A NONLINEAR SECOND INITIAL BOUNDARY VALUE PROBLEM FOR THE HEAT EQUATION*

B

C. Y. CHAN

Florida State University

1. Introduction. Mann and Wolf [6] proved the existence and uniqueness of an initial boundary value problem of a one-dimensional heat equation with zero initial temperature and nonlinear second boundary condition. Their result was improved by Roberts and Mann [9], and later on by Padmavally [8]. Using Schauder's fixed point theorem [10], Friedman [2] considered an *n*-dimensional linear parabolic differential equation with linear initial condition and nonlinear boundary condition involving the conormal.

We use a completely different approach to establish the existence and uniqueness of a solution for a nonlinear second initial boundary value problem consisting of a semilinear parabolic differential equation with linear initial and quasilinear boundary conditions. The arguments, similar to those of Duff [1] for the elliptic case, give the solution by successive approximations; in each step of the construction, we make use of the solution of the corresponding linear problem. The method can be used for the more general parabolic differential equation,

$$\sum_{i,j=1}^{n} a_{ij}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} a_{i}(x, t) \frac{\partial u}{\partial x_{i}} + c(x, t)u - \frac{\partial u}{\partial t} = g(x, t; u),$$

since for this the strong maximum principle [7] holds, and the Neumann function exists [3, p. 155, 4, 5] under certain conditions on the coefficients and the domain of definition. For simplicity of discussion, we consider here an n-dimensional semilinear heat equation.

2. Statement of the problem. Let D be a bounded convex n-dimensional domain in the real n-dimensional Euclidean space, D^- its closure and ∂D its boundary. For every point $x = (x_1, x_2, \dots, x_n)$ of ∂D , there exists an n-dimensional neighborhood V such that $V \cap \partial D$ can be represented for some i $(1 \le i \le n)$ in the form

$$x_{i} = h(x_{1}, x_{2}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n})$$

and the functions h, $D_x h$, $D_x^2 h$ are Hölder continuous of exponent α where $0 < \alpha < 1$. Let $D \times (0, T] = \Omega$, $\partial D \times (0, T] = S$, and

$$L = \sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}} - \frac{\partial}{\partial t}.$$

^{*} Received April 2, 1970; revised version received July 26, 1970. This work is a portion of the author's doctoral dissertation at the University of Toronto, and was supported by a postgraduate scholarship from the Nationa! Research Council of Canada.

Our problem is to find u(x, t) satisfying the semilinear heat equation

$$Lu = g(x, t; u) \quad \text{in } \Omega \tag{2.1}$$

under the initial condition

$$u(x, 0) = \phi(x) \quad \text{on } D^- \tag{2.2}$$

and the quasilinear boundary condition

$$\frac{\partial u(x, t)}{\partial n_{(x, t)}} + B(x, t; u) = f(x, t) \quad \text{on } S, \tag{2.3}$$

where g(x, t; u), $\phi(x)$, B(x, t; u) and f(x, t) are given functions, and $n_{(x,t)}$ is the outward normal to S at the point (x, t). We impose the following conditions:

(i) g(x, t; u) is twice continuously differentiable; $g_u(x, t; u)$ is Hölder continuous when $(x, t) \in \Omega^-$ and u varies in a bounded set;

$$0 \le g_u(x, t; u) < \infty \tag{2.4}$$

and

$$g(x, t; 0) = 0; (2.5)$$

- (ii) $\phi(x)$ is continuous in D^- ;
- (iii) B(x, t; u) is twice continuously differentiable when $(x, t) \in S^-$ and u varies in a bounded set; moreover

$$B_{\mathbf{u}}(x,\,t;\,u)\,>\,0\tag{2.6}$$

and

$$B(x, t; 0) = 0; (2.7)$$

(iv) f(x, t) is continuous on S^{-} .

For n=3, the problem can be interpreted physically as finding the temperature u(x, t) of a convex, sufficiently smooth, homogeneous and isotropic body having an arbitrary initial distribution of temperature $\phi(x)$. Heat is generated in it at a rate proportional to -g(x, t; u), which is a nonincreasing function of u (condition (2.4)) and satisfies (2.5). Heat transfer between the body at a higher temperature and its surroundings at a lower constant temperature [6, pp. 163–164] is subject to a nonlinear condition (2.3). Thus f(x, t) - B(x, t; u) is a monotone decreasing function of u (condition (2.6)) [6, pp. 163–164]. If $f(x, t) \equiv 0$ on S^- , then (2.7) implies that the temperature of the surroundings is zero [6, p. 164].

The main result of this work is the following theorem.

Theorem. There exists a unique solution of the nonlinear second initial-boundary value problem (2.1)-(2.3).

In Sec. 3, we consider three auxiliary lemmas. The proof of the theorem is given in Sec. 4. If conditions (2.5) and (2.7) are replaced by g(x, t; m) = 0 and B(x, t; m) = 0 where m is a constant, then (4.1) is replaced by

$$u(x, 0; \lambda) - m = \lambda(\phi(x) - m)$$
 on D^- .

Accordingly, we make the corresponding changes in the existence proof; for example, we start with

$$u_0(x, t; \lambda) \equiv u(x, t; 0) = m$$

in the successive approximations. In effect, the procedures of the proof remain the same.

3. Auxiliary lemmas. Let $L_{\epsilon} = L - c(x, t)$, where $c(x, t) \geq 0$ and c(x, t) is Hölder continuous in Ω^{-} . Also let

$$B_{\tau} = (D \times [0, T]) \cap \{t = \tau\},\$$

 $\Omega^* = D \times [0, T)$, and

$$\psi_{\beta} = \frac{\partial}{\partial n_{(x,t)}} + \beta(x,t)$$

where $\beta(x, t)$ is a continuous function on S^- . To define a Neumann function, we follow Friedman [3, p. 155].

Definition. A function $N(x, t; \xi, \tau)$ defined and continuous for $(x, t; \xi, \tau) \in \Omega^- \times \Omega^*$, $t > \tau$, is called a Neumann function of $L_{\varepsilon}w = 0$ in Ω if for any $0 \le \tau < T$ and for any continuous function $\psi(x)$ on B_{τ} having a compact support, the function

$$w(x, t) = \int_{B_{\tau}} N(x, t; \xi, \tau) \psi(\xi) d\xi$$

is a solution of $L_{\epsilon}w = 0$ in $D \times (\tau, T]$ and satisfies

$$\lim_{t \downarrow \tau} w(x, t) = \psi(x) \quad \text{for } x \in B_{\tau}^{-},$$

and $\psi_{\beta}w(x, t) = 0$ on $\partial D \times (\tau, T]$.

Let $N^*(x, t; \xi, \tau)$ denote the Neumann function of the adjoint equation $L^*_{\varepsilon}w = 0$ in Ω^* corresponding to the boundary condition $\psi_{\beta}w = 0$ on $\partial D \times [0, \tau)$. By Friedman [3, p. 155, pp. 82-84] and Itô [4], $N(x, t; \xi, \tau)$ and $N^*(x, t; \xi, \tau)$ exist and are unique, $L_{\varepsilon}N(x, t; \xi, \tau) = 0$ for $(x, t) \in \Omega$, $L^*_{\varepsilon}N^*(x, t; \xi, \tau) = 0$ for $(x, t) \in \Omega^*$, $\psi_{\beta}N(x, t; \xi, \tau) = 0$ for $(x, t) \in \partial D \times (\tau, T]$, $\psi_{\beta}N^*(x, t; \xi, \tau) = 0$ for $(x, t) \in \partial D \times [0, \tau)$, and furthermore, $N(x, t; \xi, \tau)$, $N_x(x, t; \xi, \tau)$, $N_{xx}(x, t; \xi, \tau)$ and $N_{\varepsilon}(x, t; \xi, \tau)$ are continuous functions of $(x, t; \xi, \tau)$ in $\Omega^* \times \Omega$, $t < \tau$. The Neumann function can be constructed by the parametrix method used by Itô [4, 5].

Let $N(x, t; \xi, \tau)$ be the Neumann function corresponding to the case when $c(x, t) \ge 0$ and $\beta(x, t) \ge 0$, and $N^0(x, t; \xi, \tau)$ be that corresponding to the case when c(x, t) and $\beta(x, t)$ are identically zero. Then,

Lemma 1. $N(x, t; \xi, \tau) \leq N^{0}(x, t; \xi, \tau)$.

Proof. In the Green's identity,

$$vL_{c}u - uL_{c}^{*}v = \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left\{ \sum_{j=1}^{n} \left(v \frac{\partial u}{\partial x_{j}} - u \frac{\partial v}{\partial x_{j}} \right) \right\} - \frac{\partial}{\partial t} (uv),$$

let $u(y, \sigma) = N(y, \sigma; \xi, \tau)$ and $v(y, \sigma) = N^*(y, \sigma; x, t)$. Integrating this over the domain $D \times (\tau + \epsilon, t - \epsilon)$ and letting $\epsilon \to 0$, we have by the boundary condition

$$N(x, t; \xi, \tau) = N^*(\xi, \tau; x, t)$$
 (3.1)

for any two points (x, t) and (ξ, τ) in Ω with $t > \tau$. An argument similar to the proof of Theorem 11 of Friedman [3, pp. 44-45] gives for each (ξ, τ) in Ω^* ,

$$N(x, t; \xi, \tau) > 0 \quad \text{in } D \times (\tau, T]. \tag{3.2}$$

From this and (3.1), it follows that

$$N^*(x, t; \xi, \tau) > 0 \text{ in } D \times [0, \tau)$$
 (3.3)

for each (ξ, τ) in Ω .

Let $N_{\lambda}(x, t; \xi, \tau)$ be the Neumann function of $L_c w = 0$ corresponding to the boundary condition $\psi_{\lambda}N_{\lambda}(x, t; \xi, \tau) = 0$, where $\lambda(x, t) \geq 0$. Then the Green's identity gives

$$N_{\lambda}(x, t; \xi, \tau) - N(x, t; \xi, \tau) = -\int_{\tau}^{t} \int_{\partial D} N_{\lambda}^{*}(y, \sigma; x, t) N(y, \sigma, \xi, \tau) \cdot \{\lambda(y, \sigma) - \beta(y, \sigma)\} dA_{x} d\sigma, \quad (3.4)$$

which gives

$$\delta N(x, t; \xi, \tau) = -\int_{\tau}^{t} \int_{\partial D} N^{*}(y, \sigma; x, t) N(y, \sigma; \xi, \tau) \, \delta \beta(y, \sigma) \, dA_{\nu} \, d\sigma. \tag{3.5}$$

Similarly, let $N_b(x, t; \xi, \tau)$ be the Neumann function of $L_b w = 0$ corresponding to $\psi_{\beta} w = 0$ with $b(x, t) \geq 0$. Then

$$N_{b}(x, t; \xi, \tau) - N(x, t; \xi, \tau) = -\int_{\tau}^{t} \int_{D} N_{b}^{*}(y, \sigma; x, t) N(y, \sigma; \xi, \tau) \cdot \{b(y, \sigma) - c(y, \sigma)\} dV_{u} d\sigma, \quad (3.6)$$

which gives

$$\delta N(x, t; \xi, \tau) = -\int_{\tau}^{t} \int_{D} N^{*}(y, \sigma; x, t) N(y, \sigma; \xi, \tau) \, \delta c(y, \sigma) \, dV_{\nu} \, d\sigma. \tag{3.7}$$

Thus from (3.2), (3.3), (3.5) and (3.7), $N(x, t; \xi, \tau) \leq N^{0}(x, t; \xi, \tau)$ follows.

In what follows, let k_1 , k_2 , k_3 , \cdots , k_{11} denote appropriate positive constants. For convenience of reference, we state the following lemma, whose proof can be found in Friedman [3, p. 146].

LEMMA 2. If w is a solution of $L_{\epsilon}w = 0$ in Ω , $\psi_{\beta}w = f(x, t)$ on S and $w(x, 0) = \phi(x)$ on D^- , then for all $(x, t) \in \Omega$,

$$|w(x, t)| \le k_1(1.\text{u.b.} |f| + 1.\text{u.b.} |\phi|),$$

where k_1 is a constant depending only on L_{ϵ} , β and Ω^- .

LEMMA 3. Let

$$\theta^*(\xi, \tau; x, t) = k_2 \int_{\tau}^{t} \int_{D} N^{0}(y, \sigma; \xi, \tau) N^{0^*}(y, \sigma; x, t) dV_{\nu} d\sigma$$

$$+ k_3 \int_{\tau}^{t} \int_{\partial D} N^{0}(y, \sigma; \xi, \tau) N^{0^*}(y, \sigma; x, t) dA_{\nu} d\sigma.$$

Then

$$\int_{\mathcal{D}} \theta^*(\xi, 0, x, t) dV_{\xi} + \int_{0}^{t} \int_{\partial \mathcal{D}} \theta^*(\xi, \tau; x, t) dA_{\xi} d\tau \leq k_4$$

where k_4 is independent of (x, t).

Proof. Let L^* be the adjoint of L. It follows from the Green's identity that $\theta^*(\xi, \tau; x, t)$ is the solution of

$$L^*\theta^*(\xi, \tau; x, t) = -k_2 N^{0^*}(\xi, \tau; x, t) \quad \text{in } D \times [0, t),$$

$$\theta^*(\xi, t; x, t) = 0 \quad \text{on } \Omega^- \cap \{t = t\},$$

and

$$\frac{\partial \theta^*(\xi, \tau; x, t)}{\partial n_{(\xi, \tau)}} = k_3 N^{0*}(\xi, \tau; x, t) \quad \text{on } \partial D \times [0, t).$$

Let w(x, t) be the solution of Lw = 0 in Ω , w(x, 0) = 1 on D^- , and $\partial w(x, t)/\partial n_{(x, t)} = 1$ on S. From Lemma 2, $|w(x, t)| \le k_5$, a constant.

In the Green's identity, let $v = \theta^*(y, \sigma; x, t)$ and $u = w(y, \sigma)$. Integrating this over the domain $D \times (\epsilon, t - \epsilon)$, and letting $\epsilon \to 0$, we have

$$\begin{split} \int_{D} \, \theta^{*}(\xi,\,0\,;\,x,\,t) \,\,dV_{\xi} \,+\, \int_{0}^{t} \, \int_{\partial D} \, \theta^{*}(\xi,\,\tau\,;\,x,\,t) \,\,dA_{\xi} \,\,d\tau \\ &= \, k_{2} \, \int_{0}^{t} \, \int_{D} \, w(\xi,\,\tau) N^{0\,*}(\xi,\,\tau\,;\,x,\,t) \,\,dV_{\xi} \,\,d\tau \,+\, k_{3} \, \int_{0}^{t} \, \int_{\partial D} \, w(\xi,\,\tau) N^{0\,*}(\xi,\,\tau\,;\,x,\,t) \,\,dA_{\xi} \,\,d\tau. \end{split}$$

Hence

$$\int_{D} \theta^{*}(\xi, 0; x, t) dV_{\xi} + \int_{0}^{t} \int_{\partial D} \theta^{*}(\xi, \tau; x, t) dA_{\xi} d\tau
\leq k_{2}k_{5} \int_{0}^{t} \int_{D} N^{0}(\xi, \tau; x, t) dV_{\xi} d\tau + k_{3}k_{5} \int_{0}^{t} \int_{\partial D} N^{0}(\xi, \tau; x, t) dA_{\xi} d\tau.$$

The right-hand side of the inequality is the solution of $Lz = -k_2k_5$ in Ω , z(x, 0) = 0 on D^- and $\partial z(x, t)/\partial n_{(x, t)} = k_3k_5$ on S. Hence from Lemma 2

$$|z(x, t)| \leq k_6 k_5 (k_2 + k_3).$$

Thus the lemma is proved.

4. Proof of the theorem. Uniqueness: Suppose $u_1(x, t)$ and $u_2(x, t)$ are two distinct solutions of our problem. Without loss of generality, let us assume that $u_2(x, t) > u_1(x, t)$ at some point of Ω . Then the function, $u(x, t) = u_2(x, t) - u_1(x, t)$ satisfies

$$Lu - g_u(x, t; u_3)u = 0 \text{ in } \Omega,$$

where u_3 lies between u_1 and u_2 . Since u(x, 0) = 0 on D^- , we have by the weak maximum principle [7] that it attains its maximum at some point, say (x_0, t_0) , of S. Hence $\frac{\partial u(x_0, t_0)}{\partial n_{(x_0, t_0)}} \geq 0$, but

$$\frac{\partial u(x_0, t_0)}{\partial n_{(x_0, t_0)}} = B(x_0, t_0; u_1) - B(x_0, t_0; u_2) < 0$$

by (2.6). Therefore, the solution is unique.

Existence: Let λ be a parameter such that $0 \leq \lambda \leq 1$. If $u(x, t; \lambda)$ is the solution of

$$Lu(x, t; \lambda) = g(x, t; u(x, t; \lambda))$$
 in Ω ,

$$\frac{\partial u(x, t; \lambda)}{\partial n_{(x,t)}} + B(x, t; u(x, t; \lambda)) = \lambda f(x, t)$$
 on S

and

$$u(x, 0; \lambda) = \lambda \phi(x) \quad \text{on } D^-,$$
 (4.1)

then $v(x, t; \lambda) \equiv \partial u(x, t; \lambda)/\partial \lambda$ satisfies

$$L_{s,v}(x, t; \lambda) = 0 \quad \text{in } \Omega,$$

$$\psi_{B,v}(x, t; \lambda) = f(x, t) \quad \text{on } S$$

$$(4.2)$$

and

$$v(x, 0; \lambda) = \phi(x)$$
 on D^- .

Now if $u(x, t; \lambda)$ is already known, then by the Green's identity

$$v(x, t; \lambda) = \int_{D} N(x, t; \xi, 0; \lambda) \phi(\xi) dV_{\xi} + \int_{0}^{t} \int_{\partial D} N(x, t; \xi, \tau; \lambda) f(\xi, \tau) dA_{\xi} d\tau,$$

where $N(x, t; \xi, \tau; \lambda)$ is the Neumann function of (4.2) corresponding to the boundary condition $\psi_{B_u}v(x, t; \lambda) = 0$ on S. But as λ varies, $u(x, t; \lambda)$ changes, and this in turn affects the Neumann function. By (3.5) and (3.7), we have

$$\delta N(x, t; \xi, \tau; \lambda) = -\int_{\tau}^{t} \int_{D} N^{*}(y, \sigma; x, t; \lambda) N(y, \sigma; \xi, \tau; \lambda) \, \delta g_{u}(y, \sigma, u(y, \sigma; \lambda)) \, dV_{v} \, d\sigma$$

$$-\int_{\tau}^{t} \int N^{*}(y, \sigma; x, t; \lambda) N(y, \sigma; \xi, \tau; \lambda) \, \delta B_{u}(y, \sigma; u(y, \sigma; \lambda)) \, dA_{v} \, d\sigma. \tag{4.3}$$

Thus to determine $u(x, t; \lambda)$ and $N(x, t; \xi, \tau; \lambda)$, we have the following system of integro-differential equations:

$$\frac{\partial u(x,\,t;\,\lambda)}{\partial \lambda} = \int_{\mathcal{D}} N(x,\,t;\,\xi,\,0;\,\lambda) \phi(\xi) \; dV_{\,\xi} + \int_{\,0}^{\,t} \int_{\,\partial\mathcal{D}} N(x,\,t;\,\xi,\,\tau;\,\lambda) f(\xi,\,\tau) \; dA_{\,\xi} \; d\tau \qquad (4.4)$$

and

$$\frac{\partial N(x, t; \xi, \tau; \lambda)}{\partial \lambda} = -\int_{\tau}^{t} \int_{D} N^{*}(y, \sigma; x, t; \lambda) N(y, \sigma; \xi, \tau; \lambda) \frac{\partial g_{u}(y, \sigma; u(y, \sigma; \lambda))}{\partial \lambda} dV_{u} d\sigma
- \int_{\tau}^{t} \int_{D} N^{*}(y, \sigma; x, t; \lambda) N(y, \sigma; \xi, \tau; \lambda) \frac{\partial B_{u}(y, \sigma; u(y, \sigma; \lambda))}{\partial \lambda} dA_{u} d\sigma$$
(4.5)

with $u(x, t; 0) \equiv 0$.

By Lemma 2,

$$|v(x, t; \lambda)| \le k_7(\lim_{s \to \infty} |f| + \lim_{s \to \infty} |\phi|).$$

Hence

$$u(x, t; \lambda) \le k_7(\lim_{s^-} b, |f| + \lim_{s^-} b, |\phi|)$$

since $0 \le \lambda \le 1$. We now prove the existence in the theorem by successive approximations.

Let
$$u_0(x, t; \lambda) \equiv u(x, t; 0) = 0$$
. For $n = 1, 2, 3, \dots$, let $u_n(x, t; 0) \equiv 0$, and

$$\frac{\partial u_{n}(x, t; \lambda)}{\partial \lambda} = \int_{D} N_{n-1}(x, t; \xi, 0; \lambda) \phi(\xi) \ dV_{\xi} + \int_{0}^{t} \int_{\partial D} N_{n-1}(x, t; \xi, \tau; \lambda) f(\xi, \tau) \ dA_{\xi} \ d\tau \tag{4.7}$$

where $N_n(x, t; \xi, \tau; \lambda)$ is the Neumann function of the differential equation

$$Lv(x, t; \lambda) = g_u(x, t; u_n(x, t; \lambda))v(x, t; \lambda)$$

corresponding to the boundary condition

$$\frac{\partial v(x, t; \lambda)}{\partial n_{(x,t)}} + B_u(x, t; u_n(x, t; \lambda))v(x, t; \lambda) = 0.$$

Thus we can find $N_0(x, t; \xi, \tau; \lambda)$, $u_1(x, t; \lambda)$, $N_1(x, t; \xi, \tau; \lambda)$, and so on successively. Since g(x, t; u) and B(x, t; u) are twice continuously differentiable, we have by (4.6) that g_{uu} and g_{uu} are bounded. Let $|g_{uu}| \leq k_2$ and $|g_{uu}| \leq k_3$. Also let

$$\rho_n(\lambda) = \max_{(x,t) \in \Omega} |u_n(x,t;\lambda) - u_{n-1}(x,t;\lambda)|. \tag{4.8}$$

Then

$$|g_u(x, t; u_n(x, t; \lambda)) - g_u(x, t; u_{n-1}(x, t; \lambda))| \le k_2 \rho_n(\lambda)$$

and

$$|B_u(x, t; u_n(x, t; \lambda)) - B_u(x, t; u_{n-1}(x, t; \lambda))| \le k_3 \rho_n(\lambda).$$

These together with (3.4), (3.6), Lemma 1 and the definition of $\theta^*(\xi, \tau; x, t)$ in Lemma 3 give

$$|N_n(x, t; \xi, \tau; \lambda) - N_{n-1}(x, t; \xi, \tau; \lambda)| \le \rho_n(\lambda)\theta^*(\xi, \tau; x, t). \tag{4.9}$$

Let $|\phi(x)| \le k_8$, $|f(x, t)| \le k_9$ and $k_{10} = \max\{k_8, k_9\}$. Then from (4.7) and (4.9), we have

$$\left| \frac{\partial u_{n+1}(x, t; \lambda)}{\partial \lambda} - \frac{\partial u_{n}(x, t; \lambda)}{\partial \lambda} \right|$$

$$\leq k_{10}\rho_{n}(\lambda) \left\{ \int_{D} \theta^{*}(\xi, 0; x, t) \ dV_{\xi} + \int_{0}^{t} \int_{\partial D} \theta^{*}(\xi, \tau; x, t) \ dA_{\xi} \ d\tau \right\} \leq k_{10}\rho_{n}(\lambda)k_{4} \qquad (4.10)$$

by Lemma 3. Since $u_n(x, t; 0) = 0$, we have from (4.10)

$$|u_{n+1}(x, t; \lambda) - u_n(x, t; \lambda)| \leq k_4 k_{10} \int_0^{\lambda} \rho_n(r) dr,$$

which is independent of (x, t). By (4.8)

$$\rho_{n+1}(\lambda) \leq k_4 k_{10} \int_0^{\lambda} \rho_n(r) dr.$$

Since $u_0(x, t; \lambda) = 0$, we have

$$\rho_1(\lambda) = \max_{(x,t)\in\Omega^-} |u_1(x,t;\lambda)|.$$

By (4.6), $\rho_1(\lambda) \leq k_{11}$. It follows from induction that

$$\rho_n(\lambda) \le \frac{k_{11}(k_4 k_{10} \lambda)^{n-1}}{(n-1)!}$$
 (4.11)

Therefore, $\sum_{n=0}^{\infty} [u_{n+1}(x, t; \lambda) - u_n(x, t; \lambda)]$ converges absolutely and uniformly in (x, t). Let $u(x, t; \lambda)$ be the limit. Except at the point of singularity $(x, t) = (\xi, \tau)$ of $N^0(x, t; \xi, \tau)$,

it follows from (4.9) that the sequence $\{N_n(x, t; \xi, \tau; \lambda)\}$ converges uniformly to a limit, say $N(x, t; \xi, \tau; \lambda)$. Thus for $(x, t) \neq (\xi, \tau)$, $N(x, t; \xi, \tau; \lambda)$ is continuous and furthermore, from (4.3), it depends continuously on the coefficient of the partial differential equation and on the boundary condition. Therefore $N(x, t; \xi, \tau; \lambda)$ is the Neumann function of (4.2) corresponding to $\psi_{B_n} v(x, t; \lambda) = 0$ on S. Hence from (4.3) $\partial N(x, t; \xi, \tau; \lambda)/\partial \lambda$ is given by (4.5). Since $u_0(x, t; \lambda) = 0$, we have from (4.10) and (4.11) that $\partial u_n(x, t; \lambda)/\partial \lambda$ converges uniformly and absolutely. As $n \to \infty$, (4.7) becomes (4.4). Thus $u(x, t; \lambda)$ and $N(x, t; \xi, \tau; \lambda)$ satisfy the integro-differential equations (4.4) and (4.5) with $u(x, t; 0) \equiv 0$. Hence u(x, t; 1) is the solution to our problem.

REFERENCES

- G. F. D. Duff, A quasi-linear boundary value problem, Trans. Roy. Soc. Canada Sect. III. (3) 49, 7-17 (1955)
- [2] A. Friedman, Generalized heat transfer between solids and gases under nonlinear boundary conditions,
 J. Math. Mech. 8, 161-183 (1959)
- [3] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964, pp. 44-45, 82-84, 146, 155
- [4] S. Itô, A boundary value problem of partial differential equations of parabolic type, Duke Math. J. 24, 299-312 (1957)
- [5] S. Itô, A remark on my paper "A boundary value problem of partial differential equations of parabolic type" in Duke Mathematical Journal, Proc. Japan Acad. 34, 463-465 (1958)
- [6] W. R. Mann and F. Wolf, Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9, 163-184 (1951)
- [7] L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math. 6, 167-177 (1953)
- [8] K. Padmavally, On a non-linear integral equation, J. Math. Mech. 7, 533-555 (1958)
- [9] J. H. Roberts and W. R. Mann, On a certain nonlinear integral equation of the Volterra type, Pacific J. Math. 1, 431-445 (1951)
- [10] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2, 171-180 (1930)