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model converges, the nonlinear model may still be useful for forecasting the El Niño Southern
Oscillation a few months ahead.
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1. INTRODUCTION

El Niño Southern Oscillation (ENSO) is a disruption of the ocean-atmosphere system in the

tropical Pacific ocean that has important consequences for global weather conditions. The

common-day usage of the term El Niño refers to the extensive warming of the central and

eastern Pacific Ocean. In normal non-El Niño conditions trade winds blow towards the west

across the tropical Pacific piling up warm surface water in the west Pacific. As a result the sea

surface is higher at Indonesia than at Ecuador, and the sea surface temperature (SST) is about

8 degrees Centigrade higher in the west. The cool temperatures off South America are due to

an upwelling of cold water from deeper levels, which is nutrient-rich, supporting high levels

of primary productivity, diverse marine ecosystems, and major fisheries. As rainfall is found

in rising air over the warmest water, the east Pacific is relatively dry. During El Niño the trade

winds weaken in the central and western Pacific leading to a depression of the thermocline in

the eastern Pacific, cooling the surface and cutting off the supply of nutrient rich thermocline

water. The result is a rise in sea surface temperature and a drastic decline in primary

productivity. Rainfall follows the warm water eastward, with associated flooding in Peru and

drought in Indonesia and Australia. The eastward displacement of the atmospheric heat source

overlaying the warmest water results in large changes in the global atmospheric circulation,

which in turn causes changes in weather in regions far removed from the tropical Pacific. La

Niña is the other phase, when sea surface temperatures in the central and eastern tropical

Pacific are unusually low and when the trade winds are very intense. Together, these two

natural processes form the ENSO, and on average, ENSO events occur every 4.5 years, with a

range of 2 to 10 years.

The British scientist Sir Gilbert Walker while on assignment in India trying to find a way to

predict the Asian monsoon, discovered a remarkable connection between barometer readings

at stations on the eastern and western sides of the Pacific. When pressure rises in the east, it

usually falls in the west, and vice versa. Walker coined the term Southern Oscillation to
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dramatise the ups and downs in this east-west seesaw in Southern Pacific barometers. Walker

noticed that “low-index” seasons, when pressure is low on the eastern side of the Pacific and

high on the western side, are often marked by drought in Australia, Indonesia, India, and parts

of Africa, and unusually mild winters in western Canada. In the late 1960s, University of

California professor Jacob Bjerknes was the first to see a connection between unusually warm

sea-surface temperatures and the weak easterlies and heavy rainfall that accompany low-index

conditions. Ultimately, Bjerknes' discovery led to the recognition that the warm waters of El

Niño and the pressure seesaw of Walker's Southern Oscillation are part of the same

phenomenon. For more historical details see Gudmundson (1996), Philander (1990) and

Allan, Lindesay and Parker (1990).

The use of the term El Niño has now changed and it is now primarily associated with

ecological and economic disasters that coincide with torrential flooding in the eastern tropical

Pacific, devastating droughts over the western tropical Pacific and unusual weather patterns

over various parts of the world. The 1982-83 El Niño was by many measures the strongest

thus far this century and The New York Times of 2 August 1983 catalogues detailed estimates

of the worldwide economic impact of this occurrence. For instance, this El Niño has been

blamed for between 1,300 and 2,000 deaths as well as over $US13 billion in damages to

property and livelihoods. The effects in Australia, Africa and Indonesia included droughts,

dust storms and bushfires. In Peru, areas where the normal seasonal rainfall was 6 inches had

as much as 11 feet of rainfall causing devastating floods. As well, outbreaks of encephalitis

on the East Coast of the USA, bubonic plague in New Mexico, increased rattlesnake bites in

Montana, more shark attacks off the Oregon coast and the failure of the salmon harvest in the

Eastern US have all been attributed to this El Niño event. There is even a suggestion that the

angular momentum of the earth shifted slightly as a result of changes in the trade winds

resulting in the length of the day increasing by 0.2 milliseconds. The weak El Niño of 1997-

98 has been blamed for as diverse problems as the forest fires and resulting pollution in south
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east Asia and for the luxuriant rough at the Olympic golf course in San Francisco, host of the

1998 US Open Golf Tournament.

There are two types of forecasts of ENSO events, dynamic forecasts based on numerical

models of coupled ocean/atmospheric systems (for reviews see Allan, Lindesay and Parker,

1996, and Rothstein and Chen, 1996) and statistical forecasts based on historical records of

sea surface temperature and barometric pressure differences. Records for SST in the Pacific

ocean are very sparse prior to the decade long Tropical Ocean/Global Atmosphere experiment

that began in 1985. On the other hand, barometric pressure has been recorded for over 100

years in many locations around the Pacific ocean. Each of these approaches have had some

success in predicting ENSO events out to a lead time of about 1 year. However, it appears to

be very difficult to accurately forecast outcomes past the boreal spring, indicating a less than

complete understanding of the complex dynamic structure of the system (see Barnett et. al.,

1988, Solow, 1995, Chen et. al., 1995 and Rothstein and Chen, 1996).

This paper will focus on modelling ENSO events using smooth transition autoregressive

(STAR) time series methods. Shuzhen et al., (1988) use both open loop autoregressions and

self exciting threshold autoregressions in modelling spatial SST averages, and Solow (1995)

describes El Niño events in terms of a marked point process using Markov processes.

Tziperman et al. (1994) suggest the ENSO cycle can be modelled as a low order chaotic

process driven by the seasonal cycle. A casual inspection of the Southern Oscillation Index, a

popular measure of ENSO events, indicates a possible assymetry in the sense that downturns

in the data (that is occurrence of an El Niño event) appears to occur more rapidly that the

recovery. STAR models are particularly suited to modelling this type of nonlinearity.

Section 2 reviews the modelling cycle for STAR models, section 3 describes the data and

reports the results and section 4 concludes.
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2. THE STAR MODEL AND TESTING CYCLE

2.1 The model

Our aim is to obtain a useful characterisation of the dynamics of the series. There are other

ways to model nonlinearity, but the STAR family of models does have some useful

properties. This model class is suitable for series with asymmetric cyclical variations and

turbulent periods (see for instance Teräsvirta and Anderson (1992) and Teräsvirta (1995)), the

estimated locally linear models have a simple interpretation, and a modelling cycle for the

specification, estimation and evaluation stages already exists (see Teräsvirta, 1994, 1998).

Bacon and Watts (1971) were the first ones to define and apply a smooth transition model. In

this paper, the STAR model is defined as

( ) tdtttt uyFwwy +′++′+= − )(220110 ππππ (1)

where ).,(NID~u  and   ,)y,...,y(w   ,,j  ,),...,( utptttjpjj
2

11 021 σπππ ′==′= −−  The

transition function )( dtyF −  is defined to be either a logistic function

{ }( ) 01 1 >−−+= −
−− LLdtLdt   ,)cy(exp)y(F γγ (2)

or an exponential function

{ } 0  ,)(exp1)( 2 >−−−= −− EEdtEdt cyyF γγ (3)

Model (1) with transition function (2) is a logistic STAR model of order p, LSTAR(p),

whereas (1) with (3) is an exponential STAR model of order p, ESTAR(p). Other models are

special cases of the STAR specifications. The LSTAR model approaches a two-regime
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threshold autoregressive model (see Tong (1990)) when ∞→Lγ , since (2) in the limit is a

step function of dty −  the value of which changes from zero to unity at Lc . When 0→Lγ ,

the LSTAR model approaches a linear AR(p) model. On the other hand, the ESTAR model,

equation (1) approaches a linear model both as 0→Eγ  and (with probability one) as

∞→Eγ . However, by a suitable modification one obtains a STAR model which approaches

a three-regime threshold autoregressive model whose outer regimes are identical as ∞→Eγ ,

see, for example, Teräsvirta (1998). If, 020 == πEc , then the ESTAR model is identical to

the exponential autoregressive model of Haggan and Ozaki (1981).

The role of the transition function in (1) is that it allows the coefficients for lagged values of

[ ]′+ − )y(F   ,y dtt 21 ππ , and the intercept, [ ])( 2010 dtyF −+ ππ , to change smoothly with

dty − , so that the local dynamics of the model change with dty − . The LSTAR model allows

the local dynamics to be different for high and low values of the transition variable, dty − . The

modelling of local dynamics as a function of a lagged value of y makes it possible to model

nonlinear effects of a shock. For instance, if a negative shock pushes a realization away from

a locally stable regime (F close to unity, say), the subsequent change in the value of F

changes the local dynamics (F now close to zero, say). If this regime contains a pair of

explosive complex roots, y may be returned to the previous level a lot more quickly than

would be the case if it followed a linear AR process. In contrast to the LSTAR case, the

ESTAR transition function is symmetric about Ec  in the sense that the local dynamics are the

same for high as for low values of dty − , whereas the mid-range behaviour of the variable

(values close to Ec ) is different. The mid-regime does not necessarily have to be locally

stable, because with the exponential transition function, it is possible for y to move rapidly

between very small and very large values for which local dynamics are stable. In the

modelling cycle, we allow the data decide which of the types of STAR models we fit to series
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for which linearity is rejected. Diagnostic tests will reveal whether a STAR model offers an

adequate characterization of the data or not.

2.2 Testing linearity and evaluating STAR models

The modelling cycle for building STAR models is discussed in Teräsvirta (1994, 1998).

Testing linearity against STAR constitutes the first step of the model specification stage. In

order to do that one first selects a linear autoregressive model for the series with apparently

no autocorrelation in the residuals, by applying an appropriate model selection criterion such

as the Akiake Information Criterion (AIC). The selected linear autoregressive model is the

null model. For details of the test (FL) with power against both LSTAR and ESTAR, see

Teräsvirta (1994). The test is carried out for different values of the unknown delay parameter

d, and the value of d associated with the test with the smallest p-value is selected. If none of

the p-values is sufficiently small, linearity is not rejected. Note that if testing linearity were

the main point of the whole investigation we could assume d unknown and carry out the test

starting from that assumption, as in Luukkonen, Saikkonen and Teräsvirta (1988), and so

control the overall significance level of the test. In this paper model selection, including the

choice of d, is an important part of the work so we test linearity conditionally on d and also

use the results to select the delay. The choice between the LSTAR and ESTAR specifications

is based on a sequence of nested hypothesis tests (F4, F3 and F2) as detailed in Teräsvirta

(1994).

The estimated model is evaluated by a series of tests. As usual, the assumption of no error

autocorrelation is tested using the Lagrange-Multiplier test (LMAR) that Eitrheim and

Teräsvirta (1996) derived for this purpose. Their paper also contains two other tests. One is

for testing the hypothesis of no remaining nonlinearity. In this test the alternative hypothesis

is that the data-generating process is an additive STAR model with two ‘STAR components’

instead of a single one as in (2) or (3), and the tests of no remaining nonlinearity are based on



7

a third-order Taylor expansion of the second transition function. Finally, the constancy of the

parameter vectors 2,1,),( 0 =′′ jjj ππ , is tested against the hypothesis that the parameters

change smoothly over time. Three tests are carried out. The first one, LM1, assumes that the

parameters change monotonically over time, the second one, LM2, that the change is

symmetric with respect to an unknown point in time, and the third one, LM3, that the change

is possibly non-monotonic but not necessarily symmetric. All these tests are carried out by

auxiliary regressions (see Eitrheim and Teräsvirta, 1996).

3. DATA DESCRIPTION

The Southern Oscillation Index (SOI) is calculated from the monthly or seasonal fluctuations

in the air pressure difference between Tahiti and Darwin. There are a number of different

definitions used to calculate the SOI, but we employ the definition used by the Australian

Commonwealth Bureau of Meteorology, namely, the Troup SOI. This is the standardised

anomaly of the Mean Sea Level Pressure (MSLP) difference between Tahiti and Darwin. It is

calculated as follows:

)P(SD

)PP(
SOI

DIFF

DIFFAVEDIFF −×= 10

where DIFFP  = Tahiti MSLP - Darwin MSLP, DIFFAVEP  = long term average of DIFFP  for the

month in question, and SD(DIFFP ) = standard deviation of DIFFP  for the month in question.

Chen (1982) recommended the use of this particular index after a systematic analysis of

various single-station and two-station MLSP indices of the Southern Oscillation. The monthly

data from January 1876 is available from the Bureau of Meteorology web site. For this study

we use the monthly SOI data from January 1876 until May 1998, and this is graphed in Figure

1. The statistical properties of the SOI are summarised by the correlogram, spectrum and

normalised histogram in Figure 2. There is no indication of nonstationarity in the data series.
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Negative values of the SOI indicate El Niño episodes, the most recent events in 1994/95 and

1997/98, whereas positive values of the SOI are associated with La Niña episodes and the

most recent strong La Niña was in 1988/89.

4. MODELLING THE SERIES AND INTERPRETING THE RESULTS

In this section we report results from the estimation of STAR models for the series, the

evaluation of the estimated models, and consider the dynamic properties of our models. Using

the AIC a lag length of 13 is chosen for the linear autoregressive model. A summary of the

results of the tests for nonlinearity can be found in Table 1. The table contains the lag length,

p, of the autoregressive model chosen by AIC, the p-value of the test corresponding to values

of the delay parameter, d, from 1 to 5. Linearity is rejected against STAR models, particularly

with delay lengths of 1 and 3. For these delay values, the table also contains the results of the

model selection test sequence for choosing between ESTAR and LSTAR as detailed in

Teräsvirta (1994) and LSTAR is the preferred model. A number of LSTAR models with a

variety of delay variables were estimated. Many of these were unsatisfactory, in that they

failed our set of diagnostic tests. In particular the LSTAR(13) model for d = 3 was difficult to

interpret and ARCH tests strongly rejected the null of no ARCH. This rejection is not taken to

mean that the true model is the specified nonlinear model with ARCH errors, rather it is

interpreted as misspecification of the conditional mean. The results were better for the

LSTAR(13) model with d = 1. We choose to discuss the model in which the intercept in the

linear part of the model is constrained to be equal to that in the nonlinear part of the equation,

as this imposes the sensible restriction that in normal times the estimated mean of the SOI

will be zero. Other restrictions on the parameters were strongly rejected at conventional

significance levels, perhaps not surprisingly with in excess of 1400 observations. The

preferred LSTAR(13) model is:
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T = 1455, R2 = 0.467, AIC = 4.120, s = 7.769, snonlinear/slinear = 0.993, sk = -0.071, ek = 0.974,
LJB = 58.788 (p = 0.000), LMAR =2.909 (p=0.021), LMARCH = 2.544 (p = 0.038)

The standardisation of the exponent of F by division by s(y), the sample standard deviation of

ty , is introduced to make γ scale-free and thus facilitate the interpretation of its estimate. The

estimated STAR model equation is reported together with a number of statistics: T is the

sample size; AIC is the Akaike information criterion; s is the estimated standard deviation of

the residuals; the ratio linearnonlinear s/s , where linears  is the estimated standard error of the

residuals from the linear autoregressive model used as a basis for linearity testing, which

gives an idea of the relative gain in the fit from applying a LSTAR model instead of a linear

autoregressive model; sk is the skewness, ek is the excess kurtosis and LJB is the test of

normality suggested by Lomnicki (1961) and Jarque and Bera (1980); LMAR is an Lagrange

multiplier statistic of no autocorrelation based on four lags; and, LMARCH is an Lagrange

multiplier statistic of no ARCH (Engle, 1982) based on four lags. The numbers in parentheses

following values of test statistics are p-values, whereas those below the coefficient estimates

are asymptotic “t-statistics” of the estimates.

The ratio snonlinear/slinear is quite close to unity which indicates that nonlinearity is only needed

to characterise exceptional periods in the series and that the process thus is not inherently

nonlinear, but the nonlinear model describes the most turbulent periods in the data better than

the linear autoregressive model. The test of no error autocorrelation and no ARCH do not

indicate misspecification. The autocorrelation function, spectrum and standardised histogram
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of the residuals from the fitted LSTAR model are graphed in Figure 3. For the tests of no

remaining nonlinearity, the p-values corresponding to each delay value of d are (d=1,

p=0.339; d=2, p=0.089; d=3, p=0.030; d=4, p=0.170; and d =5, p=0.206), and given the

number of tests, the smallest p-value of 0.030 is not very strong evidence against the model.

The parameter constancy tests are reported in Table 2 and one of these tests provides some

evidence of nonconstancy but this has not been followed up.

Figure 4 shows the shape of the transition function. Every point indicates an observation so

that one can readily see which values the transition function has obtained and how frequently.

The same information ordered over time is presented in Figure 5. Together these two figures

indicate that the transition function normally has been close to unity. Also, as mentioned

above, the estimated equation contains the parameter restriction 2010 ππ −= , so that under the

“normal regime” (F = 1) the local mean of the process equals zero. The intercept is only

contributing to the process when F < 1, which is a rare event.

The dynamic behaviour of the model is characterised in two ways. Trying to interpret

individual parameter estimates or the delay d does not give much useful information (γ̂  is the

only exception). It is more instructive to compute the roots of the characteristic polynomial at

given values of the transition function F as in Teräsvirta (1994). The extreme values F = 0

and F = 1 are particularly interesting. The roots of the characteristic polynomial of given F =

0 and F = 1, respectively, can be found in Table 3. For F = 1, all roots are stationary, but for

F = 0, there exists a real root which is greater than unity, and a number of unstable complex

roots.

The stability of the estimated LSTAR model may also be investigated by using generalised

impulse response functions. By doing so, the problems associated with traditional impulse

response analysis applied to nonlinear models are avoided through averaging over ‘histories’,

shocks, and ‘futures’. The method used is that proposed by Koop, Pesaran and Potter (1996)
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and we refer to that article for a general discussion. Here, we briefly describe the

implementation of the method in this particular case. A random sample of 364 observations

from the time series (approximately 25% of all available observations) is used as the set of

‘histories’. For each history, 100 initial shocks are drawn randomly with replacement from –

in this particular case – the full set of all residuals from the estimated LSTAR model. For

each combination of history and initial shock, 800 replicates are generated, and the maximum

forecast horizon is 10. That is, 800 prediction sequences (0, 1, … , 10 periods ahead) are

computed according to the estimated model, both with the initial shock and without it using a

residual, randomly drawn with replacement from all STAR residuals for each of the 800

replicates, in its place. The disturbance terms used in these predictions (the ‘futures’) are

drawn randomly from the STAR residuals. For every one of the 11 horizons, the means over

the 800 replicates are computed for the two prediction sequences (i.e. the sequences with and

without the designated initial shock). The vector of differences between these two means

constitutes an observation of the generalised impulse response. In this case, 364 histories and

100 initial shocks are used, so that 36400 pairs of history and initial shocks and 36400

generalised impulse response vectors of length 11 are generated.

In order to visualise the generalised impulse responses in a way that highlights their key

distributional features, highest density regions are used as in Skalin and Teräsvirta (1998).

(See Hyndman (1995, 1996) for a description of highest density regions and the density

quantile method for estimating them). For each one of the 11 horizons, the density for that

horizon is estimated with a kernel algorithm. The kernel routine used is based on Gauss code

by King (1996) but has been modified to use a random sample from the computed impulse

response values as the kernel estimation points instead of using equally spaced points. The

50% and 95% highest density regions are then estimated by applying the density quantile

method to the kernel estimates. Figure 6 shows that the estimated stochastic LSTAR model is

not stable. Initially the densities almost converge to a point as one would expect, but after six

months start to become flatter and flatter over time. This behaviour suggests that the model
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may only be used for short-term forecasting. The medians of the estimated forecast

distributions would probably work well as point forecasts even at somewhat longer horizons,

whereas the density-based tolerance intervals would not make good interval predictions. Note,

however, that (biased) forecasts obtained by extrapolating the estimated LSTAR without

noise do not explode, and these forecasts from June 1998 are graphed in Figure 7. One may

conclude that the rare periods for which a nonlinear description is called for are really quite

exceptional because the estimated LSTAR model accommodating the behaviour of the index

during them displays explosive behaviour.

5. CONCLUSIONS

We can conclude that the estimated nonlinear LSTAR model describes the most turbulent

periods in the data better than the linear autoregressive model. According to the model the

dynamic behaviour of the ENSO during the turbulence is very different from that during

“normal” times. On the other hand it is clear that because of the lack of stability the model has

limited usefulness for forecasting purposes although it could still be used for predicting a few

months ahead. Also note that probably no univariate model, ours included, can correctly

predict an outbreak of El Niño, because the initial shock or shocks triggering such an event

are exogenous to the univariate system. More information in the form of other, predictable,

variables would be needed to improve this performance. Once the El Niño event is under way,

however, the model may help predict the strength of the perturbance a few months ahead.

Thus the main gain from this modelling exercise seems to be the improved understanding of

the nonlinear dynamic behaviour of the ENSO.
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Table 1: Results of linearity tests and model selection

Variable p d p(FL) p(F4) p(F3) p(F2) STAR
SOI 13 1 0.033 0.076 0.315 0.074 L
SOI 13 2 0.108
SOI 13 3 0.004 0.008 0.292 0.051 L
SOI 13 4 0.331
SOI 13 5 0.058 0.106 0.443 0.071 L

Here p is the number of lags in the linear AR model, d is the delay factor, p(FL) is the p-value
of the linearity test; p(F4), p(F3), p(F2) are the p-values of the tests in the model selection
sequence, and the selected model family is (E = ESTAR, L = LSTAR). E is selected if p(F3)
is the smallest value of the sequence , otherwise L is the choice (see Teräsvirta, 1994).
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Table 2: Tests of Parameter Constancy for the LSTAR(13) Model

All parameters All linear
parameters

All nonlinear
parameters

Restricted intercept

LM3 1.187  (0.129) 1.212  (0.175) 1.130  (0.264) 0.418  (0.741)
LM2 1.232  (0.123) 0.993  (0.475) 0.944  (0.550) 0.567  (0.567)
LM1 1.657  (0.019) 1.504  (0.109) 1.441  (0.126) 0.868  (0.352)
p-values in parentheses
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Table 3: Roots of characteristic polynomials for values of the transition function F.

Regime F = 0 Regime F = 1
Root Modulus

(half-life)
Period Root Modulus

(half-life)
Period

2.62 2.62 0.90 ± 0.13 0.91 (7.97) 42.4
-0.56 ± 1.24 1.36 3.15 -0.45 ± 0.71 0.84 (4.90) 2.94
-1.01 ± 0.31 1.05 2.21 0.61 ± 0.53 0.81 (4.32) 8.78
-0.57 ± 0.84 1.02 2.89 -0.73 ± 0.33 0.80 (4.06) 2.31
0.75 ± 0.67 1.01 8.62 0.30 ± 0.73 0.79 (3.86) 5.32
0.23 ± 0.82 0.85 (5.30) 4.82 -0.02 ± 0.77 0.77 (3.61) 3.93
0.80 ± 0.17 0.82 (4.42) 29.2 -0.73 0.73
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Figure 1: The Southern Oscillation Index (SOI)
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Figure 2: Summary Statistics For The SOI.
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Figure 3: Summary Statistics For Residuals From The LSTAR(13) Model.
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Figure 4: Transition Function As A Function Of The Observed Delay Variable Values
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Figure 5: Transition Function From The LSTAR(13) Model.
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Figure 6: Generalised Impulse Response Functions (50% and 95% Higher Density Regions)
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Figure 7: Deterministic Forecast Function from the LSTAR(13) Model


