 − Ap

) (
1 −

�′
Ip

(A0, 0)

�′
Ip

(Ap(t), 0)

)

+ �(Ap(t − �), Ip(t − �))

(
�′

Ip
(A0, 0)

�′
Ip

(Ap(t), 0)
− 1

)
+ Ip(t)

ϑ + d + θ
(R0 − 1) .

Thus, R0 ≤ 1 implies that dV (t)
dt ≤ 0 for all t ≥ 0. Also, dV (t)

dt = 0 if X p(t) =
X0, Ap(t) = A0, and Ip(t) = 0.
Hence, from the system (6), it follows that the largest invariant set{(

X p(t), Ap(t), Ip(t) ∈ R3+
∣∣∣ dV (t)

dt = 0
)}

is singleton set {E0}. Using the Lyapunov-
LaSalle asymptotic stability theorem [23, 26, 35], E0 is the only equilibrium of the
system (6) which is globally asymptotically stable. �	
Proof of Theorem 10

Proof For this, the Lyapunov functional is defined as

W (t) = W1(t) + W2(t),

where,

W1(t) = X p(t) − X∗
p −

∫ X p(t)

X∗
p

�(X∗
p, I

∗
p)

�(φ, I ∗
p)

dφ + Ap(t) − A∗
p

−
∫ Ap(t)

A∗
p

�(A∗
p, I

∗
p)

�(�, I ∗
p)

dφ + Ip(t) − I ∗
p − I ∗

p ln
Ip(t)

I ∗
p

,

W2(t) = �(X∗
p, I

∗
p)

∫ �

0

(
�(X p(t − θ), Ip(t − θ))

�(X∗
p, I

∗
p)

− 1 − ln
�(X p(t − θ), Ip(t − θ))

�(X∗
p, I

∗)

)
dθ
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+ �(A∗
p, I

∗
p)

∫ �

0

(
�(Ap(t − θ), Ip(t − θ))

�(A∗
p, I

∗
p)

− 1 − ln
�(Ap(t − θ), Ip(t − θ))

�(A∗
p, I

∗
p)

)
dθ.

(P1.)–(P3.) imply that, W (t) = W1(t) + W2(t) is defined and continuously differen-
tiable for all X p(t), Ap(t), Ip(t) > 0 and W (0) = 0 at Ee(X∗

p, A
∗
p, I

∗
p).

We compute the derivative of W1(t) as follows:

dW1(t)

dt
=

(
1 − �(X∗

p, I
∗
p)

�(X p(t), I∗p)

)
X ′
p(t) +

(
1 − �(A∗

p, I
∗)

�(Ap(t), I∗p)

)
A′
p(t) +

(
1 − I∗p

Ip(t)

)
I ′p(t)

=
(
1 − �(X∗

p, I
∗
p)

�(X p(t), I∗p)

)(
(ϑ + ξ)(X∗

p − X p(t))

+�(X∗
p, I

∗
p) − �(X p(t − �), Ip(t − �))

)

+
(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I∗p)

) (
ξ X p − ϑ Ap − �(Ap(t − �), Ip(t − �))

) +
(
1 − I∗p

Ip(t)

)

×
(
�(X p(t − �), Ip(t − �)) + �(Ap(t − �), Ip(t − �))

−
(
�(X∗

p, I
∗
p) + �(A∗

p, I
∗
p) − h(I∗p)

)
I∗p

Ip(t) − h(Ip(t))
)

= (ϑ + ξ)

(
1 − �(X∗

p, I
∗
p)

�(X p(t), I∗p)

)
(X∗

p − X p(t)) + �(X∗
p, I

∗
p)

(
1 − �(X∗

p, I
∗
p)

�(X p(t), I∗p)

+ �(X p(t − �), Ip(t − �))

�(X p(t), I∗p)

)
+ (

ξ X p − ϑ Ap
) (

1 − �(A∗
p, I

∗
p)

�(Ap(t), I∗p)

)

− �(Ap(t − �), Ip(t − �))
I∗p

Ip(t)

+ �(Ap(t − �), Ip(t − �))

�(Ap(t), I∗p)
�(A∗

p, I
∗
p) − I∗p

Ip(t)
�(X p(t − �), Ip(t − �))

+ �(X∗
p, I

∗
p)

(
1 − Ip

I∗p

)

+ �(A∗
p, I

∗
p)

(
1 − Ip

I∗p

)
+

(
h(I∗p) − h(Ip(t)I∗p)

Ip(t)

)(
Ip(t)

I∗p
− 1

)
.

Since ξ X∗
p − ϑ A∗

p − �(A∗
p, I

∗
p) = 0, or, −ξ X∗

p + ϑ A∗
p + �(A∗

p, I
∗
p) = 0, thus we

have

dW1(t)

dt
= (ϑ + ξ)

(
1 − �(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

)
(X∗

p − X p(t))

+ �(X∗
p, I

∗
p)

(
1 − �(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

+ �(X p(t�), Ip(t − �))

�(X p(t), I ∗
p)

)

− I ∗
p

Ip(t)
�(X p(t − �), Ip(t − �)) + �(X∗

p, I
∗
p)

(
1 − Ip

I ∗
p

)
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+ ξ(X p − X∗
p)

(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

)

− �(Ap(t − �), Ip(t − �))
I ∗
p

Ip(t)
+ �(A∗

p, I
∗
p)

(
1 − Ip

I ∗
p

)

+ ϑ
(
A∗
p − Ap

)(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

)

+ �(A∗
p, I

∗
p)

(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

+ �(Ap(t − �), Ip(t − �))

�(Ap(t), I ∗
p)

)
.

Now, we compute the derivative of W2(t) as follows:

dW2

dt
= �(X p(t), Ip(t)) − �(X p(t − �), Ip(t − �))

+ �(X∗
p, I

∗
p) ln

�(X p(t − �), Ip(t − �))

�(X p(t), Ip(t))

+ �(Ap(t), Ip(t)) − �(Ap(t − �), Ip(t − �))

+ �(A∗
p, I

∗
p) ln

�(Ap(t − �), Ip(t − �))

�(X p(t), Ip(t))
.

Thus, the derivative of W (t) with respect to time t is obtained as follows:

dW

dt
= dW1

dt
+ dW2

dt

= (ϑ + ξ)

(
1 − �(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

)
(X∗

p − X p(t))

+ �(X∗
p, I

∗
p)

(
1 − �(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

+ �(X p(t − �), Ip(t − �))

�(X p(t), I ∗
p)

)

− I ∗
p

Ip(t)
�(X p(t − �), Ip(t − �)) + �(X∗

p, I
∗
p)

(
1 − Ip

I ∗
p

)

+ ξ(X p − X∗
p)

(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

)

− �(Ap(t − �), Ip(t − �))
I ∗
p

Ip(t)
+ �(A∗

p, I
∗
p)

(
1 − Ip

I ∗
p

)

+ ϑ
(
A∗
p − Ap

)(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

)

+ �(A∗
p, I

∗
p)

(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

+ �(Ap(t − �), Ip(t − �))

�(Ap(t), I ∗
p)

)
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+ �(X p(t), Ip(t)) − �(X p(t − �), Ip(t − �))

+ �(X∗
p, I

∗
p) ln

�(X p(t − �), Ip(t − �))

�(X p(t), Ip(t))

+ �(Ap(t), Ip(t)) − �(Ap(t − �), Ip(t − �))

+ �(A∗
p, I

∗
p) ln

�(Ap(t − �), Ip(t − �))

�(X p(t), Ip(t))

= ϑ(X∗
p − X p)

(
1 − �(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

)
+ ϑ(A∗

p − Ap)

(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

)

+ �(X∗
p, I

∗
p)

(
1 − �(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

+ ln
�(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

)

+ �(X∗
p, I

∗
p)

(
1 − Ip

I ∗
p

+ ln
Ip
I ∗
p

)

+ �(A∗
p, I

∗
p)

(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

+ ln
�(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

)

+ �(A∗
p, I

∗
p)

(
1 − Ip

I ∗
p

+ ln
Ip
I ∗
p

)

+ �(X∗
p, I

∗
p)

(
1 − �(X p(t − �), Ip(t − �))

�(X p(t), Ip(t))

�(X p(t), I ∗
p)

�(X∗
p, I

∗
p)

I ∗
p

Ip(t)

+ ln
�(X p(t − �), Ip(t − �))

�(X p(t), Ip(t))

�(X p(t), I ∗
p)

�(X∗
p, I

∗
p)

I ∗
p

Ip(t)

)

+ �(A∗
p, I

∗
p)

(
1 − �(Ap(t − �), Ip(t − �))

�(Ap(t), Ip(t))

�(Ap(t), I ∗
p)

�(A∗
p, I

∗
p)

I ∗
p

Ip(t)

+ ln
�(Ap(t − �), Ip(t − �))

�(Ap(t), Ip(t))

�(Ap(t), I ∗
p)

�(A∗
p, I

∗
p)

I ∗
p

Ip(t)

)

+ �(X p(t − �), Ip(t − �))

(
�(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

− I ∗
p

Ip(t)

)

+ �(X∗
p, I

∗
p)

(
�(X p(t), Ip(t))

�(X∗
p, I

∗
p)

− 1

)

+ �(A∗
p, I

∗
p)

(
�(Ap(t), Ip(t))

�(A∗
p, I

∗
p)

− 1

)

+ �(X p(t − �), Ip(t − �))
I ∗
p

Ip(t)

(
�(X p(t), I ∗

p)

�(X p(t), Ip(t))
− Ip(t)

I ∗
p

)

+ �(Ap(t − �), Ip(t − �))
I ∗
p

Ip(t)

(
�(Ap(t), I ∗

p)

�(Ap(t), Ip(t))
− Ip(t)

I ∗
p

)
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+ �(Ap(t − �), Ip(t − �))
( �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

− I ∗
p

Ip(t)

)
+ ξ X∗

p

(
1 − X p

X∗
p

) (
X p

X∗
p

− Ap

A∗
p

)
A∗
p

Ap

X∗
p

X p

+
(

h(I ∗
p)

h(Ip(t))
− I ∗

p

Ip(t)

) (
Ip(t)

I ∗
p

− 1

)
h(Ip(t)).

The functions �(X p(t), Ip(t)) and �(Ap(t), Ip(t)) are monotonically increasing for
all X p(t) > 0, and Ap(t) > 0. Therefore,

(
X∗

p − X p

) (
1 − �(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

)
≤ 0,

(
A∗
p − Ap

)(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

)
≤ 0.

(39)

The function g(y) = 1− y+ ln y, (y > 0) has global maximum at y = 1. Henceforth,
for y > 0, g(y) ≤ 0 and the resulting inequalities are as follows:

(
1 − �(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

+ ln
�(X∗

p, I
∗
p)

�(X p(t), I ∗
p)

)
≤ 0,

(
1 − Ip

I ∗
p

+ ln
Ip
I ∗
p

)
≤ 0,

(
1 − �(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

+ ln
�(A∗

p, I
∗
p)

�(Ap(t), I ∗
p)

)
≤ 0,

(
1 − �(X p(t − �), Ip(t − �))

�(X p(t), Ip(t))

�(X p(t), I ∗
p)

�(X∗
p, I

∗
p)

I ∗
p

Ip(t)

+ ln
�(X p(t − �), Ip(t − �))

�(X p(t), Ip(t))

�(X p(t), I ∗
p)

�(X∗
p, I

∗
p)

I ∗
p

Ip(t)

)
≤ 0,

(
1 − �(Ap(t − �), Ip(t − �))

�(Ap(t), Ip(t))

�(Ap(t), I ∗
p)

�(A∗
p, I

∗
p)

I ∗
p

Ip(t)

+ ln
�(Ap(t − �), Ip(t − �))

�(Ap(t), Ip(t))

�(Ap(t), I ∗
p)

�(A∗
p, I

∗
p)

I ∗
p

Ip(t)

)
≤ 0. (40)

Thus, using (P8.)–(P10.) and the inequalities (39)–(40), it follows that dW (t)
dt ≤ 0 for

all X p(t) ≥ 0, Ap(t) ≥ 0, Ip(t) ≥ 0. Thus, it is easy to verify that the largest invari-

ant set in
{
(X p(t), Ap(t), Ip(t)) ∈ R3+ : dW (t)

dt = 0
}
is singleton {Ee}. Hence, by the
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Lyapunov-LaSalle asymptotic stability theorem [23, 26, 35], the endemic equilibrium
Ee is globally asymptotically stable. �	
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