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1. Introduction. Mann and Wolf [6] proved the existence and uniqueness of an

initial boundary value problem of a one-dimensional heat equation with zero initial

temperature and nonlinear second boundary condition. Their result was improved by

Roberts and Mann [9], and later on by Padmavally [8], Using Schauder's fixed point

theorem [10], Friedman [2] considered an n-dimensional linear parabolic differential

equation with linear initial condition and nonlinear boundary condition involving the

conormal.

We use a completely different approach to establish the existence and uniqueness of a

solution for a nonlinear second initial boundary value problem consisting of a semilinear

parabolic differential equation with linear initial and quasilinear boundary conditions.

The arguments, similar to those of Duff [1] for the elliptic case, give the solution by

successive approximations; in each step of the construction, we make use of the solution

of the corresponding linear problem. The method can be used for the more general

parabolic differential equation,

Z o./(x, t) d^ Udx + jb a.O, 0 J^; + c(x, f)u - |f = g(x, t; u),

since for this the strong maximum principle [7] holds, and the Neumann function exists

[3, p. 155, 4, 5] under certain conditions on the coefficients and the domain of definition.

For simplicity of discussion, we consider here an n-dimensional semilinear heat equation.

2. Statement of the problem. Let D be a bounded convex n-dimensional domain

in the real n-dimensional Euclidean space, D~ its closure and dD its boundary. For

every point x = (xx , x2 , ■ • • xn) of dD, there exists an n-dimensional neighborhood V

such that V H dD can be represented for some i (1 < i < n) in the form

Xi = h(Xi , X2 , * * * , Xi—i , Xi + i , ■ • ■ , £ft)

and the functions h, Dxh, B2Ji are Holder continuous of exponent a where 0 < a < 1.

Let D X (0, T] = 0, dD X (0, T] = S, and

L = viL_3_.
dx* dt
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Our problem is to find u{x, t) satisfying the semilinear heat equation

Lu = g{x, t; u) in 0 (2.1)

under the initial condition

u(x, 0) = 4>(x) on D~ (2.2)

and the quasilinear boundary condition

+ B(x, t;u) = f(x, t) on 5, (2.3)
dn{s,t)

where g(x, t] u), <t>(x), B(x, t; u) and f(x, t) are given functions, and n(Iil) is the outward

normal to <S at the point (a:, t). We impose the following conditions:

(i) g(x, t; u) is twice continuously different]able; gu(x, t; u) is Holder continuous when

(z, t) G and u varies in a bounded set;

0 < gu(z, t;u) < ™ (2.4)

and

g(z, t; 0) = 0; (2.5)

(ii) 4>(x) is continuous in D~;

(iii) B(z, t; u) is twice continuously differentiable when (x, t) G S~ and u varies in a

bounded set; moreover

Bu(x, t;u)> 0 (2.6)

and
B(x, t; 0) = 0; (2.7)

(iv) j(x, t) is continuous on S~.

For n = 3, the problem can be interpreted physically as finding the temperature

u(x, t) of a convex, sufficiently smooth, homogeneous and isotropic body having an

arbitrary initial distribution of temperature 4>(x). Heat is generated in it at a rate pro-

portional to —g(x, t; w), which is a nonincreasing function of u (condition (2.4)) and

satisfies (2.5). Heat transfer between the body at a higher temperature and its sur-

roundings at a lower constant temperature [6, pp. 163-164] is subject to a nonlinear

condition (2.3). Thus j{x, t) — B(x, t; u) is a monotone decreasing function of u (con-

dition (2.6)) [6, pp. 163-164]. If j(x, t) = 0 on S~, then (2.7) implies that the temperature

of the surroundings is zero [6, p. 164].

The main result of this work is the following theorem.

Theorem. There exists a unique solution oj the nonlinear second initial-boundary

value problem (2.1)-(2.3).

In Sec. 3, we consider three auxiliary lemmas. The proof of the theorem is given in

Sec. 4. If conditions (2.5) and (2.7) are replaced by g(x, t; m) = 0 and B(x, t; m) = 0

where m is a constant, then (4.1) is replaced by

u(x, 0; X) — m = \(<f>(x) — m) on D~.

Accordingly, we make the corresponding changes in the existence proof; for example,

we start with

u0(x, t; X) = u{x, t;0) = m
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in the successive approximations. In effect, the procedures of the proof remain the same.

3. Auxiliary lemmas. Let Lc = L — c(x, t), where c(x, t) > 0 and c(x, t) is Holder

continuous in 9,~. Also let

Br = (D X [0, T]) H {t = r},

9.* = D X [0, T), and

*' - sb+"(I'"
where /3(x, t) is a continuous function on S~. To define a Neumann function, we follow

Friedman [3, p. 155].

Definition. A function N{x, t; £, r) defined and continuous for (x, t; £, r) G X 9*,

t > t, is called a Neumann function of Lcw = 0 in 0 if for any 0 < r < T and for any

continuous function ip(x) on Br having a compact support, the function

o(x, i) = f N(x, t) r)^©
J Br

di

is a solution of Leio = 0 in O X (r, T] and satisfies

lim w(x, t) = ^(x) for x E: B~ ,
ti T

and t) = 0 on dZ) X (r, T],

Let iV*(x, <; £, r) denote the Neumann function of the adjoint equation L*w = 0

in 9* corresponding to the boundary condition = 0 on dD X [0, r). By Friedman

[3, p. 155, pp. 82-84] and Ito [4], N(x, t; £, r) and N*(x, t; £, r) exist and are unique,

LcN(x, t- i r) = 0 for (x, t) G S, t; £, r) = 0 for (x, 0 G 0*, lMTfo i; £, r) = 0
for (x, t) G d.D X (t, !F], iPffN*(x, t; £, r) = 0 for (x, Z) G® X [0, r), and furthermore,

A(x, £, t), 2Vx(x, £, t), Nzi{x, t; £, r) and iVt(x, <; |, r) are continuous functions of

(x, <; £, r) in £2 X 0*, « > r while N*(x, t; £, r), iV*(x, /; £, t), iV*(x, t; %, r) and iV*(x, t;

r) are continuous functions of (x, <; £, r) in 0* X 2,i < r. The Neumann function can

be constructed by the parametrix method used by Ito [4, 5].

Let N(x, t; £, r) be the Neumann function corresponding to the case when c(x, t) > 0

and /3(x, <) > 0, and N°(x, t; £, r) be that corresponding to the case when c(x, t) and

/8(x, t) are identically zero. Then,

Lemma 1. N(x, t; t) < A°(x, i; £, t).

Proof. In the Green's identity,

,Lju-uLy.

let w(y, cr) = A"(y, a; $, r) and v(y, a) = A*(y, cr; x, <)• Integrating this over the domain

D X (t + e, t — e) and letting e —> 0, we have by the boundary condition

N(x, I; £, t) = 2V*(£, r; x, t) (3.1)

for any two points (x, t) and (£, r) in Q with t > r. An argument similar to the proof of

Theorem 11 of Friedman [3, pp. 44-45] gives for each (£, r) in 9*,

N(x, t; r) > 0 in D X (r, T], (3.2)
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From this and (3.1), it follows that

N*(x, t; I t) > 0 in D X [0, r) (3.3)

for each (£, r) in Q.

Let N\(x, t; £, r) be the Neumann function of Lcw = 0 corresponding to the boundary

condition ^N^x, t; £, r) = 0, where \(x, t) > 0. Then the Green's identity gives

Nx(x, t; r) - NCe, t;$,r) = -[ f N*x(y, cr; z, f)#(y, cr, |, r)

• {ff) - /%, 0-)} dAv da, (3.4)

which gives

8N(x, t;P, t) = — f f N*(y, <r; x, t)N(y, cr; £, T) S/3(y, a) dA„ da. (3.5)
•'r Jaxi

Similarly, let 2V6(:c, £, r) be the Neumann function of Lbw = 0 corresponding to

\pjjiv = 0 with b(x, t) > 0. Then

Nb(x, t)£, t) - N(x, «;£, r) = - f [ N*(y, a; x, t)N(y, cr;£, r)
«/T J.D

• {&(*/> o-) _ c(y, cr)} do-, (3.6)

which gives

SN(x, t] |, r) = — [ [ N*(y, a; x, £)Ar(?/, cr; £, r) &(y, a) dVv da. (3.7)
JT Jd

Thus from (3.2), (3.3), (3.5) and (3.7), N(x, t; £, r) < AT°(x, £, r) follows.

In what follows, let kL , k2 , k3 , ■ ■ ■ , ku denote appropriate positive constants. For

convenience of reference, we state the following lemma, whose proof can be found in

Friedman [3, p. 146].

Lemma 2. If w is a solution of Lcw = 0 in fi, ipfw = f{x, t) on S and w(x, 0) = <f>(x)

on D~, then for all (x, t) (E 0,

\w(x, 0| < fci(l.u.b. |/| + l.u.b. |<£|),
s- D-

where kx is a constant depending only on Lc , /3 and ST.

Lemma 3. Let

8*(£, t; a•, t) = k2 J J" N°(y, a; £, T)N°\y, a; x, t) dVv da

+ k3 f f N°(y, a; f, r)iV°*(?/, a; x, t) dAv da.
Jt J dD

Then

[ 0*(£, 0, x, t) dV£ + [ f 0*(f, r; x, t) dA( dr < kt
Jd •'O J dD

where kt is independent of (x, t).
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Proof. Let L* be the adjoint of L. It follows from the Green's identity that

6*(£, t; x, t) is the solution of

L*0*(£, r; x, t) = —k2N°~(£, T,x,t) in D X [0, t),

#*(£, t; x, t) = 0 on 0~ n {J = <},

and

d9*f T; X' t] = k3N°Xt, r;x,t) on dD X [0, t).

Let w(x, t) be the solution of Lw = 0 in Q, w(x, 0) = 1 on D~, and div(x, t)/dniz,n = 1

on S. From Lemma 2, \w(x, t)\ < k5, a constant.

In the Green's identity, let v = 6*(y, <r; x, t) and u = w(y, <r). Integrating this over

the domain D X (e, t — e), and letting e —> 0, we have

f 0*(£, 0; x, t) dV( + [ f e*(£, t; x, f) dAt dr
Jd Jo JdD

— k2 [ f w(£, t)2V°*(£, t; a:, t) dV( dr + k3 [ f w(g, t)N°'(£, r; Z, 0 cL4.5 dr.
Jo Jd Jo J 3d

Hence

[ e*(£, 0; x, t) dV£ + [ [ e*(£, t; x, t) dA( dr
Jd Jo Jod

< k2k5 f f N°'(f, t; x, t) dVt dr + T; x, t) cM£ dr.
•/o •'O

The right-hand side of the inequality is the solution of Lz = — k2k5 in G, z(x, 0) = 0

on D~ and dz(x, t)/dn(x_t) = k3k5 on S. Hence from Lemma 2

\z{x,t)\ < k6k5(k2 + k3).

Thus the lemma is proved.

4. Proof of the theorem. Uniqueness: Suppose u^x, t) and w2(z, £) are two distinct

solutions of our problem. Without loss of generality, let us assume that u2(x, t) >

Ui(x, t) at some point of 52. Then the function, u{x, t) = u2(x, t) — u^x, t) satisfies

Lu — gu(x, t; u3)u = 0 in G,

where u3 lies between and u2 . Since u(x, 0) = 0 on D~, we have by the weak max-

imum principle [7] that it attains its maximum at some point, say (x0 , to), of S. Hence

du(xo, to)/dn(x.,t.: > 0, but

dfX° ' to) = B{xo , t0 ; Ul) - B(x0 , t0 ■ u2) < 0

by (2.6). Therefore, the solution is unique.

Existence: Let X be a parameter such that 0 < X < 1. If u(x, t; X) is the solution of

Lu{x, t) X) = g(x, t; u(x, t; X)) in G,

du(x, t, X) ^ x)) = X/(x, t) on S
on(x,t)
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and

u(x, 0; X) = M(.x) on D~, (4.1)

then v(x, t; X) = du(x, t; X)/dX satisfies

Ls,v(x, t;\) = 0 in £2,

\pBuv{x, £; X) = j(x, t) on S (4.2)

and
v(x, 0; X) = 4>(x) on D~.

Now if u(x, t\ X) is already known, then by the Green's identity

v(x,t;\)= f N(x, f; £, 0; X) <j>(Q dV£ + f f N(x, f;£, r; X)/(|, r) cM£ dr,
Jd Jo J 3d

where N(x, t; r; X) is the Neumann function of (4.2) corresponding to the boundary

condition v(x, t; X) = 0 on S. But as X varies, u(x, t; X) changes, and this in turn affects

the Neumann function. By (3.5) and (3.7), we have

8N(x, t; |, r; X) = - f [ N* (y, <r; x, t; \)N(y, a; £, r; X) 5g»(y, a, u{y, tr; X)) dVv da
JT Jd

- [ f N*(y, cr; x, t;\)N(y, <x;£, t;\) 8Bu(y,<r;u(y, dAt da. (4.3)
J r J dD

Thus to determine u(x, t; X) and N(x, t; £, r; X), we have the following system of integro-

differential equations:

= [ N(x, t; J, 0; X)<*>© dVe + f [ N(x, t; £, T; X)/g, r) <L4{C?r (4.4)
du(x, t; X)

ax

and

diVfr, M, t; X) = _ J' £ ^ ^ r. x) dgu(y, <i;u(y, <x; X)) ̂ ^

- J' feD N*(y, a; x, t; \)N(y, a; ?, r; X) <7^(y' g; X)) ^ (4.5)

with u(x, t; 0) = 0.

By Lemma 2,

Kz, t) X)| < fc7(l.u.b. |/1 + l.u.b. |<£|).
s- D-

Hence

u(x, t; X) < fc7(l.u.b. |/| + l.u.b. |<£|)
S- D-

since 0 < X < 1. We now prove the existence in the theorem by successive approxima-

tions.

Let u0(x, t; X) = u(x, t; 0) = 0. For n = 1, 2, 3, • • • , let un(x, t; 0) = 0, and

dun(x, t; X)

ax
= [ t; 0; X)<£(£) dV( + f f N^ix, t; £, r; X)/(£, r) dr

J D J Q J dD (4 7)
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where Nn(x, t; £, r; X) is the Neumann function of the differential equation

Lv(x, t; X) = gu(x, t; ujx, t; \))v(x, t; X)

corresponding to the boundary condition

dVjX' l' ^ + Bu(x, t;un(x, t; \))v(x, t; X) = 0.

Thus we can find N0(x, t; £, r; X), ujx, t; X), NJx, t) f, r; X), and so on successively.

Since g(x, u) and B{x, t; u) are twice continuously differentiable, we have by (4.6)

that guu and Buu are bounded. Let |guu\ < k2 and \BUU\ < kz . Also let

p„(X) = max \u„(x, t;\) - u^ix, (4.8)
Cx.oea

Then

!<?„(*, t; ujx, t; X)) - gjx, t; K-^x, «; X))| < fc2pn(X)

and

|£„(x, f; «„(x, it; X)) - £u(x, <; w„_!(x, £; X))| < k3pj\).

These together with (3.4), (3.6), Lemma 1 and the definition of 6*{|, r; x, <) in Lemma 3

give

\N„(x, t; l r; X) - ^,_1(x, r; X)| < p.(X)fl*(£, r; x, t). (4.9)

Let |^>(x)| < fcs , |f(x, <)| < and k10 = max {fc8 , k9 j. Then from (4.7) and (4.9), we

have

dun+Jx, t, X)   dun(x, t. X)

ax _ ax

< ^ioPn(X){ [ 9*(Z, 0;x, t) dVe + f f <?*(?, t; x, f) <Llt cZr} < /c10p„(X)fc4 (4.10)
WD " 3D J

by Lemma 3. Since w„(x, i; 0) = 0, we have from (4.10)

\un+1(x, t; X) — «n(x, t; X)| < /b4fc10 / p„(r) dr,
J 0

which is independent of (x, <). By (4.8)

Pn+ i(X) < hk10 / P„W rfr.
^0

Since ujx, t; X) = 0, we have

Pi(X) = max Im^x, f;X)|.
{x,t)E Q-

By (4.6), Pi(X) < Jfcu . It follows from induction that

f\\ fcnfefcxoX) ,,
Pn(~ ̂  - (n — 1)! ''

Therefore, ^T-o [w»+i(z; <; X) — w„(x, t; X)] converges absolutely and uniformly in (x, t).

Let uix, t) X) be the limit. Except at the point of singularity (x, t) = (?, r) of AT°(x, £; £, t),
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it follows from (4.9) that the sequence {Nn(x, t\ £, r; X)} converges uniformly to a limit,

say N(x, t; £, r; X). Thus for (x, t) (£, t), iV(a:, <; £, r; X) is continuous and furthermore,

from (4.3), it depends continuously on the coefficient of the partial differential equation

and on the boundary condition. Therefore N(x, t; £, r; X) is the Neumann function of

(4.2) corresponding to v(x, t; X) = 0 on S. Hence from (4.3) dN(x, t; |, r; X)/dX is

given by (4.5). Since w0(z, X)=0, we have from (4.10) and (4.11) that dun(x, t; X)/dX

converges uniformly and absolutely. As n —> co, (4.7) becomes (4.4). Thus u(x, t; X)

and N(x, t; £, t; X) satisfy the integro-differential equations (4.4) and (4.5) with

u(x, t; 0) = 0. Hence u(x, t; 1) is the solution to our problem.
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