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A Nonlinear Time-Domain Homogenization

Technique for Laminated Iron Cores in

Three-Dimensional Finite Element Models
J. Gyselinck, R. V. Sabariego and P. Dular

Abstract— The authors present a novel nonlinear homogeniza-
tion technique for laminated iron cores in 3D FE models of
electromagnetic devices. It takes into account the eddy current
effects in the stacked core without the need of modelling all
laminations separately. A nonlinear constitutive magnetic law is
considered. The system of nonlinear algebraic equations obtained
after time discretisation is solved by means of the Newton-
Raphson scheme. By way of validation the method is applied
to a 3D FE model of a laminated ring core with toroidal coil.

I. INTRODUCTION

The magnetic cores of electromagnetic AC devices are often

laminated as this is an efficient measure for reducing the eddy

current losses due to the time-varying flux. As a result, the

eddy current losses, and the iron losses as a whole, have a

limited effect on the device characteristics; they obviously

affect the overall losses and thus the efficiency of the device,

but to a lesser extent e.g. the torque output. Accordingly, in

2D or 3D FE calculations, the stacked iron core is commonly

assumed nonconducting and homogeneous (i.e. not laminated),

and a nonlinear single-valued BH-curve is adopted. Based

on the FE results, i.e. the time and space distribution of the

induction in the iron core, an estimation of the iron losses

may be obtained a-posteriori [1]. The FE analysis may be

enhanced by considering a more involved constitutive law for

the homogenized iron. A static or dynamic hysteresis model

may be adopted, along with a 1D low-frequency eddy current

model, in which skin and edge effects in the laminations are

neglected [2].

In some applications the eddy currents in laminated iron

cores may considerably alter the overall behavior of the

device under study. This may be the case in power elec-

tronic applications where working frequencies and harmonic

distortion are constantly increasing. Finely discretizing each

separate lamination in a FE modelling is mostly out of the

question. Such a brute-force approach would indeed result in

huge memory requirements and calculation times. Dedicated

homogenization methods are thus indispensable.
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In a frequency-domain FE analysis, considering non-

saturated iron, a complex reluctivity may be adopted in the ho-

mogenized core [3]. The frequency-dependent complex value

follows from a 1D lamination model including skin effect

[5]. This can be extended to the time domain by introducing

skin-effect basis functions and additional degrees of freedom

in the iron core [4]. Both approaches are limited to a linear

magnetic material. In view of the inherent magnetic saturation

of many electromagnetic apparatus, nonlinear methods are

of more practical interest. In this paper the time-domain

homogenization method is extended to the nonlinear case.

After a brief outline of the method, it is validated by means

of a 3D test case.

II. TIME-DOMAIN HOMOGENIZATION

A. 1D model of a lamination & skin effect basis functions

We consider a lamination of thickness d (−d/2 ≤ z ≤ d/2)

that carries a magnetic induction b(z, t), along e.g. the x-

axis, as shown in Fig. 1. A homogeneous isotropic material

of conductivity σ is assumed. The magnetic field h(z, t),
equally along the x-axis, is linked to the induction b(z, t)
by the reversible constitutive law h = hfe(b). The current

density j(z, t) is along the y-axis. Imposing a nonzero net flux

and a zero current, the following symmetries hold: b(z, t) =
b(−z, t), h(z, t) = h(−z, t) and j(z, t) = −j(−z, t). The

1D eddy current problem is governed by the following partial

differential equation:

∂2h

∂z2
= σ

∂b

∂t
with h = hfe(b) . (1)

y

x

d/2

0

−d/2

z b(z, t) h(z, t) j(z, t)

hsba

Fig. 1. Variation of b, h and j throughout lamination thickness

Relevant to the homogenization are the induction averaged

over the thickness, ba(t) =
1

d

∫ d/2

−d/2
b(z, t) dz, and the surface

magnetic field hs(t) = h(z = ±d/2, t).
The resolution of (1) can be developed either in the fre-

quency domain [3], [6] or the time domain [2], [3], [6]. The

frequency-domain approach is limited to linear materials, hav-

ing a constant permeability µfe = b/h or constant reluctivity
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νfe = h/b, whereas the time-domain approach is applicable to

nonlinear materials as well.

In the frequency domain, considering a sinusoidal hs(t)
and ba(t) of frequency f (or pulsation ω = 2πf ), the

equivalent complex reluctivity νfe = hs/ba, with hs and ba

the complex representation of the hs(t) and ba(t), has the

following analytical expression:

νfe = νfe
d/δ

2

( sinh d/δ + sin d/δ

cosh d/δ − cos d/δ
+ 

sinh d/δ − sin d/δ

cosh d/δ − cos d/δ

)

,

(2)

where  is the imaginary unit, and δ =
√

2/σµfeω the pene-

tration depth [5]. This complex reluctivity is straightforwardly

adopted in a FE analysis, without any additional computational

cost. Its imaginary part effects the eddy current losses.

An approximate time-domain solution of (1) can be ob-

tained with a 1D FE model, possibly considering involved

constitutive laws [6]. In order to minimize the number of

spatial degrees of freedom, polynomial basis functions that

are nonzero over the complete interval −d/2 ≤ z ≤ d/2 are

introduced for interpolating b(z, t) and h(z, t); these are the

so-called skin effect basis functions.

The starting point is the expansion of b(z, t):

b(z, t) = α0(z) ba(t) + α2(z) b2(t) + . . . , (3)

where the even polynomial basis functions α0(z) =1, α2(z) =

− 1

2
+ 6(z/d)2, . . . , are orthogonal, 1

d

∫ d/2

−d/2
αi(z)αj(z) dz =

0 if i 6= j, and have unit value on the lamination surface,

αi(z = ±d
2
) = 1.

The magnetic field h(z, t) is subsequently expanded consid-

ering the surface magnetic field hs(t) and the even polynomial

basis functions βk(z) of order k ≥ 2:

h(z, t) = hs(t)− σd2β2(z)
dba
d t

− σd2β4(z)
db2
d t

− . . . , (4)

where the latter are zero on the lamination surface, βi(z =
±d

2
) = 0, and further determined so that b(z, t) and h(z, t)

satisfy (1) identically, i.e. d2βi

d z2 = −αi−2(z)/d
2. These condi-

tions produce then for k equal to 2 and 4: β2(z) =
1

8
− 1

2
(z/d)2

and β4(z) = − 1

32
+ 1

4
(z/d)2 − 1

2
(z/d)4 respectively.

When considering a finite number of basis functions, up to

order n for b(z, t) and order n+2 for h(z, t), the constitutive

law h = hfe(b), whether linear or nonlinear, cannot be satisfied

identically. It can be weakly imposed as follows:

1

d

∫ d/2

−d/2

(

h(z, t)− hfe(b(z, t)
)

αk(z) dz = 0 , (5)

which leads to 1+n/2 equations (k = 0, 2, . . . , n) in terms of

ba(t), b2(t), . . . , bn(t), and hs(t). For instance, for the linear

case with n = 2, a system of two linear differential equations

is obtained:
[

hs

0

]

= νfe

[

1 0

0 1

5

] [

ba
b2

]

+
σd2

420

[

35 −7

−7 2

]

d

dt

[

ba
b2

]

, (6)

with either hs(t) or ba(t) given function of time. By means of

e.g. the so-called θ-scheme, which amounts to the backward

Euler and Crank-Nicolson scheme with θ equal to 1 and 0.5

respectively, a system of algebraic equations is obtained for

each time step from ti to ti+1 = ti +∆t.
For a given maximum error, the order n of the spatial

interpolation of b(z, t) has to been increased along with

the frequency f (or the relative lamination thickness d/δ).

Allowing a 1% maximum error on the equivalent complex

reluctivity (2), a constant interpolation (n = 0) is valid up to

roughly d/δ = 1. Adding one or two interpolation functions

(n = 2 and n = 4 resp.) extends the validity range to d/δ
equal to 4 and 8 respectively [4].

In the nonlinear case with n = 2, the system (5) becomes

[

hs

0

]

=
σd2

420

[

35−7

−7 2

]

d

dt

[

ba
b2

]

+
1

d

∫ d/2

−d/2

hfe

(

b(z, t)
)

[

α0

α2

]

dz ,

(7)

with b(z, t) = ba(t) + α2(z) b2(t). The nonlinear algebraic

equations that result from the time discretization can be solved

by means of the Newton-Raphson method. With given hs(t),
the Jacobian matrix reads

σd2

420∆t

[

35 −7

−7 2

]

+
θ

d

∫ d/2

−d/2

dhfe

db

[

α0α0 α0α2

α2α0 α2α2

]

dz , (8)

where
dhfe

db is the differential reluctivity. The integration in

the interval [0, d/2], exploiting the symmetry with respect to

z = 0, can be done numerically, by means of e.g. the 5-point

Gauss scheme for the case n = 2.

B. FE implementation

We consider an eddy current problem in a 3D domain Ω and

its formulation in terms of the magnetic vector potential a. The

induction b = curl a and the electrical field e = −∂ta thus

satisfy div b = 0 and curl e = −∂tb. The current density j is

imposed in a subdomain Ωs and induced in another conducting

subdomain Ωl. The vector potential is e.g. discretised by

means of edge basis function γ
j
: a =

∑

j ajγj
. The weak

form of Ampère’s law curlh = j produces as many equations

as degrees of freedom aj :

(h(curl a), curl γ
i
)Ω + (σ∂ta, γi

)Ωl
= (j, γ

i
)Ωs

, (9)

where h = h(b) is the vector constitutive law in Ω; (·, ·)Ω
denotes the volume integral in Ω of the scalar product of the

two vector arguments. The uniqueness of a can be ensured

by considering an edge co-tree in the nonconducting domain

Ω \ Ωl.

We consider the case where Ωl consists of laminations

of a stacked iron core. The insulating layers between the

laminations are assumed to be negligibly thin (near 100% fill

factor). We will further assume that the h and b vectors are

parallel to the plane of the laminations, as is the case in the

axisymmetric application example below. (See [4] for a more

complete analysis, including non-negligible insulation layers

and perpendicular flux.) If the lamination thickness d is small

compared to the overall dimensions of the core, the surface

magnetic field hs and the average induction ba vary little from

one lamination to the next. On the basis of these quantities,

continuous slowly-varying fields can be defined in every point

of the core volume Ωl; the latter will be denoted by hs and
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ba as well. According to the 1D lamination model presented

above, hs depends on ba and induction components b2, b4,

. . . , the latter being equally the continuus vector extension of

the components b2, b4, . . . introduced above.

The weak form (9) can be simplified by considering hs:

(h(curl a), curl γ
i
)Ω\Ωl

+ (hs, curl γi
)Ωl

= (j, γ
i
)Ωs

, (10)

as this amounts to considering for Ampère’s integral law,

contours C that are not linked with the induced current density

in the laminations (see Fig. 3). The eddy current term produced

by Ωl in (9) thus vanishes.

C1

C2jlam

jcoil

Fig. 2. Contours for Ampère’s integral law: contour C1 is linked with the
current in the coil (jcoil ) but not with the eddy currents in the laminations
(jlam , resulting in zero net current parallel to the laminations), whereas
contour C2 is linked with both

The induction b in Ω \ Ωl and the average induction ba
in Ωl will be derived from the vector potential a and its edge

basis function interpolation a =
∑

j ajγj
defined in the whole

domain Ω (with tree gauging throughout). This guarantees the

continuity of the average normal induction component at the

boundary of Ωl. The additional quantities b2, b4, . . . in Ωl may

be interpolated with vector basis functions that are element-

wise constant and are directed in two perpendicular directions

in the plane of the laminations; these basis functions are further

denoted by ζ
i
.

We consider first the linear case, with constant reluctivity ν
in Ω \ Ωl and νfe in Ωl, and with n = 2. Using the first line

of (6), the equation (10) becomes

(ν curl a, curl γ
i
)Ω\Ωl

+ (νfe curl a, curl γi
)Ωl

+

(σd
2

12
∂tcurl a, curl γi

)Ωl
−(σd

2

60
∂tb2, curl γi

)Ωl
= (j, γ

i
)Ωs

.
(11)

The second line of (6) is weakly imposed in Ωl considering

each of the basis functions ζ
i
:

( ν
5
b2, ζi)Ωl

−(σd
2

60
∂tcurl a, ζi)Ωl

+ (σd
2

210
∂tb2, ζi)Ωl

=0 . (12)

Let us considering now a nonlinear relation h = hfe(b)
between the local vectors b and h in the laminations, with

b = α0(z) ba + α2(z) b2 = curl a + α2(z) b2 in case of

homogenization with n = 2.

Equation (10) and the vector extension of (7) give after

space and time discretization a system of nonlinear algebraic

equations that can be solved by means of the Newton-Raphson

method. Deriving the equations with respect to the unknowns

(coefficients of basis functions αi and γ
i
) gives rise to the

differential reluctivity tensor
∂h

fe

∂b . For isotropic materials with

scalar reluctivity νfe(b), this tensor can be written as follows:

∂hfe

∂b
= νfe 1 + 2

dνfe
d b2

b b , (13)

where 1 is the unit tensor and b b the dyadic square of b. In

matrix notation (in 2D case for sake of brevity) this becomes:

[

∂h
fe

∂b

]

=

[

∂hx

∂bx
∂hx

∂by
∂hy

∂bx

∂hy

∂by

]

= νfe

[

1 0

0 1

]

+2
dνfe
db2

[

bxbx bxby
bybx byby

]

.

(14)
The contribution of Ωl to the elements of the Jacobian

matrix is thus:

(

θ

d

∫ d/2

−d/2

∂hfe

∂b

{

α0 curl γ
i

α2 ζ
k

}

,

{

α0 curl γ
j

α2 ζ
l

}

dz

)

Ωl

. (15)

III. APPLICATION EXAMPLE

In order to validate the proposed homogenization method,

we consider a field problem displaying symmetry with respect

to the xy-plane, and axisymmetry with respect to the z-axis

(Fig. 3). The FE model consists of part of a laminated ring

core (20 laminations, d = 0.5mm, σ = 5 · 106 S/m, separated

by 0.02 mm thick airgaps), a toroidal 100-turn coil and the

air between the ring core and the coil [4]. A nonlinear BH-

relation is considered for the iron, viz νfe = h/b = 100 +

10e1.8b
2

with h in A/m and b in T. The linear case has been

treated in [4].

X
Y

Z

j

Fig. 3. 1/8th FE model of laminated ring core (discretization of homo-
genized core) with toroidal coil — zoom: current density in coil and fine
discretization of the laminations

Exploiting the symmetry fully, the FE model can be limited

to the upper half of the geometry (10 laminations) and a wedge

of arbitrary opening angle ∆θ. Volume meshes of hexahedral

and prismatic elements are obtained by circularly extruding

(around the z-axis, over the angle ∆θ in m layers) a 2D mesh

of quadrangles and triangles of a radial cross-section (in the

xz-plane).

The brute-force calculations, with direct inclusion of the

eddy currents, are carried out with a fine mesh, in which each

of the ten laminations are discretized. A FE model of 1/128th

of the complete geometry (∆θ = 2π/64, m = 1, 8 layers

of hexahedra per lamination thickness, see zoom in Fig. 3)

produces 14406 spatial degrees of freedom for a.

The homogenization technique is applied to a much coarser

mesh, with only 6 layers of hexahedra for the half-thickness

of the core (see Fig. 3). For a 1/8th model (∆θ = 2π/4 and

m = 16), this leads a total of 8680 spatial degrees of freedom

for a (n = 0). With the skin effect approximation n = 2, there

are 2304 additional degrees of freedom for b2.

Time-stepping simulations with imposed sinusoidal current

of same amplitude but of different frequencies f (50 Hz,

250 Hz and 500 Hz) are carried out. In order to reach steady-

state, three periods [0, 3T ] are time stepped with the backward

Euler scheme and ∆t = T/200.
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The flux linkage of the coil is calculated by integrating j ·a
over the coil volume. The flux waveforms obtained with the

fine model (reference solution) and the homogenized model

(n = 0 and n = 2) are compared in Fig. 4. One clearly

observes the saturation and the effect of the eddy currents.

The homogenization method produces satisfactory results with

n = 2 for all frequencies considered, whereas with n = 0 it

is sufficiently accurate only for the 50 Hz case.

0

250 Hz

500 Hz

50 Hz0.5

1.0

0.0

0.5

1.0

time

T/4 T/2 3T/4 T

n = 2

n = 0

fine model

σ = 0

n
o
rm

a
li
z
e
d

fl
u
x

Fig. 4. Normalized flux vs time, calculated with fine model and
homogenization method (n = 0 and n = 2)

By way of illustration some results obtained with the fine

mesh and with the 500 Hz current are shown in Figs. 5 and 6.

The variation of the induction throughout the thickness of the

laminations is evidenced in Figs. 5. The circulation of the eddy

currents with the 180◦-turn at the lamination edge is depicted

in Fig. 6.

1.5

1

0.5

 0

 0.5

 1

 1.5

0.3 0.2 0.1  0  0.1  0.2  0.3

in
d
u
c
ti

o
n
 (

T
)

thickness coordinate (mm)

t = kT

t = (k + 0.125)T

t = (k + 0.375)T

(k + 0.250)T

t =

Fig. 5. Variation of induction throughout thickness of lower lamination at
500 Hz, obtained with fine model (4 equidistant instants in half a time period;
at average radius)

t = kT

(jmax = 3.4A/mm2)

t = (k + 0.125)T

(jmax = 3.4A/mm2)
Fig. 6. Current density in cross-section of lower lamination (near inner
radius) at 500 Hz obtained with fine model

Transient and steady-state waveforms of ba and b2 obtained

with the homogenization method (n = 2) are shown in Figs. 7

and 8.

IV. CONCLUSION

A novel homogenization technique for laminated iron cores

in 3D FE models has been proposed. It can be used for

1

0.5

 0

 0.5

 1

 0  10  20  30  40  50  60

in
d

u
c
ti

o
n

 (
T

)

time (ms)

ba

b2

Fig. 7. 50 Hz induction components ba(t) and b2(t) at average radius
(homogenization with n = 2)

−1.5

−1

−0.5
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 0.5
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 1.5

 4  4.5  5  5.5  6

in
d

u
ct

io
n

 (
T

)

time (ms)

inner radius
average radius

outer radius

Fig. 8. 500 Hz induction components ba(t) and b2(t) at inner, average
and outer radius (homogenization with n = 2)

time-stepping simulations with the magnetic vector potential

formulation. The eddy current effects (including skin effect)

in the laminations are taken into account by considering skin-

effect basis functions and associated degrees of freedom in the

homogenized core.

The proposed homogenization method is validated by means

a 3D axisymmetric test case. The results agree well with those

obtained with a fine model, i.e. in which all laminations are

finely discretized and the eddy currents are directly modelled.
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[6] L. Dupré, O. Bottauscio, M. Chiampi, M. Repetto and J. Melkebeek,
“Modeling of electromagnetic phenomena in soft magnetic materials
under unidirectional time periodic flux excitations,” IEEE Trans. on

Magn., Vol. 35, pp. 4171–4184, Sept. 1999.




