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Abstract In this article, we propose a new concept for tuning a resonant piezoelectric shunt absorber
thanks to the use of a nonsmooth electronic component. It consists in adding in the resonant shunt
circuit a voltage source which is a bilinear function of the voltage across the piezoelectric patch. The
main advantage is the ability to change the electrical resonance frequency with the bilinear component
gain, enabling a tuning as well as a possible reduction of the required inductance value. Because of the
intrinsic nonlinear nature of the bilinear component, a multi-harmonic response is at hand, leading to
a nonlinear coupling between the mechanical and electrical modes. Two particular tunings between
the electrical and the mechanical resonance frequencies are tested. The first one is one-to-one, for
which the electrical resonance is tuned close to the mechanical one. It is proved to be similar to a
classical linear resonant shunt, with the additional tuning ability. The second case consists in tuning
the electrical circuit at half the mechanical resonance, leading to a two-to-one (2:1) internal resonance.
The obtained response is also found to be similar to a classical resonant shunt near the main resonance.
In either case, the shunt performances are analytically and numerically studied, leading to optimal
values of the design parameters as well as an estimation of the amplitude reduction provided by the
shunt. Finally, experimental validation is proposed, targeting the damping of the twisting mode of a
hydrofoil structure, in which the bilinear component is realized with a diode.

Keywords Piezoelectric shunt absorber, Nonsmooth component, bilinear absorber, 2:1 internal
resonance, Nonlinear Oscillations, Diode

1 Introduction

Piezoelectric shunt absorbers represent an efficient way to attenuate the vibrations of structures under
external excitation, especially when the size and weight constraints are presented. Those absorbers
were proposed in [1] as an extension to the mechanical absorbers by utilizing a piezoelectric (PE)
transducer connected to a dedicated electronic circuit.
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E-mail: zein alabidin.shami@ensam.eu,olivier.thomas@ensam.eu

C. Giraud-Audine
Arts et Métiers Institute of Technology, L2EP, HESAM Université, F-59000 Lille, France
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The simplest architectures of those shunt circuits are the resistive shunt (R-shunt, including a sim-
ple resistor) and the resonant shunt (RL-shunt, composed of a resistor and an inductor L), which
are passive absorbers with a linear behavior. While the R-shunt dissipates the energy in heat form,
the RL-shunt consists in coupling an electrical resonator (an RLC circuit, with C being the intrinsic
capacitance of PE patch) to the host structure. It is thus an electrical analogue of a tuned mass
damper (TMD) which can be tuned in a similar manner to achieve an optimal attenuation. In this
context, it has been shown through the optimal study of the RL-shunt in [2] that for a given mechan-
ical damping ratio, the optimal attenuation depends only on the PE coupling factor. Thus, enhancing
the absorber performance can be done by increasing the PE coupling using, for example, a nega-
tive capacitance [3] or by optimizing the placement of the PE patch on the host structure [4]. Two
main issues are encountered with the PE shunts: i) their sensitivity to any change in the resonance
frequency of the structure [5], ii) for some applications targeting low-frequency modes, a very high
inductance is required, which can be a practical issue [6, 7]. In addition, the R and RL-shunts act
near a single structure mode, but they can be extended for multi-modal attenuation through multiple
attachments [8–10]. One can refer further to the following reviews [11, 12] for a wider illustration
regarding the optimization and different applications of the PE shunts.

PE shunts properties can be enhanced by intentionally introducing a nonlinear component in the
shunt circuit to exploit some purely nonlinear features. An example of such applications is the so-called
nonlinear energy sink ”NES”, introduced in [13], and realized theoretically and experimentally with
piezoelectric shunt methodology in [14] and [15], respectively, by adding cubic nonlinear component
in the shunt circuit. Another example is the so-called nonlinear tuned vibration absorber ”NLTVA”
introduced in [16] and realized with PE shunt theoretically [17] and experimentally [18]. Recently, a
new semi-passive absorber, introduced in [19] and realized experimentally in [20], exploited a two-to-
one (2:1) internal resonance and a saturation phenomenon by adding a quadratic nonlinear component
in a classical RL-shunt. This concept was improved to correct an unwanted detuning by adding a cubic
component, as shown theoretically in [21] and experimentally in [22].

In many applications, the nonlinearities can be presented (or approximated) in a polynomial form
(i.e., quadratic or/and cubic). In essence, polynomial nonlinearities naturally appear in a wide range
of nonlinear models involving geometric and material nonlinearities such as thin beam and plate
models [23, 24]. The free and forced response of systems involving such types of nonlinearities can be
analyzed analytically (up to a certain order) using several methods such as perturbation techniques
[25], elliptic functions [26], and normal form [27]. However, in some other applications involving
clearance [28], vibro-impacts [29] or dry friction [30, 31], nonsmooth piece-wise functions naturally
appear in the model, leading to strong nonlinear effects.

Utilizing nonsmooth nonlinear components for vibration reduction is firstly introduced in [32] to
enhance the design of the NES to act as shock isolators. A lot of studies were then conducted to analyze
the energy transfer between linear and nonsmooth NES attachments. For example, the targeted energy
transfer between a single degree of freedom linear system and nonsmooth NES is studied in [33]. Also,
the dynamics of a NES of non-polynomial piece-wise potential is investigated in [34]. In addition,
introducing a nonsmooth component led to the design of vibro-impact NES where detailed design
rules were given in [35]. A recent theoretical and experimental study [36] proposed an enhanced NES
by using a cubic spring in addition to a piece-wise linear spring.

To the authors’ knowledge, the only attempt to use a nonsmooth component in a PE shunt method-
ology involved the synchronized switch damping (SSD) technique. The latter idea is proposed in [37]
for piezoelectric transduction that is switched between two distinct shunt impedances, in synchronic-
ity with the oscillations of the host structure [38]. The principle is the following: when the system is
moving away from equilibrium, a voltage is applied such that the piezoelectric force resulting tends
to restore the system to its equilibrium point. Various topologies have been proposed regarding the
circuit connected in series with the patch via the switch: a simple resistor [37], a resistor and an
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inductor to increase the voltage inversion [39] or the same circuit with an added static voltage source
[40, 41]. In the latter case, the voltage may have to be controlled as well to avoid instabilities [42].
This technique proved to be efficient in terms of vibration reduction, but it can become complicated
to tune in practice due to the imperfection of synchronization time required [38] as well as to the
creation of higher harmonics and noise [43].

The main originality of this work is to present the design of a tunable PE resonant shunt with
a nonsmooth voltage component, without any required synchronization. In practice, the nonsmooth
voltage component can be realized in a passive way with a half-wave rectifier circuit that includes a
diode, so that the bilinear function of the voltage across the piezoelectric transducer is obtained. In
addition, the proposed design of the nonsmooth component allows us to tune the resonance frequency
of the shunt circuit without changing the inductance. Thus, a lower inductance can be set for the
optimum design, which is an advantage when considering low-frequency modes. This paper focuses on
the theoretical bases of the absorber and its experimental proof of concept, by targeting the mitigation
of the first twisting resonance of a hydrofoil structure.

This paper is organized as follows: in section 2, the theoretical study is illustrated, showing the
main governing equations with the nonsmooth term in addition to their approximation. We also show
the optimal study for one-to-one and two-to-one tuning cases of the electric resonance frequency. The
obtained optimal parameters, in addition to the optimal attenuation, are then numerically verified.
In section. 4 we show the experimental proof of concept where the nonlinear shunt circuit and the
measurement protocol are illustrated. In addition, we show the experimental frequency responses for
both tuning cases to validate the theoretical estimations.

2 Theoretical Analysis

2.1 Governing Equations

Piezoelectric patch

Elastic structure

R

L

Vnl = β(V + |V |)

Nonlinear shunt

u(t)Ext. forcing

V

Q̇

Q

Vnl

V

2β

1

(a) (b)

Fig. 1: (a) Elastic structure coupled to the nonlinear shunt circuit; (b) graph of the function V →
Vnl = β(V + |V |).

We consider an arbitrary elastic structure subjected to an external excitation and connected to a
shunt circuit via a piezoelectric patch, as shown in Fig. 1(a). Following [2, 19, 20], the displacement
u(x, t) at position x in the structure and time t is truncated on one linear mode such that:

u(x, t) = ψ(x)q(t), (1)
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where ψ(x) is the mode shape and qi(t) is the i-th modal displacement. Then, (Q(t), q(t)) are the
solutions of the following system:

q̈i + 2ξiω̂iq̇i + ω̂2
i qi +

θi

miCpi
Q =

Fi

mi
cosΩt, (2a)

Q̈+ 2ξeωeQ̇+ ω2
eQ+

θi

LCpi
qi − Vnl

L
= 0. (2b)

In the above equations, mi, ξi, ω̂i, θi, and Fi are, respectively, the modal mass, the mechanical
damping ratio, the natural frequency in open circuit condition (Q = 0), the piezoelectric coupling
coefficient, and the forcing, all corresponding to the i-th mode. Cpi is the effective capacitance of the
piezoelectric patch for the i-th mode [3]. The electrical natural frequency ωe and electric damping
ratio ξe are defined as:

ωe =
1

√
LCpi

, ξe =
R

2

√

Cpi

L
, (3)

where R and L are the resistance and the inductance in the shunt circuit, respectively.

The PE patch voltage V (t) can be defined as a function of qi(t) and Q(t) using [2]:

V =
1

Cpi
(Q+ θiqi). (4)

We also define the dimensionless electromechanical modal coupling factor (EMMCF) of the i-th mode
as:

k2
i =

ω̂2
i − ω̌2

i

ω̂2
i

=
θ2

i

ω̂2
iCpimi

, (5)

with ω̌i the natural frequency in short circuit (V = 0).

In this study, we consider the nonlinear voltage component Vnl(t) to be bilinear in terms of V (t),
as shown in Fig. 1(b), and expressed as:

Vnl = β(V + |V |), (6)

where β is a dimensionless gain. The goal of introducing a nonsmooth nonlinearity in the form pre-
sented in Eq. (6) is first to generate even harmonics in the system, because it is not a symmetrical
function of V , to possibly activate a 2:1 internal resonance, and second to use simple electrical com-
ponents such as a diode or a transistor to practically realize it.

By substituting Eq. (6) in Eq. (2b) and eliminating V using Eq. (4), we obtain:

q̈i + 2ξiω̂iq̇i + ω̂2
i qi +

θi

miCpi
Q =

Fi

mi
cosΩt, (7a)

Q̈+ 2ξeωeQ̇+ ω2
eQ+ ω2

eθiqi − βω2
e (Q+ θiqi + |Q+ θiqi|) = 0. (7b)

Two important conclusions can then be drawn at this stage: (i) the governing equations in (7a,b)
are indeed non-linear because of the non-smooth term (|V | =⇒ |Q + θiqi|) which only appears in
Eq. (7b) and creates a harmonic distortion. (ii) although nonlinearities are present, (7a,b) are in fact
fully linear in amplitude. For example, replacing F by 2F in Eq. (7a) leads to obtain (2qi, 2Q) instead
of (qi, Q) (see also Fig. 10) since the absolute value function is linear in amplitude (i.e., |2x| = 2|x|
for x ∈ R). However, it is not always additive or superposable, since |x1 +x2| 6= |x1| + |x2| if x1x2 < 0
for x1, x2 ∈ R.
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2.2 1DOF system with the nonsmooth term

To give a first analysis of the behavior of the coupled system (7a,b), we consider here only Eq. (7b),
we exclude the piezoelectric coupling (i.e., setting θi = 0), and we add a direct forcing term, leading
to:

Q̈+ 2ξeωeQ̇+ ω2
eQ− βω2

e (Q+ |Q|) = P cosΩt, (8)

where P is the forcing amplitude.

2.2.1 Free solution

π/ωeπ/ω′

e

T = 2π/ω̄e

(a) (b)

Fig. 2: (a) Example of the free response of Eq. (8) over one period. (b) Ratio η = ω̄e/ωe as a function
of β.

To analyze the free response, we set P = 0, and we rewrite Eq. (8) as:

Q̈+ 2ξeωeQ̇+ ω2
eQ = 0 if Q ≤ 0, (9a)

Q̈+ 2ξeωeQ̇+ ω′2
e Q = 0 if Q ≥ 0, (9b)

where ω′
e = ωe

√
1 − 2β. In the conservative case (ξe = 0), Eqs. (9) suggest that the free response is

a succession of one half period of sine of period ωe and one half period of sine of frequency ω′
e, as

illustrated Fig. 2(a) . Then, the oscillation period can be expressed as:

T =
2π

ω̄e
=

π

ωe
+

π

ω′
e

, (10)

where ω̄e is the modified angular frequency of the free response due to the nonsmooth term, which
reads:

ω̄e =
2
√

1 − 2β

1 +
√

1 − 2β
︸ ︷︷ ︸

η

ωe =
2
√

1 − 2β

1 +
√

1 − 2β

1
√
LCp

, η =
ω̄e

ωe
, (11)

where η represents the ratio between the modified (ω̄e) and unmodified (ωe) natural frequencies.
Eq. (11) proves that even if the behaviour is nonlinear, the free oscillation frequency of Eq. (7b) does
not depend on the amplitude. Indeed, the oscillations are periodic but not harmonic since they are
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the succession of two half sine functions of different periods: the more β is large, the more the two
periods are different, and higher the harmonics content is expected.

Moreover, Eq. (11) suggests that given an electrical resonance frequency ωe (i.e., given an induc-
tance), the modified electrical oscillation frequency ω̄e can be adjusted according to the value of β.
However, the value of β should be less than 1/2 to avoid unstable response ( if β > 0.5, ω′

e admits
imaginary part). This feature is the main advantage of this nonlinear shunt circuit: by adjusting the
nonlinear parameter β, one can tune the electrical circuit frequency at a particular value while fixing
the inductance at a low value, which is an advantage for practical implementation. Fig. 2(b) shows
the ratio η as a function of β, illustrating that it can be lowered to zero (at β = 0.5) and increased
up to a factor of 2 (for β → −∞).

2.2.2 Forced Solution

β = 0.444 β = 0.3136 β = 0 β = −0.841 β = −3.883 β = −20.758 β = −152.497β = 0.492

Fig. 3: Harmonics H0, H1 and H2 of the periodic solutions of Eq. (8) in the vicinity of the primary
resonance, as a function of Ω̃ = Ω/ωe for ξe = 0.005. The harmonics’ amplitude is normalized with
respect to the excitation level. The vertical dotted black lines show the value ω̄e(β).

To analyze the forced response, we rewrite Eq. (8) in a dimensionless form by introducing the
following parameters:

t̃ = ωet, Q̃ = Q
ω2

e

P
, Ω̃ = Ω/ωe. (12)

Using the dimensionless parameters in Eq. (12), one obtains:

¨̃Q+ 2ξe
˙̃Q+ Q̃− β

(
Q̃+ |Q̃|

)
= cos Ω̃t̃. (13)

One can realize that the solution of Eq. (13) depends only on the damping ratio ξe and the gain β.
As a consequence, the shape of the resonance curve of Eq. (13) is independent of the excitation level
P and can be obtained for any value of P and ωe using the scaling defined in (12).
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(a) (b) (c)

Fig. 4: Harmonics H1 (a), H0 (b) and H2 (c) of the periodic solutions of Eq. (8) in the vicinity of the
primary resonance, as a function of Ω̃ = Ω/ωe for ξe = 0.005 and different excitation levels P . The
numerical values used in the simulations are ξe = 0.005 and β = 0.444.

Eq. (13) is solved numerically with the continuation software MANLAB [44, 45] since there is no
analytical solution at hand. MANLAB is based on a Harmonic Balance method to compute the peri-
odic solutions. It requires a regularization of the nonsmooth term, which is discussed in Appendix B.
Note that in all the numerical simulations with MANLAB, 40 harmonics were considered. Fig. 3 shows
the dimensionless frequency response, normalized with respect to the excitation level, of the zeroth
(H0), first (H1), and second (H2) harmonics of the periodic solutions of Eq. (8) for different values
of β. Note that only H0, H1, and H2 harmonics are considered since they represent the dominant
harmonics observed in the numerical simulations, and they will be relevant in the upcoming analysis.
Indeed, other harmonics with lower amplitudes are present such as the third and fourth harmonics.

Two important conclusions can be drawn from the response shown in Fig.3. First, the nonlinear
term creates a full harmonic content, with H0 being dominant in amplitude, H2 being significant but
with lower amplitude, and the higher harmonics being negligible. Second, the relative amplitude of
the harmonics with respect to the fundamental H1 increases with the absolute value of the nonlinear
coefficient |β|: with β = 0, the response is fully linear with no harmonics, except H1. However, if β is
close to 0.5 or tends to −∞, the harmonic content increases significantly. Interestingly, the amplitude
of H0 exceeds that of H1 for extreme values of β (e.g., for β = 0.492 and β = −152.497).

The most important observation is that the shape of each harmonic, considered separately, seems
close to the frequency response of a linear oscillator near its resonance frequency, which is obtained
here in the vicinity of the free oscillations frequency, for Ω = ω̄e. Such property is conserved even for
higher excitation, as shown in Fig. 4, in which the linearity property with respect to the excitation
level is clearly observed.

On the contrary to the quasi-linear behavior described above, the nonlinear nonsmooth term can
generate a strongly nonlinear superharmonic response near Ω = ω̄e/2. This is emphasized in Fig. 5,
which shows the superharmonic responses for different values of β, of the H0, H1, and H2 harmonics.
The results suggest that the superharmonic response appears to be nonlinear (hardening effect with
unstable branches), and the nonlinear effect increases with β. This suggests that introducing the
nonsmooth term can represent an option for the application involving internal resonance (as will be
discussed in section 3.2).

2.2.3 Forced response approximation with a linear oscillator

As discussed in the previous section, the nonlinear frequency response of the harmonics seems similar
to the frequency response function (FRF) of a linear oscillator near the primary resonance. Thus, we
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(a) (b) (c)

Fig. 5: Harmonics H0 (in red), H1 (in black), and H2 (in blue) of the periodic solutions of Eq. (8)
in the vicinity of the superharmonic resonance of order two. (a) β = 0.3136, (b) β = 0.444, and (c)
β = −3.883. The numerical values are ξe = 0.005 and P = 0.1. The solid and dotted lines denote the
stable and unstable responses, respectively.

seek an approximation of Eq. (8) that is defined by the following linear oscillator, for p = 0, 1, 2:

Q̈p + 2ξ̄eω̄eQ̇p + ω̄2
eQp = φpP cosΩt, (14)

where Qp is the approximated response of the p-th harmonic of Q(t), ξ̄e is the modified damping ratio
due to the nonsmooth term, and φp is an unknown gain, corresponding to the p-th harmonic, intro-
duced to quantify the difference between the analytical and numerical solutions and to be determined
by fitting the analytical frequency response of Qp with the numerical frequency response of the p-th
harmonic. From a physical point of view, the gain φp enables quantifying the energy distribution at
each harmonic due to the presence of the nonsmooth component.

To determine the modified damping ratio ξ̄e, we assume (and we will verify hereafter) that the
nonsmooth term has no effect on the damping coefficient (i.e., the term multiplying Q̇), and thus:

ξ̄eω̄e = ξeωe ⇒ ξ̄e = ξe/η. (15)

Then, the FRF of Qp is expressed as:

Zp(Ω) =
Q̊p

P
=

φp

ω̄2
e −Ω2 + 2jξ̄eω̄eΩ

. (16)

where Q̊p denotes the Fourier transform of Qp(t) and j =
√

−1. To validate the estimated damping
ratio and to determine the gain φp, we set ξ̄e according to Eq. (15) and we only vary the value of φp

to fit the numerical FRFs, shown in Fig. 3, for each harmonic with their equivalent analytical ones,
defined in Eq. (16). Examples of those fittings for different values of β are shown in Fig. 6 near the
primary resonance. Notice the appearance of superharmonic responses, clearly observed in the H2
response in Fig. 6(c), not taken into account in our equivalent linear model.

Considering this numerical fitting, we can draw two conclusions. The first one is that the equivalent
damping ratio ξ̄e, defined in Eq. (15), is the perfect one since the fitted equivalent linear FRFs match
exactly the shape of the numerical (nonlinear) ones, by varying only the value of φHp to reach the
perfect fit.

The second conclusion is that by fitting the analytical and numerical frequency responses for H0,
H1, and H2 for different values of β, the gain φp for each of those harmonics can be estimated as a
function of β (it is shown by markers in Fig. 7). Note that the estimated values of φp are firstly plotted
with respect to log10(1 − 2β) and then mapped to the values of β. Additionally, the results prove that
increasing |β| leads to more distribution of energy to the other harmonics as both φ0 and φ2 increase.
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(a) (b)

(c)
superharmonic responses

Fig. 6: Examples of the fitting between the numerical and analytical frequency responses, normalized
with respect to the excitation level, of the harmonics H0 (a), H1 (b), and H2 (c). The numerical
results, estimated by solving Eq. (13) with MANLAB, are depicted in solid lines and the analytical
results, according to Eq. (16), are depicted in dashed lines. The fittings are performed near the primary
resonance for β ∈ {0.444, 0.313, 0,−0.841,−20.758} and ξe = 0.005.

Compatible with the results in Fig. 3, H2 harmonic has a lower influence compared to H0 even for
high values of |β|. More precisely, it appeared that the amplitude of H2 tends to a constant value as
|β| increases. On the contrary, H0 harmonic admits larger influence in which φ0 suggests higher value
compared to φ1 for extreme values of |β|.

Table 1: Polynomial coefficients am of φp(β) for β > 0.

a0 a1 a2 a3 a4 a5 a6

φ1 1 0.0065 −0.1432 0.0610 −0.0078 0 0
φ0 0 0.7354 0.002 −0.1528 0.0547 −0.0061 0
φ2 0 0.1628 0.0066 −0.0825 0.0455 −0.0102 0.0008

Interestingly, those last results suggest that φp admits a symmetric behavior with respect to log10(1−
2β). Thus, to obtain a closed-form approximation of φp, which will be used in the further analysis,
we seek a polynomial expression of φp as:

φp(y) =

N∑

m=0

amy
m, y(β) = − log10(1 − 2β) = −2 log10

(
η

2 − η

)

, (17)
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Fig. 7: φp as a function of β corresponding to harmonics H0 (red), H1 (black), and H2 (blue). The
circles denote the values estimated by fitting the analytical and the numerical responses for each value
of β, and the solid lines denote the closed form approximated polynomial curves.

where N ∈ N is the polynomial order and am ∈ R are the polynomial coefficients. Thanks to the
symmetric property, the relation φp(y) = −φp(y) can be used to estimate the coefficients am only
for y > 0 (i.e., β > 0) and then directly obtain the coefficients for y < 0 (i.e., β < 0) by changing
the sign of the coefficients am of the odd monomials (i.e. am with m odd). In addition, to take into
account the fact that only H1 will respond for y = 1 (i.e., β = 0), we enforce constraints on a0 for
each harmonic such that a0 = 1 for H1 and a0 = 0 for H0 and H2. With the constraint enforcement
on a0, a good fitting between the polynomial expressions (solid lines in Fig. 7) and the obtained data
(circle markers) required N = 4 for φ1, N = 5 for φ0, and N = 6 for φ2. The estimated coefficients
am for each harmonic are gathered in Table. 1 only for β > 0.

3 Response of the full system according to the tuning of the nonsmooth component

In this section, we study the response of the full system (7a,b) with two particular tunings of the
nonsmooth term. Based on the analysis in section 2.2, two main points can be emphasized. First, it was
shown that each harmonic of the response of the electrical oscillator could be considered separately and
approximated by an equivalent linear system. This suggests using the first harmonic as an oscillator
that can be tuned on one resonance of the host mechanical system to act as an RL-shunt, with the
additional interest of tuning it using the nonsmooth gain β. This is investigated in section 3.1, by
tuning the electrical oscillator on the i-th vibration mode, such that ω̄e ≃ ω̂i. Secondly, a nonlinear
behavior was observed with the appearance of H0 and H2 harmonics and of a 1:2 superharmonic
response of the electrical oscillator. This behaviour is a characteristic of a non-symmetric nonlinearity
(see the curve Vnl = f(V ) in Fig. 1(b)) and suggests to investigate a 2:1 internal resonance, by tuning
the electric oscillator at half the mechanical frequency (ω̄e ≃ ω̂i/2) and testing a transfer of energy
from the mechanical oscillator to the electrical one, as already done using quadratic nonlinear terms
in [19, 20, 22]. This is investigated in section 3.2.
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3.1 One-to-one tuning of the nonlinear shunt (ω̄e = ω̂i)

3.1.1 FRF approximation

As analyzed in the previous sections, the nonlinear electrical oscillator (Eq. (7b)) oscillates with a
fundamental harmonic (H1) that responds linearly around its primary resonance Ω ≃ ω̄e, suggesting
that it can serve as a linear attachment similar to a standard RL-shunt. Thus, we consider here a
tuning of β to have ω̄e = ω̂i: the modified electrical frequency is tuned to the open circuit natural
frequency of the host structure, as a classical linear resonant shunt, expecting similar behavior.

For this tuning case, we are interested in the first harmonic response behavior. Then, we replace
Eq. (7b) by its linear approximation (14). Since the external forcing is only applied on Eq. (7a), the
PE coupling term θ/(LCpi)qi in Eq. (7b) is considered as a forcing term, thus a multiplication by φ1

will be enforced based on the linear approximation in section 2.2.3. In addition, ωe = 1/(
√
LCpi) is

replaced by the modified frequency ω̄e. Thus, we arrive at the following approximation:

q̈i + 2ξiω̂iq̇i + ω̂2
i qi +

θi

miCpi
Q =

Fi

mi
cosΩt, (18a)

Q̈+ 2ξ̄eω̄eQ̇+ ω̄2
eQ+ ω̄2

eφ1θiqi = 0. (18b)

To simplify the writing of (18a,b), we define the following change of variables:

t̃ = ω̂it, Ω̃ =
Ω

ω̂i
, q̃i =

√
miqi, Q̃ =

1

ω̄e

√
φ1Cpi

Q =

√
L

η
√
φ1

Q, fi =
Fi

ω̂2
i

√
mi

, (19)

where the dimensionless time t̃ and frequency Ω̃ are different than those of section 2.2.2. The two
following frequency ratios are also defined:

ri =
ωe

ω̂i
, r̄i(β) =

ω̄e(β)

ω̂i
, (20)

ri being related to the electrical frequency ωe and r̄i its modified version due to the detuning brought
by the nonsmooth term. One arrives at the following system:

¨̃qi + 2ξi ˙̃qi + q̃i + k̄ir̄iQ̃ = fi cos Ω̃t̃, (21a)

¨̃Q+ 2ξ̄er̄i
˙̃Q+ r̄2

i Q̃+ k̄ir̄iq̃i = 0, (21b)

where the derivatives are with respect to the dimensionless time τ . k̄i is the modified dimensionless
electromechanical modal coupling factor due to the presence of the nonsmooth term defined as:

k̄i(β) = ki

√

φ1(β). (22)

Note that k̄i depends on β, as suggested by the expression of φp in Eq. (17). More importantly, k̄i

is smaller than the unmodified coupling factor ki since φ1 < 1 for for any nonzero value of β, as
illustrated in Fig. 7. The physical meaning of this observation is that the nonsmooth term leads to a
distribution of the energy to different harmonics, contrary to the linear case, where all the energy is
transferred to the fundamental harmonic. Thus, a reduction of energy in the H1 harmonic is observed
and quantified by the gain φ1.

The FRFs of Eqs. (18a,b) reads:

Hq(Ω) =
q̊

F
=

1

mi

ω̄2
e −Ω2 + 2jξ̄eω̄eΩ

D(Ω)
, HQ(Ω) =

Q̊

F
=

−ω̄2
eφ1θi

mi

1

D(Ω)
, (23)

with D(Ω) = (ω̂2
i −Ω2 + 2jξiω̂iΩ)(ω̄2

e −Ω2 + 2jξ̄eω̄eΩ) − k̄2
i ω̄

2
e ω̂

2
i and where q̊ and Q̊ are the Fourier

transform of q(t) and Q(t), respectively.
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3.1.2 Optimal tuning

(a) (b)

Fig. 8: Optimal value βop of β to tune the RL-shunt as a function of (a) ri = ωe/ω̂i and (b) as a
function of the reduction ratio of the shunt inductance with respect to its optimal value for a linear
RL-shunt L0/L.

To obtain the optimal response of our modified RL-shunt, we follow the same optimization procedure
as the one used for classical RL-shunts [2], as recalled in Appendix A. Comparing Eqs. (21) and (A.1),
one observes that (ω̄e, k̄i, ξ̄e) replace (ωe, ki, ξe). Considering first the frequency tuning, the optimal
value for the modified electrical frequency, denoted by ω̄op

e , should satisfy:

ω̄op
e = ω̂i ⇒ r̄op

i = 1. (24)

Then, by substituting ω̄e from Eq. (11) in Eqs. (24), one arrives to the following optimal value of β,
denoted by βop, as a function of the unmodified electrical tuning ratio ri = ωe/ω̂i:

ηop =
ω̄op

e

ωe
=
ω̂i

ωe
=

1

ri
⇒ βop =

1

2

[

1 − 1

(2ri − 1)2

]

. (25)

Notice that (see Fig. 2(b)):

ri ∈ [1,+∞] ⇔ η ∈ [0, 1] ⇔ β ∈ [0, 0.5], (26a)

ri ∈ [0.5, 1] ⇔ η ∈ [1, 2] ⇔ β ∈ [−∞, 0], (26b)

such that ri is necessary larger than 0.5.

The above equations show that the nonsmooth component brings a new degree of freedom in the
tuning of the resonant shunt. In practice, one can adjust the value of the nonlinear gain such that
β = βop (Eq. (25)), bringing the modified electrical frequency close to the mechanical one, such that
ω̄e = ω̂i (r̄i = 1). In practice, a standard RL-shunt is tuned using the value L of the inductance, such
that the electrical frequency is equal to the open-circuit mechanical one: ωe = 1/

√
LCpi = ω̂i. Here,

adjusting the value of β is an additional degree of freedom to tune the RL-shunt. The range of tuning
can be such that ωe > ω̂i (ri > 1): in this case βop > 0; on the contrary, one can have ω̂i/2 < ωe < ω̂i,
leading to βop < 0. This is illustrated in Fig. 8(a), which shows the evolution of βop as a function of
ri.

This new degree of freedom can be used in practice to finely adjust the tuning of an RL-shunt that
has a nonoptimal value of the inductance L. It can also be used intentionally in the case of a low-
frequency mechanical mode that would require a high value of L, often difficult to achieve in practice.
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In this case, one chooses a smaller L than the optimal one and corrects the tuning by adjusting β. To
clarify the reduction in L, we compare it with the required inductance for the optimal condition of
the linear RL-shunt (see Appendix A), denoted by L0. Considering that ωe = 1/

√
LCpi, one has:

L

L0
=

(
ω̄e

ωe

)2

=
1

r2
i

⇒ L =
L0

r2
i

. (27)

Thus, the inductance can be reduced by a factor of r2
i compared to that of the linear RL-shunt.

This quadratic law can be very advantageous in practice: for instance, a value of ri = 10 leads to a
reduction in the inductance of a factor L0/L = 100. This is illustrated in Fig. 8(b), which shows βop

as a function of L0/L.

In addition to the frequency tuning, the electrical damping must also be tuned. The optimal value
of the electrical damping ratio ξe and thus of the resistor R are obtained by:

ξ̄op
e =

√
6k̄i

4
⇒ ξop

e = ηopξ̄op
e =

√
6

4ri
k̄i =

√
6

4ri
ki

√

φop
1 ⇒ Rop =

√
6

2Cpir2
i ω̂i

ki

√

φop
1 , (28)

where φop
1 = φ1(β = βop) as defined by Eq. (17). Contrary to the linear RL-shunt, the optimal damping

ratio ξop
e do not depend only on the coupling factor ki, but also on the linear tuning ri = ωe/ω̂i of

the shunt, since φop
1 depends on ri through βop (Eq. (25)):

φop
1 =

4∑

m=0

am [2 log10(2ri − 1)]
m
, (29)

where am are defined in Table 1 for the first harmonic and for β > 0 (ri > 1). For β < 0 (0.5 < ri < 1),
one must change the sign of am for m even, as explained in section 2.2.3.

3.1.3 Performance

(a) (b)

Fig. 9: Optimal attenuation AdB as a function of ri and ki. (a) 3D plot for a linear RL-shunt (blue
surface, β = 0) and for the 1:1 tuning case with the nonsmooth component (red surface), for ξi = 0.01.
The black line denotes the intersection between the two surfaces at ri = 1; (b) AdB as function of ki

for ξi = 0.001 (solid lines), ξi = 0.01 (dashed lines), and ξi = 0.1 (dashed-dotted lines) and for each
value of ξi, for three different values of ri: ri = 10 (in green), ri = 5 (in red), ri = 2 (in blue), and
ri = 1 (in black). The case for ri = 1 denotes also the linear resonant shunt since β = 0.
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The optimal attenuation AdB of the nonlinear RL-shunt, in dB scale, can be obtained using the
procedure of Appendix A by replacing ki by its modified value k̄i. It reads:

AdB = 20 log10

Hq|k̄i=0(Ω̃ = 1)

Hq|ξ̄e=ξ̄op
e r̄i=1(Ω̃ = 1)

= 20 log10

(

1 +
k̄i

ξi

√
6

)

= 20 log10

(

1 +
ki

√

φop
1

ξi

√
6

)

. (30)

By substituting Eq. (29) in Eq. (30), we can conclude that in contrary to the linear resonant shunt
case where only ki and ξi are involved, the optimal attenuation depends also on the ratio ri (and thus
on the inductance). In addition, one can expect a reduction of AdB as β increases due to the reduction
of ki by a factor of

√
φ1.

The dependence of AdB on (ki, ξi, ri) is examined in Fig. 9. Classically, one observe that AdB

increases as a function of the coupling factor ki and when the mechanical damping ratio ξi is decreased,
in the same way than for a linear RL-shunt (see Fig. 24 in Appendix A and [2]). On the contrary, the
effect of the nonsmooth term on AdB appears through its dependence on the tuning ratio ri through
φop

1 = φ1(βop). Fig. 9 clearly show that this dependence on ri is very weak since AdB is only slightly
reduced with respect to the linear RL-shunt (with β = 0 ⇔ ri = 1). This is an excellent result since
the huge benefit of being able to decrease a lot the inductance L (ri = 10 ⇔ L = L0/100) is not
counterbalanced by a significant decrease of the performance, of the order of 1 dB.

3.1.4 Numerical validation

In this section, we numerically validate the frequency response and the optimal parameters of our
modified RL-shunt by considering the first twisting mode of the hydrofoil structure that will be
tested experimentally in section 4 (see Fig. 17). The modal parameters corresponding to this mode
are gathered in Table. 3. The numerical results are obtained by solving Eq. (7a,b) with MANLAB,
considering 40 harmonics in the simulations. Then, the frequency responses of the first harmonic
amplitude of the displacement uH1, the charge QH1, and the PE voltage VH1 are obtained. Note that
in what follows, the modal parameters correspond to this particular mode, and thus the subscript i
associated with the modal parameters notations is omitted in the remaining of this section. Note also
that the modal parameters are gathered in Table. 3 follow the normalization of the mode shape such
that ψ = 1 at the point of the structure where the displacement is studied and thus according to
Eq. (1), we have u(t) = q(t).

As a first step, we choose the inductance L such that ωe = 2ω̂ (i.e. r = 2 and L = 0.737 H),
meaning that the linear RL-shunt is overtuned by a factor 2. We correct this overtuning by adjusting
the other parameters at their optimal value: β = βop = 0.444 (Eq. (25)) and ξe = ξop

e (Eq. (28)). The
first harmonics of u(t) and Q(t) in the periodic steady state are shown in Figs. 10(a,b) as a function
of the driving frequency Ω, for three values of the forcing F . Then, in Figs. 10(c,d), the same curves
are plotted normalized by the forcing level F and superimposed to the FRFs Hq(Ω) and HQ(Ω)
(Eqs. (23)) of the linear equivalent system (18a,b). One observes a perfect match, proving first that
the linearity of the response with respect to the excitation level is perfect, as well as the agreement
between the full nonlinear system (7a,b) and its linear approximation (18a,b).

Fig. 11 is analogous to Fig. 10(c,d) and shows how the frequency responses are changed when the
parameters β and ξe are changed around their optimal values βop and ξop

e . Note that we chose to
plot VH1 instead of QH1 since obtaining the order of magnitudes of the voltage will be useful for the
practical realization of the shunt circuit. Those plots are similar to the response of a linear RL-shunt
when ωe and ξe are varied around their optimal value, showing again the equivalence of our modified
RL-shunt to a classical linear RL-shunt.

To validate numerically the dependence of the optimal attenuation on the frequency ratio r and,
thus the inductance, as suggested in Figs. 9(a,b), Fig. 12(a) shows the numerical frequency response
of uH1 normalized with respect to the forcing level for different values of r in which the optimal
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(b)

(a) (c)

(d)

Numerical
Analytical

Fig. 10: (a,b): Numerical frequency response of the first harmonics uH1 and QH1 of u(t) and Q(t)
for increasing excitation levels; (c,d) superposition of analytical (Hq(Ω) and HQ(Ω) from (23a,b) in
dashed blue line) and numerical (uH1/F and QH1/F in solid red line) frequency responses normalized
with respect to the forcing. In the plots, optimal values are used such that β = βop = 0.444 R =
Rop = 237.58Ω, estimated from Eq. (25) and Eq. (28), respectively. The modal parameters used are
the ones gathered in Table. 3 and L = 0.737H ⇔ r = ωe/ω̂ = 2.

conditions are always satisfied (i.e., for each value of r we set R = Rop, β = βop ⇒ ω̄e = ω̂). Similar
to Fig. 11, we consider the first twisting mode of the hydrofoil structure shown in Fig. 17. The results
validate that tuning r to higher values, and thus lower inductance, reduces the optimal attenuation
with respect to that of the RL-shunt while preserving the response shape. In addition, Fig. 12(b)
shows the optimal attenuation AdB as function of r for the RL-shunt with β = 0 (Eq. (A.4)) and
for the shunt with the nonsmooth term Eq. (30). Compatible with the results in Figs. 9(a,b), the
results clearly show that for higher values of r (lower values of inductance), the optimal attenuation
is slightly decreased, compared to the linear RL-shunt, by ≃ 1dB for a reduction of the inductance by
a factor of 100 for r = 10, compatible with results in Figs. 9(a,b). One can note that the attenuation
predicted in Eq. (30) is numerically validated by a comparison with that obtained numerically, where
an excellent fitting is obtained for different values of r. Note that the numerical attenuation, shown
in circle markers in Fig. (12b), is directly deduced from Fig. 12(a) by the amplitude difference in dB
scale between the open circuit frequency and the optimal response at Ω = ω̄e.
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(a) (b)

(c) (d)

Fig. 11: Numerical frequency response of the first harmonics of uH1 (a,b) and VH1 (c,d) of u(t) and
V (t), both normalized by the excitation level F . The response is shown for different values of β with
R = Rop = 237.58Ω (a,c) and different values of R with β = βop = 0.444 (b,d). The modal parameters
used are the ones gathered in Table. 3 and L = 0.737H ⇔ r = ωe/ω̂ = 2.

3.2 One-to-two tuning of the nonlinear shunt (ω̄e = 1/2ω̂)

In this section, we examine another possible tuning denoted by two-to-one (2:1) tuning such that ω̄e =
ω̂i/2. Due to the nonlinearities generated by the nonsmooth term, this tuning is expected to activate
a nonlinear modal coupling through a 2:1 internal resonance. As discussed in [19, 20], if quadratic
nonlinear terms are present in Vnl(t), the 2:1 internal resonance leads to create an antiresonance
at which the amplitude of the host structure becomes independent of the forcing level, a so-called
saturation phenomenon. In this section, we investigate the behavior of our system (which includes a
nonsmooth nonlinearity and not a quadratic one) in the same internal resonance condition.

3.2.1 Validation of the occurrence of the 2:1 internal resonance

To validate the energy transfer through the 2:1 internal resonance, we focus on the first harmonic
response of the displacement amplitude uH1 and the first subharmonic response of the charge QH1/2.
We consider them dominant in the Fourier series like in a classical 2:1 internal resonance energy
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(a) (b)

r = 1; L = 2.94H; β = 0

r = 2; L = 0.73H

r = 5; L = 0.118H

r = 10; L = 0.029H

Fig. 12: (a) Numerical frequency response of the first harmonic uH1 of the displacement u(t), normal-
ized with respect to the forcing level F , for different values of the ratio r and by satisfying the optimal
conditions in Eq. (25) and Eq. (28). (b) Optimal attenuation for the case of RL-shunt (Eq. (A.4)) and
the case with the nonsmooth component with one to one tuning (Eq. (30)). The circle markers are
the attenuation obtained numerical frequency responses for each value of r. The modal parameters
used are the ones gathered in Table. (3).

transfer (see [19]) and we express u(t) and Q(t) as:

u(t) = uH1 cos (Ωt− γ2) + oh, (31a)

Q(t) = QH1/2 cos

(
Ω

2
t− γ1 + γ2

2

)

+ oh, (31b)

where “oh” denotes other harmonics, including the contribution of the H0 and H2 harmonics due to
the presence of the nonsmooth term. γ2 is the phase angle of the first harmonic of the displacement
with respect to the forcing, and γ1 can be considered as the relative phase angle between the two
oscillators, which is proved to be locked at 3π/2 at the antiresonance frequency in the case of 2:1
internal resonance [19].

Similar to the 1:1 tuning case in section 3.1, the electrical frequency is tuned according to the
nonsmooth gain β with no condition on the inductance value. Thus, the 2:1 tuning condition requires
tuning β as:

ω̄e =
1

2
ω̂ ⇒ β =

1

2

[

1 −
(

1

4ri − 1

)2
]

(32)

To test the ability of activating the 2:1 internal resonance, we solve numerically the system (2a,b) by
setting β according to Eq. (32) with an arbitrary low electrical damping ratio and using the modal
parameters in Table. 3. In addition, the inductance L = 2.948 H is chosen to have r = ωe/ω̂ = 1.
The results are shown in Fig. 13, which clearly shows that a nonlinear energy transfer occurs from
the first harmonics H1 of u(t) to the subharmonic H1/2 of Q(t). This energy transfer occurs after
pitchfork bifurcation “PF” (or period-doubling bifurcation), in a frequency band centered around the
mechanical resonance, at Ω ≃ ω̂i.

However, contrary to a classical 2:1 internal resonance produced by quadratic nonlinear terms (as
in [19]), the topology of the coupled response curve is completely different and does not show any
saturation phenomenon. They appear with a shape very close to the response of a linear RL-shunt.
This suggests to consider the second harmonic of Q(t) (which is H1 here) as an equivalent linear
oscillator that can be optimized as a classical RL-shunt to mitigate the resonance of the i-th mode of
the host structure. Following this idea, as seen in Fig. 13(a), the tuning of β according to Eq. (32)
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PF
PF

PF

PF

PF

PF

(a) (b)

(c)

Fig. 13: (a) and (b) show respectively the numerical frequency response of uH1 and QH1/2 for increasing
excitation levels. (c) shows the relative phase γ1 between the two oscillators. The linear response is
plotted in black. The stable and unstable responses are depicted in solid and dotted lines, respectively.
The purple star denotes the pitchfork bifurcation (PF). The numerical values used are β = 0.444,
R = 36Ω, L = 2.948H. The modal parameters used are the ones gathered in Table. 3.

and the chosen ξe do not lead to an optimal response, that would be characterized by a symmetric
shape and minimal peaks, as observed in Fig. 11 for the 1:1 tuning case. Thus, an optimization study
is necessary to obtain the optimal values of β and ξe to achieve an optimal attenuation similar to that
of a linear RL-shunt.

Another important feature concerns the relative phase γ1 that locks at 3π/2 at the antiresonance
frequency, independent from the excitation level. This feature was proved analytically and numerically
in [19] with the addition of quadratic nonlinearities in the shunt circuit. As seen in Fig 13c, the
same phase lockage is equally preserved, which can be exploited for tuning the system in practical
implementation, similar to the experimental study in [20].

3.2.2 Optimization study

Similar to the case with 1:1 tuning, the optimization is established through the nonsmooth gain β to
tune the electrical resonance frequency and the electrical damping ratio ξe (thus the resistance R), to
obtain a mechanical frequency response as low and flat as possible. Two points are considered for this
optimization: (i) we are looking for an optimal value of β that symmetrizes the frequency response,
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as for a classical RL-shunt; (ii) the coupled response is obtained through a 2:1 internal resonance, as
observed in the previous section.

As shown in [19], the symmetric response with a 2:1 internal resonance requires a ratio between
the electrical frequency ω̄e and the mechanical one ω̂i to be slightly higher than half (i.e., contrary
to the tuning in (Eq. (32)). The exact value of this ratio, denoted by r∗

i , can be estimated by setting
ω2 = 2ω1 where ω2 and ω1 are the natural frequencies in the electro-mechanical basis (see Appendix C
and [19]). The obtained r∗

i depends only on the piezoelectric coupling factor ki as follows:

r∗
i =

√

1

8

(

17 − 25k2
i − 5

√

25k4
i − 34k2

i + 9

)

. (33)

Given the value of r∗
i , the optimal value of β is then estimated as:

ω̄op
e = r∗

i ω̂i ⇒ ηop =
r∗

i

ri
⇒ βop =

1

2

[

1 −
(

r∗
i

2ri − r∗
i

)2
]

(34)

Since it is the second harmonics of the charge Q(t) that is coupled to the primary (mechanical)
oscillator, we consider for the optimization its equivalent linear oscillator, as defined by Eq. (14) in
section 2.2.3 with p = 2. Thus, the key point is to modify the piezoelectric coupling through the
gain φ2. Following the same reasoning as in section 3.1.1, the modified PE coupling factor for the
two-to-one tuning case can be expressed as:

k̄i
∗

= ki

√

φ2(β). (35)

We then express the optimal value of ξe (and the resistance R) as follows:

ξ̄op
e =

√
6

4
k̄∗

i , ⇒ ξop
e =

√
6r∗

i k̄
∗
i

4ri
=

√
6r∗

i ki

√

φop
2

4ri
⇒ Rop =

√
6r∗

i

2Cp
i
r2

i ω̂i
ki

√

φop
2 , (36)

where φop
2 = φ2(β = βop) to satisfy the optimal conditions. Considering Eq. (17) and (34), on has:

φop
2 =

6∑

m=0

am

[

2 log10

(
2ri − r∗

i

r∗
i

)]m

, (37)

where am are defined in Table 1 for the second harmonic. The optimal attenuation can then be
expressed as:

AdB = 20 log10

(

1 +
k̄i

∗

ξi

√
6

)

= 20 log10

(

1 +
ki

√

φop
2

ξi

√
6

)

. (38)

Similar to 1:1 tuning case, the optimal attenuation depends explicitly on ri (thus the inductance)
but with a reduction of the piezoelectric coupling factor by

√
φ2. Thus, a further reduction of the

attenuation compared to that of the linear resonant shunt is expected since φ2 admits an order of
magnitude lower than that of φ1, as suggested in Fig. 7. This is further illustrated in Fig. 14 by
comparing AdB of the 2:1 tuning case and that of a linear RL-shunt.
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(a) (b)

Fig. 14: Optimal attenuation AdB as a function of ri and ki. (a) 3D plot for a linear RL-shunt (blue
surface, β = 0) and for the 2:1 tuning case with the nonsmooth component (red surface), for ξi = 0.01;
(b) AdB as function of ki for ξi = 0.001 (solid lines), ξi = 0.01 (dashed lines), and ξi = 0.1 (dashed-
dotted lines) and for each value of ξi, for three different values of ri: ri = 10 (in green), ri = 5 (in
red), ri = 2 (in blue), and ri = 1 (in black). The case for ri = 1 denotes also the linear resonant shunt
since β = 0.

3.2.3 Numerical validation

In order to validate the results suggested from the optimal analysis, we solve numerically the sys-
tem (7a,b) to obtain the frequency responses of uH1 and VH1/2 for different values of β and R (thus
ξe) including the optimal conditions in Eq. (34) and Eq. (36), respectively. This is shown in Fig. 15
in which we choose the inductance such that r = 1 ⇔ L = 2.948 H.

Similar to the plots in section 3.1.4, we consider the first twisting mode of the foil shown in Fig. 17.
The results clearly suggest that setting R and β according to the obtained optimal conditions en-
ables the recovery of the symmetric behavior and the minimization of the peaks near the resonance
frequency. It is worth mentioning that the response is very sensitive to any small perturbation of the
optimal value of β (observe the very close values of β used in Figs. 15(a,c)).

Regarding the optimal attenuation, one can realize that Eq. (38) shares similar behavior compared
to that of the 1:1 tuning case in Eq. (30) in which the attenuation depends on the inductance.
However, as observed in Fig. 7 and contrary to the behavior of φ1, the value of φ2 increases with
β then tends to admit a constant value as β increases. This suggests that decreasing the inductance
and thus the optimal value of β leads to enhancing the optimal attenuation, contrary to the one-to-
one tuning case. To validate this result, we perform a similar analysis to that in section 3.1.4 (in
Fig. 12) by studying the frequency response of uH1 at the optimal condition with different values of
the inductance. The numerical results in Fig. 16(a) clearly validate the increase of the attenuation
as the inductance decreases, which can also be seen in Fig. 16(b), where the optimal attenuation
is plotted versus the inductance value. In addition, it is realized that the attenuation increases up
to a certain level where it remains almost constant as the inductance decreases. This behavior is
explained by the presence of φ2 in the optimal attenuation expression, which admits the same trend
versus β as shown in Fig. 7. Moreover, comparing the numerical attenuation obtained numerically
and analytically shows an excellent fitting, validating the attenuation expression in Eq. (38). It is
also worth mentioning that the attenuation in this tuning case is reduced compared to the optimized
RL-shunt with a narrower bandwidth due to the substantial reduction of the coupling factor suggested
in Eq. (35) since φ2 admits a very low amplitude.
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(a) (b)

(c) (d)

Fig. 15: Numerical frequency response of the first harmonic of the velocity uH1 (first row) and the
PE voltage VH1/2 (second row), both normalized with respect to the excitation level. The response
is shown for different values of β with R = Rop = 73Ω (first column) and different values of R with
β = βop = 0.4435 (second column). The inductance value used in the simulations is L = 2.94H =⇒
r = ωe/ω̂ = 1. The stable and unstable responses are depicted in solid and dotted lines, respectively.
The displacement and voltage responses are plotted in dB and linear scales, respectively.

3.3 Summary

The introduced nonsmooth term enables tuning the electric resonance frequency of the shunt cir-
cuit while setting a low inductance in the circuit. In addition, it suggests a multi-harmonic response
dominated by the zeroth, first, and second harmonics that appeared to be similar to that of a linear
oscillator. In addition, strong nonlinearities appeared in the superharmonic response. A 1:1 and 2:1
tuning cases has been studied through the approximation of the main system (7a, b) to an approx-
imated system in (18a,b) by modifying (and reducing) the piezoelectric coupling factor by

√
φ1 and√

φ2 for the 1:1 and 2:1 tuning, respectively. In either case, closed-form expressions of the optimal
values of β and R in addition to optimal attenuation are determined and gathered in Table. 2. Con-
trary to the linear resonant shunt, the frequency ratio ri (thus the inductance) appears explicitly in
the attenuation expression. The 1:1 tuning case shows an important feature in which one can reduce
the required inductance by a factor of 100 for an attenuation reduction around 1dB compared to that
of a linear resonant shunt. While for the 2:1 tuning case, a substantial reduction of the attenuation
is observed but with an interesting feature in which the attenuation increases with the reduction of
the inductance up to a certain level where it stays almost constant. The analytical results were then
validated numerically by applying the absorber to attenuate the first twisting mode of a hydrofoil
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(a)

r = 8; L = 0.046H

r = 2; L = 0.73H

r = 5; L = 0.118H

r = 1; L = 2.94H

r = 0.62; L = 7.76H

(b)

Fig. 16: (a) Frequency response of the first harmonic of the displacement, normalized with respect to
the forcing level, for different values of the ratio r and by satisfying the optimal conditions in Eq. (34)
and Eq. (36). (b) Optimal attenuation for the case of RL-shunt (Eq. (A.4)) and the case with the
nonsmooth component with two to one tuning (Eq. (38)). The circle markers are the attenuation
obtained numerical frequency responses for each value of r. The modal parameters used are the ones
gathered in Table. (3).

structure. Considering also the first twisting mode of the hydrofoil, an experimental validation will
be shown in the next section.

Table 2: Optimal parameters and optimal attenuation for the 1:1 and 2:1 tuning cases.

Case Optimal β Optimal R Optimal attenuation [dB]

1:1 tuning βop = 1
2

[

1 −
(

1
2ri−1

)2
]

Rop =
√

6

2Cpir2
i

ω̂i

ki

√
φop

1
AdB = 20 log10

(

1 + ki

ξi

√
6

√
φop

1

)

2:1 tuning βop = 1
2

[

1 −
(

r∗

i

2ri−r∗

i

)2
]

Rop =

√
6r∗

i

2Cpi
r2

i
ω̂i

ki

√
φop

2
AdB = 20 log10

(

1 + ki

ξi

√
6

√
φop

2

)

4 Experimental Validation

4.1 Experimental setup

The experimental tests were conducted on a clamped-free foil structure fixed at its base in a vice, as
shown in Fig. 17. This structure is similar to the one used in [22, 46]. Three PE patches are glued
on cavities machined on the surfaces of the foil: on one face (denoted patches 1, 2), two P-876.A15
DuraAct polymer coated multi-layer piezoelectric patches are used for transduction with the first
bending mode, whereas a macro-fiber composite M8557-F1 with 45◦ fiber orientation is used on the
other face (denoted patch 3) for coupling with the first twisting mode. In all the tests of this article,
only patch 3 is used since we focus on the first twisting mode. Consequently, patch 3 is connected
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to the shunt circuit, and patch 1 and 2 are short-circuited. The three PE patches are from the PI
Ceramic manufacturer.

6

chord length = 85

191

100

60

Coil

Magnet

NL shunt circuit Patches 1, 2

Patch 3

Foil structure

Patch 3

Top view

Fig. 17: Experimental Setup. Dimensions are in mm. The thickness of the PE patches is 1mm.

The mechanical excitation is realized by a coil interacting with a magnet fixed on the foil. The
applied force is proportional to the current in the coil i.e F (t) = αI(t), where α = 0.6 N A−1 [20],
with very low distortion [47]. A Brüel & Kjær 2719 power amplifier, connected to the coil, is used
for all mechanical excitations. The foil vibrations are measured with a Polytec OFV-505 vibrometer,
that provides the velocity of a point colocalized with the magnet location, close to the tip of the
foil. Electrical measurements are performed using a PHILIPS PM 9355 precision current probe in the
piezoelectric circuit to obtain the charge Q(t) and a Française d’Instrumentation ST 500-5 differential
voltage probe to measure the PE patch voltage V (t).

To properly design the nonlinear shunt, we firstly performed an experimental modal analysis, equiv-
alent to that in [20, 22], to obtain the modal characteristics of the first twisting mode of the foil, which
are gathered in Table. 3. Note that since we tackle only the twisting mode, the subscript i will be
omitted in what follows.

Table 3: Electro-mechanical modal parameters.

Parameter ω̌/(2π) ω̂/(2π) ξ m Cp θ k ψ(xm)
Value 509.4 Hz 511.36 Hz 0.0012 10.42 g 32.8 nF 5.2 mN/V 0.0875 1
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Note that ψ(xm) = 1 means that the modal parameters are estimated by scaling the mode shape
at the measurement point of the structure xm to be unity, thus according to Eq. 1, u(t) = q(t) (i.e.,
the same scaling of the mode shape considered in the previous section).

4.2 Nonsmooth shunt circuit

R
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PE voltage measurement
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C

Fig. 18: Shunt circuit schematic.

Table 4: Component values in the nonlinear shunt circuit of Fig. 18

Component R1 [kΩ] R2 [kΩ] R3 [kΩ] C [µF] R5 [kΩ] R6 [kΩ] R7 [kΩ] R8 [kΩ]
Value 2 1 1 10 82 22 10 10

The nonlinear shunt circuit used for the tests is shown in Fig. 18. It consists of three interconnected
sub-circuits to realize (i) a tunable synthetic inductor (outlined in blue); (ii) a voltage measurement
(outlined in orange), and (iii) a nonlinear voltage generator (outlined in light red). To handle the
large voltage levels that can appear, especially during transients, the operational amplifiers OA1 to
OA7 are OPA445 (Texas Instrument) which can operate up to ±40V and supply 15mA to drive the
patches. The synthetic inductor is a so-called Antoniou circuit [48] to achieve the high inductance
value needed to obtain an electrical resonance frequency close to half of the mechanical resonance
frequency. The inductance value is given by

L =
R1R2R4C

R3
, (39)

where L is tuned using the variable resistance R4.

As discussed in section 3, the electric resonance frequency is controlled solely with the nonsmooth
gain β according to a free choice of the inductance L. In all the experimental tests in this study, and
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for different tunings of the shunt circuit, the value of L is always chosen to be less than 3 H. For such
values, the parasitic resistance generated by the Antoniou inductor, observed in [20], is to the order
of 0.1Ω and will be neglected here. Thus, the resistor R in the shunt models corresponds to a physical
resistance added to tune the electrical damping. Note that the parasitic resistance is estimated with
a frequency-to-bandwidth ratio of the electrical resonance, close to Ω = ωe, in linear operation, with
β = 0.

The PE voltage measurement is established through two voltage dividers composed ofR5 andR6 and
two voltage followers OA3 to OA4 (OPA445, Texas Instrument) to ensure a large input impedance.
The voltage dividers are used to attenuate the voltage to values compatible with the differential
amplifier DA (INA826, Texas Instrument). Since the PE patch is not grounded, these voltages are
first fed to the differential amplifier DA. The nonsmooth voltage with the absolute function, as in
Eq. (6), is generated through a half-wave rectifier circuit composed of OA5, a diode (1N4002), and
a resistor R7 connected to the ground. The output voltage of the half-wave rectifier circuit is fed to
an inverting amplifier, realized with OA6, to respect the assumed sign convention of the nonsmooth
voltage in (2a,b) and to control the nonsmooth gain β. The follower OA7 is used to minimize the
output impedance while protecting the INA826 from excessive current. The nonsmooth gain β is
controlled according to the variable resistor R9 as:

β =
1

2

(
R6

R5 +R6

)
R9

R8
. (40)

Note that changing the sign of the nonsmooth voltage can be done by flipping the polarity of the diode
without using the inverting amplifier. However, for such a case, the nonsmooth gain will be controlled
either by a voltage divider composed of R5 and R6 or by adding a new voltage divider instead of the
inverting amplifier. In the first case, and for certain values of β, one might risk achieving a voltage at
the input of the DA higher than the operating levels. In the second case, a restriction on the value of
β is presented. Thus, we prefer to use the inverting amplifier so that the sign convention is respected
with easy controllability of the nonsmooth gain.

4.3 Measurement protocol

The experimental tests aim to verify the results suggested theoretically in section 3, and thus we
consider the same tuning cases, namely, the 1:1 and 2:1 tuning. It is proved that the former case
leads to a fully linear response near the resonance frequency while the latter activates the 2:1 internal
resonance and thus leads to the response of the subharmonic of the charge. Since the mode shape is
scaled to verify ψ(xm) = 1, we express the time signals of the displacement u(t) and the charge Q(t)
for the 1:1 tuning as:

u(t) = uH1 cos(Ωt− δ1) + oh, (41a)

Q(t) = QH1 cos(Ωt− δ2) + oh, (41b)

and for the 2:1 tuning case, we include the subharmonic response such that [19]:

u(t) = uH1 cos(Ωt− γ2) + uH1/2 cos

(
Ω

2
t− γ1 + γ2

2

)

+ oh, (42a)

Q(t) = QH1 cos(Ωt− γ2) +QH1/2 cos

(
Ω

2
t− γ1 + γ2

2

)

+ oh, (42b)

where uH1 and uH1/2 are respectively the amplitude of the first and subharmonic of the displacement
and QH1 and QH1/2 are respectively the amplitude of the first and subharmonic of the charge. δ1 and
δ2 are the phase angles of first harmonic of u(t) and Q(t) for 1:1 tuning case. γ2 is the phase angle of
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the first harmonic of u(t) for the 2:1 tuning case. Note that δ1, δ2, and γ2 are measured with respect to
the forcing. γ1 is the relative phase angle between the first and the subharmonic, which is estimated to
be locked at 3π/2 at the antiresonance frequency associated with the 2:1 internal resonance [19, 20].
“oh” denotes the other harmonics, in particular, the zeroth and the second harmonics, generated due
to the nonsmooth component.

In practice, the amplitude and phase angles of the harmonics of u(t) and Q(t) can be obtained by
measuring the foil tip velocity v(t) with the laser vibrometer and the voltage across the PE patch
terminals V (t) using the differential voltage probe (see the procedure in [20]). In what follows, we
chose to show the experimental frequency response of uH1, instead of vH1, in both tuning cases because
it will be more convenient to validate the optimization results suggested theoretically (see Table. 2).
In addition, we chose to show VH1 and VH1/2 in the 1:1 and 2:1 tuning cases, respectively, instead of
QH1 and QH1/2, since it will be useful to obtain the voltage level to ensure that it does not exceed
the operating limits of the operational and differential amplifiers in the shunt circuit (see Fig. 18).
Indeed, the subharmonic response is measured for the 2:1 tuning case to validate the energy transfer
and, thus, the activation of the 2:1 internal resonance.

Note that in either tuning case, the frequency responses will be shown normalized with respect to
the forcing, following the results in section 3, which suggest that the response curves are linear with
respect to the excitation. To estimate the forcing F in [N], the current I in the coil is measured using
a PHILIPS PM 9355 precision current probe, then the relation F = αI is used.

To establish the amplitude and phase frequency responses, we consider two different procedures
for the 1:1 and 2:1 tuning cases. In the former case, the frequency response is directly estimated
by exciting the foil with a chirp signal of time-varied excitation frequency using the coil/magnet
system. This method can be extended to realize the frequency response for the 1:1 tuning case since
it is proved in section 3.1 that the response is fully linear near the resonance frequency (i.e., no
bifurcations or change of stability). In addition, we consider the first harmonics to be dominant in
comparison with the zeroth and second harmonics for the range of β used in this study. Thus, the
multi-harmonic nature of the response at the steady state will not lead to a significant effect on the
measured frequency response. In the 2:1 tuning case, the chirp signal method is not suitable due to the
bifurcation and change of stability associated with the response. Thus the sine-stepped method is used
instead, similar to that in [20]. Namely, a sine current with fixed intensity is fed to the coil/magnet
device to generate a harmonic force F = F0 cosΩt. Then, the excitation frequency Ω is increased (or
decreased) by steps, keeping the intensity fixed, sweeping a domain close to the resonance frequency
of the first twisting mode of the foil. For each frequency, the harmonics amplitude and phases of
the velocity (thus the displacement) and the PE voltage are extracted in the steady state using the
demodulation technique explained in [20]. The input/output signals were synthesized/measured with
National Instrument cards (NI-9234, NI-9263) driven by a Matlab program.

5 Experimental Results

5.1 Experimental validation of the theoretical results

In order to validate the numerical predictions in section 3 and, in particular, the estimated optimal
parameters, a comparison between the numerical and experimental results is presented in Fig. 19 for
the 1:1 and 2:1 tuning cases. In the former case, the frequency responses of uH1 and VH1 in addition
to δ1 are shown. In the latter case, uH1 and VH1/2 in addition to the phase γ1 and γ2 are presented.
Moreover, in the 1:1 tuning case, the inductance L = 0.73H is chosen such that r = ωe/ω̂ = 2 while
for the 2:1 tuning case, L = 2.94H is chosen such that r = ωe/ω̂ = 1. In either case, the values of β
and R are set according to their optimal conditions gathered in Table 2.
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(a)

(c)

(b)

Fig. 19: Comparison between the numerical (dashed lines) and experimental (solid lines) frequency
responses. In (a), the response of uH1 is shown for the 1:1 tuning (in green) and 2:1 tuning (in red),
respectively. The short and open circuit responses are shown in gray and black lines, respectively.
In (b), the phase δ1 is shown for the linear case (in black) and for the 1:1 tuning (in green) in
addition to γ2 (in red) and γ1 (in purple) for the 2:1 tuning. In (c), the responses of VH1 and VH1/2

are shown for the 1:1 tuning (in green) and 2:1 tuning (in red), respectively. For the 1:1 tuning
case, we set L = 0.73H,β = βop = 0.444, and R = Rop = 237.5Ω. For the 2:1 tuning case, we set
L = 2.94H,β = βop = 0.4435, and R = Rop = 73Ω. The modal parameters used in the numerical
simulations are gathered in Table 3.

For completeness and comparison purposes, both the linear and the nonlinear frequency responses
are depicted. The linear ones are estimated with the PE patch 3 in open and short circuit config-
urations. Comparing the numerical and the experimental results of the linear responses shows an
excellent fitting validating the modal parameters estimated in Table 2 and the inductance tuning
with the Antoniou inductor.



28 Zein A. Shami et al.

Regarding the nonlinear responses (i.e., with the nonsmooth component included in the shunt), the
numerical and experimental frequency responses of the displacement, PE voltage, and phase angles
suggest an excellent agreement for the 1:1 and 2:1 tuning cases. The following major points, suggested
numerically in section 3, are validated: i) the response of uH1 for both tuning cases suggests a curve
shape similar to that of the resonant shunt. ii) the estimated optimal parameters of β and Re lead to
the optimal response for both tuning cases since the response curves of uH1 show a symmetric behavior
with respect to the resonance frequency with the amplitude of the two peaks around primary resonance
is minimized. iii) Although an equivalent response shape compared to the RL-shunt is observed, the
amplitude of uH1 in the 1:1 tuning case admits slightly higher amplitude while a substantial increase in
the amplitude is observed for 2:1 tuning case. This suggests different attenuation abilities for the two
tuning cases, which is further discussed in section 5.3. vi) the response of the voltage subharmonic for
the 2:1 tuning validates the energy transfer and the activation of the 2:1 internal resonance. It can be
realized the substantial increase in the order of magnitude of VH1/2 compared to VH1 of the 1:1 tuning
case. v) the last major point concerns the phase angles. It appeared that in the optimal condition, the
first harmonic phase angle of the displacement for both tuning cases (i.e., δ1 and γ2) are equal at the
resonance frequency. Thus, if the first harmonic is dominant, the displacement signals corresponding
to the two tuning cases will be in phase (see Fig. 20(a)). In addition, the relative phase angle γ1, only
defined for the 2:1 tuning case, admits a value of 3π/2 at the antiresonance frequency, equivalent to
the results obtained in [19, 20] when quadratic nonlinearities are introduced in the shunt.

(a) (b)

Fig. 20: (a) and (b) show respectively the measured time signals of the velocity and the PE voltage for
the 1:1 tuning (in green) and 2:1 tuning (in red) at Ω = ω̂ = 511.3 × (2π) rad/s with excitation level
F = 5.2 mN. For the 1:1 tuning case, we set L = 0.73H, β = βop = 0.444, and R = Rop = 237.5Ω.
For the 1:1 tuning case, we set L = 2.94H,β = βop = 0.4435, and R = Rop = 73Ω.

The time signals of the velocity v(t) and the PE voltage V (t) are shown in Fig. 20 for the tuning
cases in addition to the linear response in the open circuit configuration. The signals are recorded at
the open circuit frequency (i.e., Ω = ω̂ = 511.3× (2π) rad/s). The signals clearly show that for the 1:1
tuning case, the switching effect between two resonance frequencies (i.e., ωe and ω′

e in Eq. (9)) appears
clearly in PE voltage signals with a slight effect in the velocity signal. In addition, one can realize
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that the velocity signals of the 1:1 tuning and 2:1 tuning in Fig. 20(a) are in phase at the resonance
frequency, as suggested in Fig. 19(b). Also, one can clearly observe the presence of the subharmonic in
the voltage and velocity signal in the 2:1 tuning case in Fig. 20(b), following the expressions in (42a,b).

5.2 Effect of the design parameters

(a) (b)

(c) (d)

Fig. 21: Experimental frequency response of the first harmonic of the velocity uH1 (first row) and
the PE voltage VH1 (second row), both normalized with respect to the excitation level, for the 1:1
tuning case. The response is shown for different values of β with R = Rop = 237.58Ω (first column)
and different values of R with β = βop = 0.444 (second column). The inductance value used in the
simulations is L = 0.737H =⇒ r = ωe/ω̂ = 2. The displacement and voltage responses are plotted
in dB and linear scales, respectively.

This section is devoted to show the tuning effect of the design parameters, namely the resistor in
the shunt R (thus ξe) and the nonsmooth β. Thus, we performed two sets of experiments. In the first
set, we considered three different values of β, including its optimal value, and we fixed the R at the
optimum value. Similarly, in the second set, we considered three different values of R, including its
optimal value, and we fixed β at its optimum value. We show in Fig. 21 the frequency responses of
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uH1 and VH1 for the 1:1 tuning case and in Fig. 22, we show the frequency responses of uH1 and VH1/2

for the 2:1 tuning case. Regarding the value of the inductance, we consider the same setting as in
Fig. 19 for both tuning cases.

One can realize from Figs. 21(a),(c) and Figs. 22(a),(c) that the response is very sensitive to β since
it appears that any small perturbation of the optimal value of β in both tuning cases can break the
response symmetry (i.e., the two peaks around the primary resonance admit different amplitudes) and
thus shift the antiresonance from the resonance frequency. As β is varied with the resistance R9 in the
shunt circuit (see. Fig. 18), the value of this resistance should be set in a precise manner. The results
in Figs. 21(b),(d) and Figs. 22(b),(d) show that setting a resistance lower than the optimal value in
the shunt leads to an increase in the peaks’ amplitude around the primary resonance with a decrease
in the amplitude of the antiresonance. However, setting a higher value leads to the appearance of one
peak near the resonance frequency in which no antiresonance is detected. The experimental results
clearly validate the numerical ones in Fig. 11 and Fig. 15 for the 1:1 and 2:1 tuning cases, respectively.
In addition, it is validated that the behavior with respect to β and R is equivalent to that of the linear
RL-shunt but with the main difference that the tuning parameter in our case is β instead of the
inductance (see Appendix A).

5.3 Discussion about the optimal attenuation

The main advantage suggested by the absorber is the ability to choose the inductance to be lower
compared to that required by the RL-shunt, in which the electric resonance frequency is tuned with the
nonsmooth gain β. Thus, it is necessary to experimentally validate the effect of the inductance value
on the optimum attenuation suggested with the nonsmooth component. The analytical expressions
of the optimal attenuation in Table 2 show that the inductance appears explicitly through the gain
φ1 and φ2 for the 1:1 and 2:1 tuning cases, respectively. To validate those results, we measure the
frequency response of uH1 considering the two tuning cases for different values of the inductance. The
results are shown in Fig 23(a) and (b) for the 1:1 and 2:1 tuning, respectively. For each value of the
inductance, we correct β and the value of R to respect the optimal condition. The 1:1 tuning suggests
that the attenuation decreases as the chosen inductance in the circuit is reduced. On the contrary,
the 2:1 tuning case suggests an increase of the attenuation, accompanied by a narrower bandwidth, as
the inductance is reduced up to a certain level where the attenuation appears to stay constant around
22dB. Indeed, the optimal attenuation for both tuning always admits a value lower than that of the
linear RL-shunt.

This attenuation behavior for both tunings is predicted through the expressions in Table. 2 as shown
in Fig. 23(c) (see the solid and dashed lines). For clarity, the optimal attenuation is plotted versus
the frequency ratio r instead of the inductance. Those two quantities are related by r = ωe/ω̂ =
1/(ω̂LCp). As the results in Figs 23(a) and (b) are shown in the dB scale, the optimal attenuation,
measured experimentally, is obtained by subtracting the amplitude of the linear response from that
corresponding to the nonsmooth response, both measured at the resonance frequency (similar to
the plots in Fig. 12 and Fig. 16). This is repeated for different values of inductance, in which the
results are then plotted in Fig. 23(c) (with circle and diamond markers). Clearly, for both tunings,
the experimental results follow the same pattern suggested analytically with a small discrepancy,
especially for the 2:1 tuning. Realize also that we were able to reach an inductance reduction by a
factor of 64 compared to that required by the linear resonant shunt with a reduction in the attenuation
around 0.8dB for the 1:1 tuning case. A further reduction in the inductance was hard to be achieved
in practice since it requires a value β more closer to 0.5, which can lead to unstable response.

It is worth mentioning that not only the attenuation depends on the tuning of β but indeed the
whole dynamics. For example, if we consider the case with the inductance L = 0.11H (red curve in
Fig. 23(a),(b)), the transition between the 1:1 tuning (i.e., fully linear behavior near the resonance
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(a) (b)

(c) (d)

Fig. 22: Experimental frequency response of the first harmonic of the velocity uH1 (first row) and the
PE voltage VH1/2 (second row), both normalized with respect to the excitation level, for the 2:1 tuning
case. The response is shown for different values of β with R = Rop = 73Ω (first column) and different
values of R with β = βop = 0.4435 (second column). The inductance value used in the simulations is
L = 2.94H =⇒ r = ωe/ω̂ = 1. The displacement and voltage responses are plotted in dB and linear
scales, respectively.

frequency) to the 2:1 tuning (i.e., activation of the 2:1 internal resonance) required a change of β
by around 1%. Thus, a high precision in the value of β is required to obtain the required behavior
associated with each tuning case which is challenging in practice.

6 Conclusion

In this article, a new nonlinear piezoelectric shunt was proposed, based on the intentional use of a
bilinear component in the electrical circuit. This nonlinear component has three important properties.
The first one is to create an apparent electrical oscillation frequency ω̄e with a value that can be
adjusted with the gain β, thus creating a tunable oscillator. The second property is that its response
is fully linear in amplitude: despite its nonsmooth nature, no strong nonlinear behavior was observed.
The nonlinearity appears through the creation of harmonics in the response of the system, mainly of
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(a)

(b) r = 1; L = 2.94H

r = 2; L = 0.73H

r = 5; L = 0.118H r = 8; L = 0.046H

r = 1; L = 2.94H

r = 2; L = 0.73H

r = 5; L = 0.118H

r = 8; L = 0.046H

(c)

Fig. 23: (a) and (b) show the experimental frequency response of the first harmonic of the velocity
uH1 for different values of the inductance for the 1:1 and 2:1 tuning, respectively. (c) Comparison
between the optimal analytical attenuation and that measured experimentally for both tuning cases.

even order, because of its non-symmetric characteristic. The third property is that the behavior of
the harmonics can be approximated by independent linear oscillators. Mixing those three properties,
it was shown that the behavior of our shunt is (i) equivalent to a standard RL-shunt with (ii) the
noteworthy property of being tunable using the gain β.

We investigated two possible tuning of the shunt. The first (classical) one is a 1:1 tuning, for which
the apparent electrical frequency is tuned equal to the mechanical resonance frequency to mitigate
(ω̄e = ω̂i). In this case, it was shown that it is possible to detune the RL-shunt by a factor ri = ωe/ω̂i

between 0.5 and 10 (in theory up to +∞) without changing the amplitude reduction performance
significantly: only a 1 dB decrease was observed. This tuning ability can be a considerable advantage
in practice since it substantially decreases the inductance L of the shunt by a factor r2

i , i.e., up to a
factor 100 if ri = 10.

The second tuning case, relying on a 2:1 internal resonance (the apparent electrical frequency is
tuned equal to half the mechanical resonance frequency to mitigate, ω̄e ≃ ω̂i/2), shows a similar RL-
shunt behavior though relying on a purely nonlinear process of energy transfer between two frequency
bands, from the driving frequency Ω to its subharmonic Ω/2. However, the performances are decreased
since they rely on the energy transfer between the oscillators, which is weaker in the case of a 2:1
tuning with respect to the 1:1.

Even if strongly nonlinear behavior were not at hand, this nonsmooth component could pave the
way for future studies involving energy harvesting and the possibility of adding quadratic and cubic



A nonlinear tunable piezoelectric resonant shunt using a bilinear component: theory and experiment 33

nonlinearities with the nonsmooth component in the shunt circuit to possibly obtain a response
similar to an RL-shunt but associated with a saturation phenomenon. In addition, due to the multi-
harmonic response generated by the nonsmooth component, and also the possible design of other
nonsmooth laws for the component, the tuning cases shown in this study are not unique. One can
test the possibility of other types of nonlinear modal coupling through a 1:3 internal resonance (i.e.,
ω̄e = 1/3ω̂) or 1:2 internal resonance (i.e., ω̄e = 2ω̂). The analysis of other types of internal resonance
with the nonsmooth component is left for future studies.

References

1. N. Hagood and A. von Flotow, “Damping of structural vibrations with piezoelectric materials and
passive electrical networks,” Journal of Sound and Vibration, vol. 146, pp. 243–268, Apr. 1991.
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Appendix A: RL-shunt response and optimization: reference solution
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Fig. 24: (a) Typical FRF of the RL-shunt in the optimal case. (b) Attenuation A as function of k for
different mechanical damping factor ξi.
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In this section, we recall the response of a mechanical system coupled to a RL-shunt. We thus consider
Eqs. (21a,b) without the nonsmooth term (i.e., β = 0 ⇒ r̄i = ri, k̄i = ki), which reads:

¨̃qi + 2ξi
˙̃qi + q̃i + kiriQ̃ = fi cos Ω̃t̃, (A.1a)

¨̃Q+ 2ξeri
˙̃Q+ r2

i Q̃+ kiriq̃i = 0. (A.1b)

The mechanical FRF is thus:

Hq(Ω̃) = ω̂2
imi

q̊

F
=

r2
i

− Ω̃2 + 2jΩ̃ξeri
(

1 − Ω̃2 + 2jΩ̃ξi

) (
r2

i
− Ω̃2 + 2jΩ̃ξeri

)
− k2

i
r2

i

, (A.2)

where q̊i(Ω̃) is the Fourier transform of qi(t).

As a classical result (see e.g., [2]), it is possible to choose the electrical frequency ωe and the damping ratio ξe

such that the amplitude of the i-th resonance of the elastic structure is minimized and has a blunt shape, shown
in Fig. 24(a). The optimal values of ωe and ξe are:

ωop
e = ω̂i ⇒ rop

i
= 1; ξop

e =

√
6ki

4
. (A.3)

Then, as in [2], a performance indicator of the RL-shunt can be defined as the difference, in dB, between the
amplitude at the resonance of the mechanical oscillator without shunt (for instance, with the shunt in open-circuit)
and the maximum amplitude of the blunt shunt with the optimal RL-shunt. Here, to simplify, we define the latter
as the amplitude at the open circuit frequency, i.e., for Ω = ω̂i (Ω̃ = 1). The optimal attenuation AdB is then
estimated with Eq. (A.2) as:

AdB = 20 log10

Hq |ki=0(Ω̃ = 1)

Hq |ξe=ξ
op
e ,ri=1(Ω̃ = 1)

= 20 log10

(

1 +
ki

ξi

√
6

)

(A.4)

Eq. (A.4) suggests that the attenuation is solely function of the mechanical damping factor ξi and the piezo-
electric coupling ki, as shown in Fig. 24(b). Note that the above expression for AdB is taken at the open circuit
frequency and not at the frequency of the fixed points as in [2] to obtain a simpler expression whose numerical
value is very close.

Appendix B: Regularization of the nonsmooth term and implementation in MANLAB

The numerical results in this work were all obtained using Manlab, which requires regularization of the nonsmooth
term associated with the absolute value function of the piezoelectric voltage |V |. As a first step, we define a new
variable y as:

y = |V | =⇒
{
y = −V if V < 0,

y = V if V > 0.
(B.1)

Then, the regularization is obtained through the following equation:

(y − V )(y + V ) = δ =⇒ y2 − V 2 − δ = 0, (B.2)

where δ ∈ R is the regularization parameter. As seen in Fig. 25, if δ = 0, the solution is equivalent to y = |V |. For
a small value of δ, the angular point at V = 0 of the graph of the absolute value function is replaced by a smooth
curve that gets closer to the nonsmooth exact one as δ approaches zero.

Upon obtaining the regularization, the two degree of freedom system in (2a,b) is implemented in MANLAB
in the first order form considering four main variables (q, Q, v, w) and two auxiliary variables (V , y) [45]:







q̇i = v,

Q̇ = w,

v̇ = −2ξiω̂iv − ω̂2
i qi − θi

miCpi

Q+
F

mi

cosΩt,

ẇ = −2ξeωew − ω2
eQ− θi

LCpi

qi − β

L
(y + V ) ,

0 = V − 1

Cpi

(Q+ θiqi) ,

0 = y2 − V 2 − δ,

(B.3a)

(B.3b)

(B.3c)

(B.3d)

(B.3e)

(B.3f)
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Fig. 25: Graph of the function y = |V | and its regularized versions for different values of δ.

where Eqs. (B.3a,b,c,d) are the main equations and Eqs. (B.3e,f) are the auxiliary equations introduced to obtain
the voltage V and the regularization variable y.

Appendix C: Tuning ratio for the 2:1 tuning

Following the reasoning used in [19], we consider the linear system (21a, b). Since the stiffness part is not diagonal,
it is possible to compute its two dimensionless frequencies, which read:

ω2
1 =

1 + r̄2
i

−
√
∆

2
, ω2

2 =
1 + r̄2

i
+

√
∆

2
, (B.4)

with ∆ = (1 − r̄2
i
)2 + 4k̄2

i
r̄2

i
. Enforcing ω2 = 2ω1, one arrives to the following order 2 polynomial in r̄2

i
:

4r̄4
i + (25k̄2

i − 17)r̄2
i + 4 = 0, (B.5)

that have two roots. r∗
i

of Eq. (33) is the one which is smaller than 1, close to 0.5.


