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This article presents a unified state-space model for ship maneuvering, station-keeping, and control in a seaway. The

frequency-dependent potential and viscous damping terms, which in classic theory results in a convolution integral not

suited for real-time simulation, is compactly represented by using a state-space formulation. The separation of the vessel

model into a low-frequency model (represented by zero-frequency added mass and damping) and a wave-frequency model

(represented by motion transfer functions or RAOs), which is commonly used for simulation, is hence made superfluous.
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1 Introduction

Motivated by the work of Bishop and Price [1981] and Bai-

ley et al. [1998], a unified state-space model for ship ma-

neuvering, station-keeping, and control in a seaway is de-

rived. The dynamic equations of motion for a ship exposed

to waves have evolved from two main directions:

� Maneuvering theory

� Seakeeping theory

In maneuvering theory it is common to assume that the

ship is moving in restricted calm water, e.g. in sheltered

waters or in a harbor. Hence, the ship model is derived for

a ship moving at positive speed U under a zero-frequency

assumption such that added mass and damping can be rep-

resented by using hydrodynamic derivatives. Seakeeping

analysis is used in operability calculations to obtain oper-

ability diagrams according to the adopted criteria. It also

refers to the motions of a vessel in waves usually at a

specific speed (included station-keeping, i.e. zero speed)

and heading in a sinusoidal, irregular or random seaway.

This includes analyses of motions in the time-domain for

frequency-dependent added mass and damping.

It is desirable to unify these theories such that the ship

motions can be described more accurately for different

speeds, sea states, and operations. This should be done in

the time-domain in order to facilitate performance tests and

design of feedback control systems. Another application is

real-time training simulators. For this purpose we will dis-

cuss a:

� Unified time-domain theory for maneuvering and sea-

keeping

where it is possible to include systems for feedback control,

that is autopilots, dynamic positioning systems, roll damp-

ing systems etc.

The unified model will be derived using a state-space

approach since this is the standard representation used in

feedback control systems.

The kinematic and dynamic equations of motion for

ships are presented using principles from the classical ma-

neuvering and seakeeping theories. The relationship be-

tween frequency-dependent oscillatory derivatives, hydro-

dynamic derivatives, and frequency dependent hydrody-

namic coefficients are explained through examples. The fi-

nal unified model is represented in the time-domain as a 6

degree-of-freedom (DOF) nonlinear state-space model. The

state-space model is written in a compact matrix-vector set-

ting such that structural properties like symmetry, skew-

symmetry, positive definiteness, passivity etc. can be ex-

ploited when designing control systems.

The state-space models are used as basis for develop-

ment of 3 DOF (surge, sway, and yaw) nonlinear dynamic

1



positioning systems for station-keeping and low-speed ma-

neuvering of ships and rigs. Autopilot design in 1 DOF

for ships moving at moderate speed is also discussed. The

model parameters for floating vessels can be computed us-

ing commercial 2D potential theory programs. The details

regarding this are presented in the case study

Feedback control systems design for ships goes back

to the invention of the North-seeking gyroscope in 1908

by Anschutz, the ballistic gyroscope in 1911 by Sperry

[Allensworth, 1999], and the analysis of the three-term PID-

controller [Minorsky, 1922]. These developments were fun-

damental for the evolution of modern model-based ship con-

trol systems for station-keeping and maneuvering. More re-

cently, the development of global satellite navigation sys-

tems and inertial measurements technology have further

contributed to the design of highly sophisticated nonlinear

model-based ship control systems. From a historical point

of view, the PID-controller was the dominating design tech-

nique until the invention of the Kalman filter and the linear

quadratic optimal controller (LQG) in the 1960s.

Motivated by this Balchen et al. [1976] proposed to

model the wave-induced disturbances as 2nd-order oscilla-

tors in the Kalman estimator in order to filter out 1st-order

wave-induced disturbances from the feedback loop. This

technique is today known as wave filtering, and it replaced

the notch filter in dynamic positioning (DP) systems and au-

topilots. The concept of wave filtering has further been re-

fined by using linear H-infinity controllers with frequency-

dependent weighting. This allows the designer to put penal-

ties on the wave-induced disturbances in a limited frequency

range. Nonlinear ship control systems became popular in

the 1990s using Lyapunov methods for stability analyses

[Fossen, 1994, 2002].

2 Notation and Other Preliminaries

The notation used in this paper complies with SNAME

[1950], see Table 1.

Table 1: The notation of SNAME (1950) for marine vessels

force/ linear/angular positions/

DOF moment velocity Euler angles

1 surge X u x
2 sway Y v y
3 heave Z w z
4 roll K p φ
5 pitch M q θ
6 yaw N r ψ

2.1 Degrees of Freedom

In maneuvering, a marine vessel experiences motion in 6

degrees-of-freedom (DOF). The motion in the horizontal

plane is referred to as surge (longitudinal motion, usually

superimposed on the steady propulsive motion) and sway

(sideways motion). Heading, or yaw (rotation about the ver-

tical axis) describes the course of the vessel. The remaining

three DOFs are roll (rotation about the longitudinal axis),

pitch (rotation about the transverse axis), and heave (verti-

cal motion), see Figure 1.

Roll is probably the most troublesome DOF, since it

produces the highest accelerations and, hence, is the princi-

pal villain in seasickness. Similarly, pitching and heaving

feel uncomfortable to humans. When designing ship au-

topilots, yaw is the primary mode for feedback control.

Xb

Zb

Yb

�
roll

G O

surge
�
yaw

heave

sway

�
pitch

Figure 1: Definitions of ship motions in the b-frame.

2.2 Generalized Position, Velocity and Force

The generalized position, velocity, and force vectors are de-

fined according to Fossen [1994, 2002]:

η = [n, e, d, φ, θ, ψ]> ∈ R3 × S3 (1)

ν = [u, v, w, p, q, r]> ∈ R6 (2)

τ = [X,Y,Z,K,M,N ]> ∈ R6 (3)

where the Euler angles can be be conveniently represented

by the vector:

Θ = [φ, θ, ψ]> ∈ S3 (4)

The North-East-Down position vector is denoted as

p = [n, e, d]> ∈ R3 (5)

The Euclidean space of dimension n is denoted Rn

while S2 denotes a torus of dimension 2 (shape of a donut)

implying that there are two angles defined on the interval

[0, 2π] . In the 3-dimensional case the set is denoted as S3.

2.3 Oscillatory and Hydrodynamic

Derivatives

The frequency-dependent oscillatory derivatives are written

as [Bailey et al., 1998]:

F̃β(ω) – oscillatory derivative (6)
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where F is the generalized force, β is the motion compo-

nent:

F ∈ {X,Y,Z,K,M,N}

β ∈ {u̇, v̇, ẇ, ṗ, q̇, ṙ, u, v, w, p, q, r, x, y, z, φ, θ, ψ}

and ω is the frequency of oscillation. Examples of oscilla-

tory derivatives are:

Ỹv(ω), Ñr(ω), K̃ṗ(ω), etc. (7)

These derivatives are frequency dependent and they can

be derived from maneuvering based PMM experiments

[Gertler, 1959], [Chislett and Strøm-Tejsen, 1965].

The limiting value for ω = 0 is defined as the hydrody-

namic derivative, that is:

Fβ ,
∂F

∂β
, F̃β(0) – hydrodynamic derivative (8)

For instance, the hydrodynamic derivative Yẇ corresponds

to a force Y in the y-direction due to an acceleration ẇ in the

z-direction, while the hydrodynamic derivative Kp corre-

sponds to the moment K due to an angular velocity p about

the x-axis. This suggests [SNAME, 1950]:

Yẇ ,
∂Y

∂ẇ
, Kp ,

∂K

∂p
(9)

The resulting force and moment are then:

Y = Yẇẇ, K = Kpp (10)

The 6 DOF generalized mass and damping matrices in

terms of oscillatory derivatives are denoted as M̃A(ω) and

D̃(ω), while the matrices:

MA , M̃A(0) (11)

D , D̃(0) (12)

for the slow motion hydrodynamic derivatives take the fol-

lowing form [Fossen, 1994, 2002]:

MA = −

⎡
⎢⎢⎢⎢⎢⎢⎣

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

D = −

⎡
⎢⎢⎢⎢⎢⎢⎣

Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Zp Zq Zr

Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nvp Nw Np Nq Nr

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

Notice that the matrices are multiplied with −1 such that

MA > 0 andD > 0 (positive mass and damping).

2.4 Generalized Rigid-Body Inertia Matrix

The generalized rigid-body inertia matrix is defined as [Fos-

sen, 1994, 2002]:

MRB =

∙
mI3×3 −mS(rbg)
mS(rbg) Io

¸

=

⎡
⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz
−myg mxg 0 −Izx −Izy Iz

⎤
⎥⎥⎥⎥⎥⎥⎦

where m is the mass, I3×3 ∈ R3×3 is the identity matrix,

rbg = [xg, yg, zg]
> are the coordinates to the center of grav-

ity with respect to the point O in the body-fixed reference

frame, and:

Io =

⎡
⎣

Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

⎤
⎦ (15)

is the inertia tensor. For notational simplicity the vector

cross product:

a× b = S(a)b (16)

is written in terms of a skew-symmetric matrix S ∈ SS(3)
defined as:

S(λ) = −S>(λ) =

⎡
⎣

0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

⎤
⎦ λ =

⎡
⎣

λ1
λ2
λ3

⎤
⎦

(17)

2.5 Rotation Matrices

The notation Rb
a∈SO(3) implies that the rotation matrix

Rb
a between two frames a and b (from b to a) is an element

in SO(3), that is the special orthogonal group of order 3:

SO(3) =
©
Rb

a|R
b
a ∈ R3×3, Rb

a is orthogonal,detRb
a=1

ª

The group SO(3) is a subset of all orthogonal matrices of

order 3, i.e. SO(3) ⊂ O(3) where O(3) is defined as:

O(3) =
©
Rb

a|R
b
a ∈ R3×3, Rb

a(R
b
a)
> = (Rb

a)
>Rb

a = I
ª

Hence it follows that

(Rb
a)

−1 = (Rb
a)
> = Ra

b
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A principal rotation α about the i-axis is denoted as Ri,α.
The principal rotations (one axis rotations) about the x, y,
and z-axes are defined as [Fossen, 2002]:

Rx,φ =

⎡
⎣
1 0 0
0 cφ −sφ
0 sφ cφ

⎤
⎦ (18)

Ry,θ =

⎡
⎣

cθ 0 sθ
0 1 0
−sθ 0 cθ

⎤
⎦ (19)

Rz,ψ =

⎡
⎣
cψ −sψ 0
sψ cψ 0
0 0 1

⎤
⎦ (20)

where s · = sin(·), c · = cos(·), while φ, θ, and ψ are the

Euler angles.

3 Maneuvering and Seakeeping –

A Motivating Example

Consider a ship moving in sway (mass-damper) and assume

that the other modes can be neglected. This can be mathe-

matically described by considering the motion in one degree

of freedom [Faltinsen, 1990], [Newman, 1977]:

ẏ = v (21)

[m+A22(ω)] v̇ +B22(ω)v = τ2,FK+diff + τ2 (22)

where y is the sway position, v is the velocity and:

m = mass

A22(ω) = frequency-dependent added mass

B22(ω) = frequency-dependent damping

τ2,FK+diff = Froude-Krylov and diffraction

force in sway

τ2 = control force in sway

ω = frequency of forced oscillation

Notice that the hydrodynamic added mass and damping co-

efficients, A22(ω) = −Ỹv̇(ω) and B22(ω) = −Ỹv(ω), de-

pend on the frequency of the forced oscillation, see Figure 2.

The wave excitation force τ2,FK+diff is due to wave diffrac-

tion whereas the mass and damping forces, A22(ω)v̇ and

B22(ω)v, are caused by the hydrodynamic reaction as a re-

sult of the movement of the ship in the water.

The water is assumed to be ideal and thus potential the-

ory can be applied. We will denote frequency-dependent

potential damping in sway as B22p(ω) and frequency-

dependent damping due to viscous effects, e.g. skin friction

and pressure loads, as B22v(ω). This suggests that the total

frequency-dependent linear damping coefficient is:

B22(ω) = B22p(ω) +B22v(ω) (23)
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7
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A
2
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w
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0

1

2
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4

5
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B
2

2
 (

w
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Figure 2: Hydrodynamic added mass A22(ω) and potential

damping B22p(ω) as a function of frequency ω for zero ve-

locity u = 0.

The potential coefficients or hydrodynamic coefficients

A22(ω) and B22p(ω) are usually computed using hydrody-

namic software, whereas the viscous part B22v(ω) is more

complicated to determine. Note that B22p(0) = 0.

An experimentally motivated model is to assign a

nonzero value for ω = 0 which is decaying as ω increases.

In Bailey et al. [1998] a ramp function was used for this

purpose. The viscous damper is here modelled as an expo-

nentially decaying function:

B22v(ω) = β22e
−αω, α > 0 (24)

where β22 is the zero frequency damping coefficient, that

is B22v(0) = β22. The exponential function has excellent

numerical properties and it is straightforward to transform

the frequency-dependent model to the time domain.

Maneuvering Theory (Low-Frequency Model)

For a ship maneuvering in calm water, ω = 0, the effect

due to 1st-order wave loads τ2,FK+diff is removed from (21)–

(22), such that the low-frequency (LF) model becomes:

ẏLF = vLF (25)

(m− Yv̇)v̇LF − YvvLF = τ2 (26)

where vLF and yLF are the LF velocity and position in

sway, respectively. The assumption that the 1st-order wave-

induced force τ2,FK+diff is zero is justified in Section 3.1

using linear superposition.
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Figure 3: RAOs as a function of wave direction 0 − 180
(deg) and frequency ω (rad/s).

The hydrodynamic (slow motion) derivatives are defined

in terms of zero-frequency hydrodynamic coefficients:

−Yv̇ , A22(0) (27)

−Yv , B22(0) = B22v(0) = β22 (28)

The hydrodynamic derivatives Yv and Yv̇ are usually

computed from experimental data using curve fitting and

system identification techniques. The frequency-dependent

hydrodynamic coefficients A22(ω) and B22(ω) can also be

computed using hydrodynamic potential theory programs or

be determined from a PMM experiment where a scale model

of the ship is oscillated at different frequencies ω and the re-

sulting hydrodynamic force is measured [Lewis, 1989].

Seakeeping Theory (Models for Wave Loads)

The drawback with the model (25)–(26) is that only the LF

part of the hydrodynamic forces is included in the dynamic

model of the ship while the 1st-order wave-frequency (WF)

motions τ2,FK+diff must be added by assuming linear super-

position.

The WF motions can be computed using motion trans-

fer functions which are defined as the response amplitude

per unit wave amplitude. This is also referred to as the Re-

sponse Amplitude Operator (RAO). For our simple model

(21)–(22) this corresponds to the ratio between the posi-

tion amplitude yWF of the oscillating sway position and the

wave amplitude ζa, given by [Journée and Massie, 2001]:

RAO2(s, ψr) =
yWF (s, ψr)

ζa
(29)

whereψr is the wave direction relative to the ship. Hence,

for s = jω and:

ζ = ζa cos (ωt+ ε) (30)

where ε is the wave phase angle, the WF motions in sway

become:

yWF (t) = ζa |RAO2(jω, ψr)| cos (ωt+∠RAO2(jω, ψr) + ε)
(31)

Here ∠RAO(jω, ψr) denotes the RAO phase angle. For a

typical ship, the RAOs in the y-direction are shown in Fig-

ure 3. The curves were computed using the strip theory pro-

gram ShipX (VERES) by Marintek [Fathi, 2004].

An alternative method is to compute the 1st-order wave

loads τ2,FK+diff in (22) directly using the force transfer func-

tion (FTF):

FTF2(s, ψr) =
τ2,FK+diff(s, ψr)

ζa
(32)

such that:

τ2,FK+diff(t) = ζa |FTF2(jω, ψr)| ·

cos (ωt+∠FTF2(jω, ψr) + ε) (33)

3.1 Linear Superposition of Low-Frequency

(LF) and Wave-Frequency (WF) Models

The models (25)–(26) and (29) can be combined to describe

the 1st-order ship-wave interactions τ2,FK+diff. The principle

of linear superposition [Denis and Pierson, 1953] suggests

that (Figure 4):

y = yLF + yWF (34)

When designing a feedback control system, e.g. an au-

topilot or a dynamic positioning system, the WF motions

are treated as measurement noise that can be added to the

LF motions and a disturbance observer (wave filter) is de-

signed to remove the WF from entering the feedback loop,

see Figure 5. Moreover, the control system should only

compensate for the LF motions in order to reduce wear and

tear of the propellers and rudders.

time

0 50 100 150

0

Total motion, LF + WF

LF motion

WF motion

Figure 4: The plot shows how the total motion of a ship can

be separated into LF and WF motion components (RAOs).
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Figure 5: Linear superposition of maneuvering (low-

frequency) model and wave frequency model based on

RAOs [Perez and Fossen, 2004].
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Figure 6: Typical impulse response function K22(t) as a

function of time t.

3.2 Frequency-Dependent Model with Wave

Loads

The disadvantage with the LF and WF model representa-

tions is that hydrodynamic wave loads are represented as

zero mean WF motions added to the LF ship motions. This

model cannot be used for multi-body operations with in-

teraction forces and it is not possible to monitor the wave-

induced forces directly since they are represented as distur-

bances in position and velocity (motion transfer functions).

From a physical point-of-view, wave loads should be

modelled as forces acting on the ship through Newton’s

law. This can be done using the frequency-dependent vessel

model (22) which is valid for different sea states.

Wave
spectrum

Reference frame
transformation

��

�Linear mass-damper-spring

with memory effects

frequency dependent

�

�( � 0)

Wave excitation
spectrum

FTF

Nonlinear terms
(viscous damping,
Coriolis etc.)

Unified Model

Control forces
and moments

Motion

Seakeeping Model (FTF)

�

Figure 7: Unified time-domain model for maneuvering and

control in a seaway [Perez and Fossen, 2004].

The main problem in doing this is that (22) depends on

both the time and the frequency ω. In this model the wave

loads are added as an external force and τ2,FK+diff is com-

puted from the FTF given by (32), see Figure 7.

For linear systems, the frequency-dependent coeffi-

cients A22(ω) and B22(ω) in (22) can be transformed to an

equivalent time-domain representation thanks to the results

of Cummins [1962] and Ogilvie [1964], see Appendix A:

[m+A22(∞)] v̇ +B22(∞)v

+

Z t

0

K22(t− τ)v(τ)dτ = τ2,env + τ2 (35)

In (22) only the Froude-Krylov and diffraction excitation

force τ2,FK+diff (1st-order wave load) was considered. How-

ever, in the time-domain other environmental excitation

forces like wave drift (2nd-order wave loads), wind and cur-

rents can be added directly such that:

τ2,env = τ2,FK+diff + τ2,drift + τ2,wind + τ2,currents (36)

where τ2,drift is the wave drift force, τ2,wind is the wind

force, and τ2,currents is the current force. Within the frame-

work of linear wave theory, the 1st-order motions are ob-

served as zero mean oscillations, while 2nd-order terms rep-

resent the slowly-varying drift forces.

The integral term (impulse response) in (35) is referred

to as the memory effect of the fluid and:

A22(∞) = lim
ω→∞

A22(ω) = constant (37)

B22(∞) = lim
ω→∞

B22(ω) = constant (38)

If the ship carries outs a harmonic oscillation y(t) =
cos(ωt), it can easily be shown by combining (22) and

(35) that the impulse response function K22(t) in Fig-

ure 6 can be computed from one of the following equations

[Ogilvie, 1964]:
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Figure 8: Definitions of coordinate origins: W (mean water line), G (centre of gravity), and O (equations of motion). The

h-frame is located in W and the b-frame is located in O. The variables LCG, V CG, and T are defined by the hull while

LCO and V CO are user inputs [Fossen and Smogeli, 2004].

K22(t) =
2

π

Z ∞

0

[B22(ω)−B22(∞)] cos(ωt)dω

K22(t) = − 2
π

Z ∞

0

ω[A22(ω)−A22(∞)] sin(ωt)dω

Thie model (35) has the advantage that it represents

the wave-induced forces in the time-domain, giving a more

physical description of the different sea states. Solving (35)

for different environmental forces τ2,env gives responses y
and v that include the frequency-dependent hydrodynamic

motions. Maneuvering theory, on the contrary, is limited to

calm water, i.e. ω = 0.

The model (35) represents an important step towards a

unified model for maneuvering and seakeeping. This is ex-

tended to 6 DOF in Section 5.

4 Kinematics

The kinematic transformations needed to represent the

equations of motion in the different coordinate systems are

presented in this section.

4.1 Coordinate Systems

Three orthogonal coordinate systems are used to describe

the motions in 6 DOF [Fossen and Smogeli, 2004], see Fig-

ures 1 and 8:

� North-East-Down frame (n-frame): The n-frame

XnYnZn is assumed fixed on the Earth surface with

the Xn-axis pointing North, the Yn-axis pointing

East, and the Zn-axis down of the Earth tangent

plane. The n-frame position pn = [n, e, d]> and

Euler angles Θ = [φ, θ, ψ]> are defined in terms of

the vector:

η = [(p
n
)>,Θ>]> =[n, e, d, φ, θ, ψ]> (39)

� Hydrodynamic frame (h-frame): The hydro-

dynamic forces and moments are defined in a

steadily translating hydrodynamic coordinate system

XhYhZh moving along the path of the ship with the

constant speed U ≥ 0 with respect to the n-frame.

The XhYh-plane is parallel to the still water surface,

and the ship carries out oscillations around the mov-

ing frame XhYhZh. The Zh-axis is positive down-

wards, the Yh-axis is positive towards starboard, and

the Xh-axis is positive forwards. This is also referred

to as the equilibrium axis system [Bailey et al., 1998].

The coordinate origin of the h-frame is denoted W.

The h-frame generalized position vector is:

ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]
> (40)

where ξi denotes the positions/angles with respect to

the moving b-frame.

� Body-fixed frame (b-frame): The b-frame XbYbZb

is fixed to the hull, see Figure 1. The coordinate ori-

gin is denoted O and is located on the center line a

distance LCO relative to Lpp/2 (positive backwards)

and a distance VCO relative to the baseline (positive

upwards). The center of gravity G with respect to O is

located at rbg = [xg, yg, zg]
> while the h-frame origin

W with respect to O is located at rbw = [xw, yw, zw]
>.

The Xb-axis is positive toward the bow and the Xh-

axis is parallel to the mean Xb-axis, the Yb-axis is

positive towards starboard, and the Zb-axis is positive

downward. Consequently, the body-fixed b-frame

carries out oscillations Θ∗ = [ξ4, ξ5, ξ6]
> about the

steadily translating h-frame. The b-frame linear ve-

locities vbo = [u, v, w]> in O and angular velocities

7



ωb
bn = [p, q, r]> with respect to the n-frame are de-

noted as:

ν = [(vbo)
>, (ωb

bn)
>]> = [u, v, w, p, q, r]> (41)

The nominal generalized velocity vector is denoted as

ν̄ = [U, 0, 0, 0, 0, 0]>. Hence:

ν = ν̄ + δν (42)

where δν = [δu, δv, δw, δp, δq, δr]
>

is a vector of h-

frame velocities.

4.2 Generalized Velocity Transformation

It is convenient to define the vectors without reference to a

coordinate frame (coordinate free vector). A vector v is de-

fined by its magnitude and direction. The vector v0 in the

point O decomposed in reference frame n is denoted as vn0 ,
which is also referred to as a coordinate vector.

The linear velocity vw of W and the angular velocity

ωhn of the h-frame with respect to the n-frame (assumed to

be the inertial frame) are:

vw = vo + ωbn × rw (43)

ωhn = ωhb + ωbn = 0 (44)

where ωbn is the average angular velocity of the b-frame

with respect to the n-frame, and rw is the vector from O to

W. Decomposing these vectors into the b-frame gives:

vbw = v
b
o + ωb

bn × r
b
w (45)

ωb
bh = −ωb

hb = ωb
bn (46)

The vector cross product× is defined in terms of the matrix

S(rbo) ∈ SS(3) (skew-symmetric matrix of order 3) such

that:

ωb
bn × r

b
w = −rbw × ωb

bn = −S(rbw)ωb
bn = S(r

b
w)
>ωb

bn

(47)

where:

S(rbw) = −S>(rbw) =

⎡
⎣

0 −zw yw
zw 0 −xw

−yw xw 0

⎤
⎦ (48)

Define the transformation matrix:

H(rbw) ,

∙
I3×3 S(rbw)

>

03×3 I3×3

¸
(49)

Then it follows that:

∙
vbw
ωb

bh

¸
=H(rbw)

∙
vbo
ωb

bn

¸
(50)

4.3 Kinematics (b-frame to h-frame)

The transformation from the b-frame to the h-frame is done

in terms of the small angle rotation matrices:

Rh
b (Θ

∗) , Rz,ξ
6
Ry,ξ

5
Rx,ξ

4
(51)

where ξ4, ξ5, and ξ6 are oscillations of the b-frame with re-

spect to the h-frame. These angles are related to φ, θ, and ψ
according to:

ξ4 = φ (52)

ξ5 = θ (53)

ξ6 = ψ − 1

T

Z t+T

t

ψ(τ)dτ (54)

Hence, ξ6 can be understood as the oscillation about the av-

erage yaw angle in a given period T (s).

The principal rotations (small angle assumption) are:

Rx,ξ
4
=

⎡
⎣
1 0 0
0 1 −ξ4
0 ξ4 1

⎤
⎦ (55)

Ry,ξ
5
=

⎡
⎣

1 0 ξ5
0 1 0
−ξ5 0 1

⎤
⎦ (56)

Rz,ξ
6
=

⎡
⎣
1 −ξ6 0
ξ6 1 0
0 0 1

⎤
⎦ (57)

ThusRh
b (Θ

∗) ∈ SO(3) becomes:

Rh
b (Θ

∗) =

⎡
⎣

1 −ξ6 ξ5
ξ6 1 −ξ4
−ξ5 ξ4 1

⎤
⎦ (58)

From (50) it follows that:

∙
Rb

h(Θ
∗) 03×3

03×3 Rb
h(Θ

∗)

¸ ∙
vhw
ωh

bh

¸
=H(rbw)

∙
vbo
ωb

bh

¸

where Rb
h(Θ

∗) = Rh
b (Θ

∗)−1. Consequently, the velocity

transformation between the h and b frames becomes:

vhw = Rh
b (Θ

∗)
£
vbo + S(r

b
w)
>ωb

bh

¤
(59)

ωh
bh = Rh

b (Θ
∗)ωb

bh (60)

Since the h-frame moves along the path of the ship with the
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constant speed U, (59)–(60) can be expanded as:

⎡
⎣

ξ̇1 + U

ξ̇2
ξ̇3

⎤
⎦ = Rh

b (Θ
∗)

⎡
⎣

u
v
w

⎤
⎦

+Rh
b (Θ

∗)S(rbw)
>

⎡
⎣

p
q
r

⎤
⎦ (61)

⎡
⎣

ξ̇4
ξ̇5
ξ̇6

⎤
⎦ = TΘ(Θ

∗)

⎡
⎣

p
q
r

⎤
⎦ (62)

Note that the total b-frame velocity in the horizontal plane

is u = U + δu and v = δv since ξ6 is small, whereas

w = δw, p = δp, q = δq, and r = δr.
In the forthcoming we will consider slender ships with

starboard/port symmetry implying that DOF 1,3,5 can be

decoupled from DOF 2,4,6. Decoupling between the lon-

gitudinal and lateral modes, yg = yw = 0, and neglecting

higher-order terms in (61)–(62), i.e. linear theory, gives:

ξ̇1 = u− U + zwq = δu+ zwδq (63)

ξ̇2 = (U + δu)ξ6 + δv + xwδr − zwδp

≈ δv + xwδr − zwδp+ Uξ6 (64)

ξ̇3 = −(U + δu)ξ5 + δw − xwδq

≈ δw − xwδq − Uξ5 (65)

ξ̇4 = δp (66)

ξ̇5 = δq (67)

ξ̇6 = δr (68)

Time differentiation of (63)–(68) gives:

ξ̈1 = δu̇+ zwδq̇ (69)

ξ̈2 = δv̇ + xwδṙ − zwδṗ+ Uδr (70)

ξ̈3 = δẇ − xwδq̇ − Uδq (71)

ξ̈4 = δṗ (72)

ξ̈5 = δq̇ (73)

ξ̈6 = δṙ (74)

Let ωe denote the frequency of encounter:

ωe = ω − U

g
ω2 cosψr (75)

where U is the forward speed, g is the acceleration of grav-

ity, and ψr is the relative angle of the incident waves. Under

the assumption of sinusoidal motions in pitch and yaw, with

frequency ωe and amplitudes A1 and A2, it follows that:

ξ5 = A1 sinωet

ξ̇5 = A1ωe cosωet

ξ̈5 = −A1ω
2
e sinωet

ξ6 = A2 sinωet

ξ̇6 = A2ωe cosωet

ξ̈6 = −A2ω
2
e sinωet

(76)

This implies that:

ξ6 = −
1

ω2e
ξ̈6, ξ5 = −

1

ω2e
ξ̈5 (77)

such that the velocity transformations (63)–(68) can be writ-

ten:

ξ̇1 = δu+ zwδq (78)

ξ̇2 = δv + xwδr − zwδp− U

ω2e
δṙ (79)

ξ̇3 = δw − xwδq +
U

ω2e
δq̇ (80)

ξ̇4 = δp (81)

ξ̇5 = δq (82)

ξ̇6 = δr (83)

The velocity (78)–(83) and acceleration (69)–(74) transfor-

mations can now be written in compact forms by defining

two transformation matrices J∗ ∈ R6×6 and L∗ ∈ R6×6
according to:

ξ̇ = J∗δν− U

ω2e
L∗δν̇ (84)

ξ̈ = J∗δν̇+UL∗δν (85)

where δν = [δu, δv, δw, δp, δq, δr]
>

and:

J∗ , H(rbw) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 zw 0
0 1 0 −zw 0 xw
0 0 1 0 −xw 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
(86)

L∗ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(87)

For station-keeping and low-speed maneuvering, i.e. U =
0, we have that ν =δν. This gives the speed independent

transformation [Fossen and Smogeli, 2004]:

ξ̇=J∗ν, ξ̈ = J∗ν̇ (88)

4.4 Kinematics (b-frame to n-frame)

The velocity transformation between the b and n frames is:

vno = R
n
b (Θ)v

b
o (89)

where the Euler angle rotation matrix (zyx-convention) be-

tween the n and b frames is defined as the product of the

three principal rotations:

Rn
b (Θ) , Rz,ψRy,θRx,φ (90)
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Thus Rn
b (Θ) ∈ SO(3) becomes:

Rn
b (Θ) =

⎡
⎣
cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

⎤
⎦

(91)

The Euler rates satisfy:

Θ̇ = TΘ(Θ)ω
b
bn (92)

where TΘ(Θ) ∈ R3×3 is the Euler angle attitude transfor-

mation matrix:

TΘ(Θ) =

⎡
⎣
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤
⎦ , θ 6= ±90o (93)

Consequently:

η̇ = J(Θ)ν (94)

where J(Θ) ∈ R6×6 is the velocity transformation matrix:

J(Θ) =

∙
Rn

b (Θ) 03×3
03×3 TΘ(Θ)

¸
, θ 6= ±90o (95)

5 Unified Model for Ship Maneuver-

ing and Control in a Seaway

A unified model for maneuvering and seakeeping is attrac-

tive for real-time simulation and control design. The pre-

sented model is motivated by the results of Bishop and Price

[1981] and Bailey et al. [1998]. The 6 DOF ship equations

of motion in a seaway should also give new insight into the

computational efforts required to implement the equations

in a real-time simulator for training purposes and model-

based ship control systems.

5.1 Frequency Domain Equation

Seakeeping Theory (h-frame formulation)

The 6 DOF seakeeping model is usually formulated in the

h-frame using Newton’s 2nd law:

M∗
RB ξ̈ = δτH + δτFK+diff + δτ (96)

where δτFK+diff is a vector of generalized Froude-Krylov

and diffraction forces and δτ is the generalized control

forces. The generalized hydrodynamic added mass, damp-

ing, and restoring forces are [Faltinsen, 1990]:

δτH = −A∗(ωe)ξ̈ −B∗(ωe)ξ̇ − g∗(ξ) (97)

The frequency-dependent hydrodynamic matrices

A∗(ωe) andB∗(ωe) are usually computed using a potential

theory program, see Section 7.1. The resulting model is

referred to as the frequency domain equation:

[M∗
RB +A

∗(ωe)] ξ̈ +B
∗(ωe)ξ̇ +C

∗ξ̇ = δτFK+diff + δτ
(98)

where we have assumed that the restoring forces are linear:

g∗(ξ) = C∗
ξ (99)

This is a good assumption for floating vessels at zero and

moderate speeds [Faltinsen, 1990].

Seakeeping Theory (b-frame formulation)

In order to derive the b-frame seakeeping equations we will

make use of the transformations derived in Section 4.3. Re-

call that the velocity and acceleration in the b-frame can be

transformed to the h-frame by:

ξ̇ = J∗δν− U

ω2e
L∗δν̇ (100)

ξ̈ = J∗δν̇+UL∗δν (101)

Substituting these expressions into (98) and premultiplica-

tion with J∗> gives:

J∗>(M∗
RB +A

∗(ωe)) [J
∗δν̇+UL∗δν]

+ J∗>B∗(ωe)

∙
J∗δν− U

ω2e
L∗δν̇

¸

+ J∗>g∗(ξ) = J∗>(δτFK+diff + δτ )

The generalized inertia matrixMRB can be transformed be-

tween the b-frame and the h-frame using (assuming small

oscillations):

MRB = J
∗>M∗

RBJ
∗ (102)

Then:
h
MRB + M̃A(ωe)

i
δν̇+

h
CRB+C̃A(ωe)

i
δν

+ D̃(ωe)δν + g(ξ)=δτFK+diff + (τ − τ̄ ) (103)

where:

M̃A(ωe) = J∗>A∗(ωe)J
∗− U

ω2e
J∗>B∗(ωe)L

∗

D̃(ωe) = J∗>B∗(ωe)J
∗

CRB = UJ∗>M∗
RBL

∗

C̃A(ωe) = UJ∗>A∗(ωe)L
∗

g(ξ) = J∗>g∗(ξ)
linear⇒ (G = J∗>C∗J∗)

τFK+diff = J∗>δτFK+diff
τ − τ̄ = J∗>δτ

where τ̄ is the steady-state control input needed to ob-

tain u = U. Note that this transformation generates two

new matrices CRB and C̃A(ωe) which are recognized as

the Coriolis and centripetal matrices due to rigid-body
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and frequency-dependent added mass, respectively [Fossen,

2002].

For rbw = [0, 0, zw]
> we get:

C̃RB=U

⎡
⎢⎢⎢⎢⎢⎢⎣
06×4

0 0
0 m
−m 0
0 −mzw
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

C̃A=U

⎡
⎢⎢⎢⎢⎢⎢⎣
06×4

−A13 0
0 A22

−A33 0
0 (A42 −A22zw)

− (A53 +A13zw) 0
0 A62

⎤
⎥⎥⎥⎥⎥⎥⎦

For notational convenience we will rewrite (103) as:

h
MRB + M̃A(ωe)

i
δν̇ +CRBδν

+Ñ(ωe)δν+g(ξ)= τFK+diff+(τ − τ̄ )
(104)

where Ñ(ωe) contains the linear frequency-dependent Cori-

olis, centripetal, and damping terms:

Ñ(ωe)= C̃A(ωe)+D̃(ωe) (105)

Thanks to the special structure of L∗, we have:

L∗ = L∗J∗ (106)

such that:

M̃A(ωe) = J∗>
∙
A∗(ωe)−

U

ω2e
B∗(ωe)L

∗
¸
J∗(107)

Ñ(ωe) = J∗> [B∗(ωe) + UA∗(ωe)L
∗]J∗ (108)

5.2 Time-Domain Solution

Since (107)–(108) are linear transformations correspond-

ing to transfer functions, the frequency-dependent equation

(104) can be transformed to the time-domain using impulse

response functions or state-space models [Kristiansen and

Egeland, 2003] [Kristiansen, 2005].

The time-domain solution for (104) is (Appendix A):

h
MRB + M̃A(∞)

i
δν̇+CRBδν + Ñ(∞)δν

+

Z t

−∞
K(t− τ)δν(τ)dτ+g(ξ) = τ

FK+diff+(τ − τ̄ )

(109)

whereK(t) is a matrix of impulse response functions:

K(t) =
2

π

Z ∞

0

[Ñ(ωe)− Ñ(∞)] cos(ωet)dωe (110)

and:

M̃A(∞) = J∗>A∗(∞)J∗ (111)

Ñ(∞) = J∗> [B∗(∞) + UA∗(∞)L∗]J∗ (112)

For notational simplicity, we define:

M , MRB + M̃A(∞) (113)

D , Ñ(∞) (114)

µ ,

Z t

−∞
K(t− τ)δν(τ)dτ (115)

where M is the generalized inertia matrix and D is the lin-

ear damping matrix. Hence (109) takes the form:

Mδν̇+CRBδν +Dδν + µ+g(ξ) = τ
FK+diff + (τ − τ̄ )

(116)

Substituting the perturbation terms:

δν=ν − ν̄ (117)

Θ∗= Θ− 0 = Θ ⇒ g(ξ) = g(η) (118)

into (116) gives:

Mν̇+CRBν +Dν + µ+g(η) = τ
FK+diff + τ

+ (CRBν̄ +Dν̄ − τ̄ ) (119)

The constant control input τ̄ = CRBν̄ +Dν̄ correspond-

ing to steady-state u = U, that is δν̇ =δν = 0 and

τFK+diff = 0, finally gives:

η̇ = J(Θ)ν (120)

Mν̇+CRBν +Dν + µ+g(η) = τ
FK+diff+τ (121)

5.3 Adding Nonlinear Damping and Environ-

mental Forces in the Time-Domain

The time-domain model (121) can be further extended to

include nonlinear damping terms:

τn = −dn(Θ,ν) (122)

and environmental forces due to wave drift, wind, and cur-

rents by writing:

Mν̇+CRBν +Dν + µ+dn(Θ,ν)+g(η) = τ
env
+ τ
(123)

where

τ env=τFK+diff + τdrift| {z }
τwaves

+τwind + τ currents (124)

The equilibrium δν̇ =δν = 0 and τ env = 0, corresponding

to u = U and v = w = p = q = r = 0, is obtained for the

control input τ̄ = CRBν̄ +Dν̄ + dn(0,ν̄).
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5.3.1 Nonlinear Damping Terms

The nonlinear damping term τn can be found from PMM

experiments [Lewis, 1989].

The nonlinear parametrizations used in maneuvering

theory are usually classified according to [Clarke, 2003]:

Truncated Taylor series expansions [Abkowitz, 1964].

For starboard/port symmetric vessels a vector of 3rd-

order terms τn = [τn1, τn2, ..., τn6]
>should be in-

cluded in addition to linear damping, i.e.:

τn1 = Xuuuu
3 +Xwwww3 +Xqqqq

3

+Xuwwuw2 +Xuqquq
2 + · · ·

τn2 = Yvvvv
3 + Ypppp

3 + Yrrrr
3

+Yvppvp
2 + Yvrrvr

2 + · · ·

...

τn6 = Nrrrr
3 + · · ·

Second-order modulus models have been proposed by

Fedyaevsky and Sobolev [1963], Norrbin [1970], and

Blanke and Christensen [1993] for instance. For the

lateral motions τn = [τn2, τn4, τn6]
>, Blanke and

Christensen [1993] give the following second-order

modulus model:

τn2 = Y|u|v |u| v + Yurur + Yv|v|v |v|+ Yv|r|v |r|
+Yr|v|r |v|+ Yφ|uv|φ |uv|+ Yφ|ur|φ |ur|
+Yφuuφu

2

τn4 = K|u|v |u| v +Kurur +Kv|v|v |v|+Kv|r|v |r|
+Kr|v|r |v|+Kφ|uv|φ |uv|+Kφ|ur|φ |ur|
+Kφuuφu2 +K|u|p |u| p

+Kp|p|p |p|+Kφφφφ
3

τn6 = N|u|v |u| v +N|u|r |u| r +Nr|r|r |r|+Nr|v|r |v|
+Nφ|uv|φ |uv|+Nφu|r|φu |r|
+N|p|p|p|p+N|u|p|u|p+Nφu|u|φu |u|

Several other models are available in the literature; see

Fossen [1994, 2002], Bertram [2004], and Perez [2005] and

references therein.

6 State-Space representation for the

Unified Model

This section presents state-space models for effective sim-

ulation of the unified model in Section 5. The cases for

forward and zero speed are treated separately.

6.1 Forward Speed State-Space Representa-

tion

Consider the unified model (123):

Mν̇ +CRBν+Dν + µ+ dn(Θ,ν) + g(η) = τ env + τ
(125)

where:

µ =

Z t

−∞
K(t− τ)δν(τ)dτ (126)

K(t) =
2

π

Z ∞

0

[Ñ(ωe)− Ñ(∞)] cos(ωet)dωe (127)

For causal systems:

K(t) = 0 for t < 0 (128)

such that:

µ(t) =

Z t

−∞
K(t− τ)δν(τ)dτ

causal
=

Z t

0

K(t− τ)δν(τ)dτ

(129)

whereK(t− τ) is the retardation function.

Kristiansen and Egeland [2003] and Kristiansen [2005]

have developed a state-space formulation for µ. If δν is a

unit impulse, then µ given by (129) will be an impulse re-

sponse function. Consequently, µ can be approximated by

a linear reduced-order state-space model:

χ̇ = Arχ+Brδν, χ(0) = 0 (130)

µ = Crχ+Drδν (131)

where (Ar,Br,Cr,Dr) are constant matrices of appro-

priate dimensions and δν = ν − ν̄. Applying the Laplace

transformation to (130)–(131), the damping term (129) can

be written as:

µ(s) = Dmem(s)δν(s) (132)

where Dmem(s) ∈ R6×6 is a transfer function matrix. No-

tice that the filter:

Dmem(s) = Cr(sI−Ar)
−1
Br+Dr (133)

now contains the memory effect of the fluid. The resulting

nonlinear state-space model is:

η̇ = J(Θ)ν (134)

Mν̇ +CRBν +Dν+dn(Θ,ν) + µ+ g(η) = τ env + τ
(135)

χ̇ = Arχ+Brδν, χ(0) = 0 (136)

µ = Crχ+Drδν (137)

Notice that the property:

M =M> > 0, Ṁ = 0 (138)
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holds for this model since the generalized added mass

matrix M̃A(∞) is frequency independent and symmetric.

Hence, Lyapunov-based control methods [Fossen, 2002]

can utilize the standard kinetic energy formulation:

V (ν) =
1

2
ν>Mν >0, ∀ν 6= 0 (139)

6.2 Zero-Speed State-Space Representation

An attractive simplification of (134)–(137) is the DP rep-

resentation which is obtained for U = 0 and ωe = ω.
Hence, CRBν = 0, C̃A(ω)ν = 0,d(Θ,ν) is small, and

g(η) ≈Gη, such that [Fossen and Smogeli, 2004]:

Mν̇+Dν+

Z t

0

K(t−τ)ν(τ)dτ+Gη = τ env+τ (140)

where:

K(t) =
2

π

Z ∞

0

J∗>(B(ω)−B(∞))J∗ cos(ωt)dω

M = MRB + J
∗>A(∞)J∗

D = J∗>B(∞)J∗

The state-space model now becomes:

η̇ = J(Θ)ν (141)

Mν̇ +Dν + µ+Gη = τ env + τ (142)

χ̇ = Arχ+Brν (143)

µ = Crχ+Drν (144)

where χ(0) = 0.

7 Strip Theory

This section presents a method for transformation of the

STF hydrodynamic coefficients [Salvesen et al., 1970] used

in the unified model of Section 5.

7.1 Background

In 1949 Ursell published his famous paper on potential the-

ory for determining the hydrodynamic coefficients of semi-

circular cross sections, oscillating in deep water in the fre-

quency domain [Ursell, 1949]. This was used as a rough

estimation for zero speed ship applications. Motivated by

this Grim [1953], Tasai (1959, 1960, 1961), Gerritsma

[1960] and others used conformal mapping techniques like

the Lewis conformal mapping to transform ship-like cross

sections to semicircles such that more realistic hull forms

could be calculated. Exciting wave loads were computed

using undisturbed regular waves. Denis and Pierson [1953]

published a superposition method to describe the irregular

waves assuming that the sea could be described as a sum

of many simple harmonic waves; each wave with its own

frequency, amplitude, direction and random phase lag. The

responses of the ship at zero speed were calculated for each

of these individual harmonic waves and superimposed.

The extension to forward speed was made available by

Korvin-Kroukovsky and Jacobs [1957], and was further im-

proved in the 60s. Later, Frank [1967] published a pulsat-

ing source theory to calculate the hydrodynamic coefficients

of a cross section of a ship in deep water directly, without

using conformal mapping. Keil [1974] published a theory

for obtaining the potential coefficients in very shallow wa-

ter using Lewis conformal mappings. The STF strip theory

[Salvesen et al., 1970], which accounts for forward speed as

well as transom stern effects, is made available through the

program ShipX (VERES) [Fathi and Hoff, 2004].

Since strip theory determines the hydrodynamic coeffi-

cients from potential theory, it is common to calculate the

added resistance of a ship due to waves e.g. by using the

integrated pressure method by Boese [1970] or the radiated

energy method [Gerritsma and Beukelman, 1972]. In roll

it is common to use the viscous correction by Ikeda et al.

[1978] based on semi-empirical methods.

For zero-speed, 3-D potential theory can be used to

compute the hydrodynamic coefficients [WAMIT, 2004],

while the panel-method program TĪMIT [Korsmeyer et

al., 1999] computes the impulse-response functions for dif-

ferent forward speeds. However, the 2-D approach (strip

theory) is still very favorable for calculating the behavior

of a ship at forward speed. For a more detailed discussion

on advantages and disadvantages when comparing 2-D with

3-D theories; see Faltinsen and Svensen [1990].

7.2 Transformation of STF Coefficients

The STF strip theory coefficients of Salvesen et al. [1970]

listed in Tables 3 and 4 in Appendix B should be trans-

formed from the h-frame to the b-frame in order to imple-

ment the state-space model (134)–(137). This also removes

the representation singularity at ωe = 0 caused by terms

like U/ω2e and U2/ω2e.

Consider the b-frame frequency-dependent matrices:

M̃A(ωe) = J∗>
∙
A(ωe)−

U

ω2e
B(ωe)L

∗
¸
J∗(145)

Ñ(ωe) = J∗> [B(ωe) + UA(ωe)L
∗]J∗ (146)

Let the terms within the brackets be denoted as:

X(ωe) = A(ωe)−
U

ω2e
B(ωe)L

∗ (147)

Y(ωe) = B(ωe) + UA(ωe)L
∗ (148)
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such that:

M̃A(ωe) = J∗>X(ωe)J
∗ (149)

Y(ωe) = J∗>Y(ωe)J
∗ (150)

Let us now consider the B55 coefficient in Table 3:

B55 = B0
55 +

U2

ω2e
B0
33 + Ux2AaA33 +

U2

ω2e
xAbA33 (151)

which clearly is undefined for ωe = 0. However, the coeffi-

cient Ñ55(ωe) with J∗ = I is well conditioned since:

Ñ55 = B55 − UA53

= B0
55 +

U2

ω2e
B0
33 + Ux2AaA33 −

U2

ω2e
xAbA33

−U

µ
−Ao

53 +
U

ω2e
B0
33 −

U

ω2e
xAbA33

¶

= B0
55 + UA053 + Ux2AaA33 (152)

This also holds for the other coefficients. Inspired by this, a

systematic transformation procedure is presented below.

7.3 Longitudinal and Lateral Transforma-

tions

The transformation matrix J∗ given by (86) can be parti-

tioned according to:

J∗1 =

⎡
⎣
1 0 zw
0 1 −xw

0 0 1

⎤
⎦ (153)

J∗2 =

⎡
⎣
1 −zw xw

0 1 0
0 0 1

⎤
⎦ (154)

for the longitudinal and lateral modes, respectively. At the

infinity frequency we have that:

M̃A(∞) = J∗>A(∞)J∗
Ñ(∞) = J∗> [B(∞) + UA(∞)L∗]J∗

which both are constant matrices. TheY(ωe) matrix is:

Y(ωe) = B(ωe) + UA(ωe)L
∗

=

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 0 B13 0 B15−UA13 0
0 B22 0 B24 0 B26+UA22

B31 0 B33 0 B35−UA33 0
0 B42 0 B44 0 B46+UA42

B51 0 B53 0 B55−UA53 0
0 B62 0 B64 0 B66+UA62

⎤
⎥⎥⎥⎥⎥⎥⎦

Substituting the STF coefficients from Table 3 into the ex-

pression for Y(ωe) gives the following longitudinal trans-

formation:

⎡
⎣

Y11 Y13 Y15
Y31 Y33 Y35
Y51 Y53 Y55

⎤
⎦ = U

⎡
⎣
0 0 0
0 aA33 −xAaA33
0 −xAaA33 x2AaA33

⎤
⎦

+

⎡
⎣
0 0 0
0 B0

33 B0
35

0 B0
53 + UA033 B0

55+UA053

⎤
⎦

and

⎡
⎣

Ñ11 Ñ13 Ñ15

Ñ31 Ñ33 Ñ35

Ñ51 Ñ53 Ñ55

⎤
⎦ = J∗>1

⎡
⎣

Y11 Y13 Y15
Y31 Y33 Y35
Y51 Y53 Y55

⎤
⎦J∗1

(155)

The lateral transformation corresponding to Table 4 is:

⎡
⎣

Y22 Y24 Y26
Y42 Y44 Y46
Y62 Y64 Y66

⎤
⎦ = U

⎡
⎣

aA22 aA24 xAaA22
aA24 aA44 xAaA42

xAaA22 xAaA24 x2AaA22

⎤
⎦

+

⎡
⎣

B0
22 B0

24 B0
26

B0
42 B0

44+B∗
44 B0

46

B0
62−UA022 B0

64−UA042 B0
66−UA062

⎤
⎦

and

⎡
⎣

Ñ22 Ñ24 Ñ26

Ñ42 Ñ44 Ñ46

Ñ62 Ñ64 Ñ66

⎤
⎦ = J∗>2

⎡
⎣

Y22 Y24 Y26
Y42 Y44 Y46
Y62 Y64 Y66

⎤
⎦J∗2

(156)

Notice that all singular points due to the terms U/ω2e and

U2/ω2e now have been removed. Also notice that theY ma-

trix can be represented as a symmetric matrix due to zeros

speed terms B0
ij and tail effects aAij , and a skew-symmetric

matrix due to the A0ij terms.

8 Relationship between Maneuvering

and Seakeeping Theory

In Section 5 the unified model was derived in the b-frame us-

ing seakeeping theory and nonlinear damping terms. This is

highly advantageous since the resulting model incorporates

the maneuvering equations as a special case.

The unified model is related to classical maneuvering

theory by neglecting the memory effect of the fluid i.e. only

considering the static terms corresponding to the zero fre-

quency. This is illustrated below.
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Figure 9: Maneuvering of a tanker in calm water. For this

case ωe = 0 is a good approximation.

8.1 LF and WF Models

In maneuvering theory the low-frequency assumption:

ωe = 0 (157)

implies that the motions can be separated into LF and WF

motion components. The zero-frequency model is:

η̇LF = J(ΘLF )νLF (158)

[MRB +MA] ν̇LF+CRBνLF+NνLF

+dn(ΘLF ,νLF )+g(ηLF )= τ env+τ (159)

where the oscillatory derivatives M̃A(ωe) and Ñ(ωe) are

evaluated at ωe = 0, that is:

MA = M̃A(0) (160)

N = Ñ(0) (161)

Note that τ env for τFK+diff = 0 reduces to:

τ env = τdrift + τwind + τ currents (162)

This is done under the assumption that the WF motions due

to τFK+diff can be added directly to the output as two sig-

nals ηWF and νWF , that is:

η = ηLF + ηWF (163)

ν = νLF + νWF (164)

Figure 9 shows a ship maneuvering in calm weather where

ωe = 0 is a good assumption. In Figure 10 this assump-

tion is clearly violated, suggesting that the unified model in

Section 5 should be applied instead.

The hydrodynamic derivatives are defined in terms of

the matricesMA andN according to (see Section 5.1):

Figure 10: Maneuvering in a seaway. For this case ωe = 0
is a cruel approximation (Courtesy Maersk).

MA = J∗>A(0)J∗− lim
ωe→0

U

ω2e
J∗>B(ωe)L

∗

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

⎤
⎥⎥⎥⎥⎥⎥⎦

N = J∗> [B(0) + UA(0)L∗]J∗

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Zp Zq Zr

Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nvp Nw Np Nq Nr

⎤
⎥⎥⎥⎥⎥⎥⎦

8.2 Decoupled Maneuvering Equations

The linear longitudinal maneuvering equations correspond-

ing to (159) takes the following form (assuming that

g(ηLF ) = GηLF and dn = 0):

⎡
⎣

m 0 0
0 m 0
0 0 Iy

⎤
⎦
⎡
⎣

u̇LF

ẇLF

q̇LF

⎤
⎦+

⎡
⎣
0 0 0
0 0 −mU
0 0 0

⎤
⎦
⎡
⎣

uLF

wLF

qLF

⎤
⎦

−

⎡
⎣

Xu̇ Xẇ Xq̇

Zu̇ Zẇ Zq̇

Mu̇ Mẇ Mq̇

⎤
⎦
⎡
⎣

u̇LF

ẇLF

q̇LF

⎤
⎦

−

⎡
⎣

Xu Xw Xq

Zu Zw Zq

Mu Mw Mq

⎤
⎦
⎡
⎣

uLF

wLF

qLF

⎤
⎦

−

⎡
⎣
0 0 0
0 Zz Zθ

0 Mz Mθ

⎤
⎦
⎡
⎣

xLF

zLF
θLF

⎤
⎦ =

⎡
⎣

τ1,env
τ3,env
τ5,env

⎤
⎦+

⎡
⎣

τ1
τ3
τ5

⎤
⎦
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Figure 11: Interaction between the Guidance, Navigation, and Control blocks.

The lateral maneuvering equations takes the form:

⎡
⎣

m 0 0
0 Ix −Ixz
0 −Ixz Iz

⎤
⎦
⎡
⎣

v̇LF
ṗLF
ṙLF

⎤
⎦+

⎡
⎣
0 0 mU
0 0 0
0 0 0

⎤
⎦
⎡
⎣

vLF
pLF
rLF

⎤
⎦

−

⎡
⎣

Yv̇ Yṗ Yṙ

Kv̇ Kṗ Kṙ

Nv̇ Nṗ Nṙ

⎤
⎦
⎡
⎣

v̇LF
ṗLF

ṙLF

⎤
⎦

−

⎡
⎣

Yv Yp Yr

Kv Kp Kr

Nvp Np Nr

⎤
⎦
⎡
⎣

vLF
pLF
rLF

⎤
⎦

−

⎡
⎣
0 0 0
0 Kφ 0
0 0 0

⎤
⎦
⎡
⎣

yLF
φLF

ψLF

⎤
⎦ =

⎡
⎣

τ2,env
τ4,env
τ6,env

⎤
⎦+

⎡
⎣

τ2
τ4
τ6

⎤
⎦

9 The History of Model-Based Ship

Control

This section briefly describes the history of the gyroscope

and how it contributed to the development of the first au-

tomatic ship steering mechanism in 1911 to the fully auto-

mated systems of today based on gyro compasses and global

satellite navigation systems.

9.1 The Gyroscope and its Contributions to

Ship Control

In 1851 Léon Foucault, a French physicist, demonstrated

the Earth’s rotation by showing that a pendulum continued

to swing in the same plane while the Earth turned around.

This inspired him to invent the gyroscope the next year.

He named the device from the Greek words gyros, “revo-

lution,” and skopein, “to view” because he used it to “view

the Earth’s rotation.”

However, the first recorded construction of the gyro-

scope is usually credited to Bohnenberger in 1810 who used

a heavy ball instead of a wheel. Unfortunately, this faded

into history since it had no scientific application. 80 years

later Hopkins demonstrated the first electrically driven gy-

roscope. The development of the electrically driven gyro-

scope was motivated by the need of more reliable naviga-

tion systems for steel ships and underwater warfare (mag-

netic compasses are sensitive for magnetic disturbances),

[see Allensworth, 1999; Bennet, 1979].

In parallel works, Anschutz and Sperry both worked on

a practical application of the gyroscope. In 1908 Anschutz

patented the first North seeking gyrocompass while Sperry

was granted a patent for his ballistic compass in 1911.

9.2 Model-Based Ship Control

The invention of gyroscope was one of the breakthroughs in

automatic ship control since it gave reliable heading mea-

surements ψ. The gyro together with linear accelerom-

eters are also the key components of a vertical reference

unit (VRU) which measures the roll and pitch angles (φ, θ).
Today, global satellite navigation systems have further ex-

tended the possibilities for automatic control and terrestrial

navigation of ships since they provide the user with the

North-East-Down positions (n, e, d).
A marine vessel control system is usually constructed

as three independent blocks denoted as the guidance, navi-

gation and control (GNC) systems. These systems interact

with each other through data and signal transmission as il-

lustrated in Figure 11 where a conventional ship autopilot is

shown.

GNC, in its most basic form, is a reference model
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(guidance system), a sensor system (navigation system) and

a feedback control system. In its most advanced form,

the GNC blocks represent three interconnected subsystems

[Fossen, 2002]:

Guidance is the action or the system that continuously

computes the reference (desired) position, velocity

and acceleration of a vessel to be used by the con-

trol system. These data are usually provided to the

human operator and the navigation system. The ba-

sic components of a guidance system are motion sen-

sors, external data like weather data (wind speed and

direction, wave height and slope, current speed and

direction, etc.) and a computer. The computer col-

lects and processes the information, and then feeds

the results to the vessel’s control system. In many

cases, advanced optimization techniques are used to

compute the optimal trajectory or path for the ves-

sel to follow. This might include sophisticated fea-

tures like fuel optimization, minimum time naviga-

tion, weather routing, collision avoidance, formation

control and schedule meetings.

Navigation is the science of directing a craft by determin-

ing its position, course, and distance traveled. In

some cases velocity and acceleration are determined

as well. This is usually done by using a satellite navi-

gation system combined with motion sensors like ac-

celerometers and gyros. The most advanced naviga-

tion system for marine applications is the inertial nav-

igation system (INS). Navigation is derived from the

Latin navis, “ship,” and agere, “to drive.” It originally

denoted the art of ship driving, including steering and

setting the sails. The skill is even more ancient than

the word itself, and it has evolved over the course of

many centuries into a technological science that en-

compasses the planning and execution of safe, timely,

and economical operation of ships, underwater vehi-

cles, aircraft, and spacecraft.

Control is the action of determining the necessary con-

trol forces and moments to be provided by the ves-

sel in order to satisfy a certain control objective. The

desired control objective is usually seen in conjunc-

tion with the guidance system. Examples of control

objectives are minimum energy, set-point regulation,

trajectory tracking, path following, maneuvering etc.

Constructing the control algorithm involves the de-

sign of feedback and feedforward control laws. The

outputs from the navigation system, position, veloc-

ity and acceleration, are used for feedback control

while feedforward control is implemented using sig-

nals available in the guidance system and other exter-

nal sensors.

In the forthcoming sections, we will focus on the:

� Classical 1 DOF autopilot design for heading (yaw)

control

� Extensions to 3 DOF (surge, sway, and yaw) maneu-

vering and station-keeping (dynamic positioning)

The modelling techniques presented in this paper can

also be extended to rudder-roll damping and fin stabiliza-

tion using models in 4 DOF (surge, sway, roll, and yaw)

[Perez, 2005] as well as the general motion in 6 DOF.

9.3 Process Plant and Control Plant Models

When designing model-based ship control systems it is im-

portant to distinguish between the control plant and process

plant models. The following definitions are adopted from

Sørensen [2005]:

Control Plant Model is a simplified mathematical de-

scription containing only the main physical properties

of the process or plant. This model may constitute a

part of the controller. The control plant model is also

used in analytical stability analysis using e.g. eigen-

values, Lyapunov stability, or passivity.

Process Plant Model is a comprehensive description of

the actual process and it should be as detailed as

needed. The main purpose of this model is to simulate

the real plant dynamics. The process plant model is

used in numerical performance and robustness analy-

ses, and testing of the control systems.

10 Heading Autopilot Systems

In this section, we describe the models for autopilot design

and the construction of conventional model-based autopilot

systems.

10.1 Classical Autopilot (LF Model)

The most common model used in heading autopilot systems

is the well celebrated Nomoto model [Nomoto et al., 1957],

which can be derived from the maneuvering model:

ψ̇LF = rLF (165)

(Iz −Nṙ)ṙLF −NrrLF = τN

= τ rudder + τwind (166)

where−Nṙ > 0 and−Nr > 0 are the hydrodynamic deriv-

atives, rLF and ψLF are the LF yaw rate and yaw angle,

τwind is the wind moment, and τ rudder is the control input

(yaw moment).

If wind speed and direction are measured, τwind can be

estimated using wind coefficient tables.
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Figure 12: Block diagram showing a conventional autopilot system [Fossen, 2002].

Then the rudder command is computed from the feedback

signal τN and the feedforward signal τwind as:

τ rudder = τN − τwind (167)

The Nomoto time constant T and gain constant K for this

model can be defined as:

T ,
Iz −Nṙ

−Nr
, K ,

1

−Nr
(168)

This gives:

ψ̇LF = rLF (169)

T ṙLF + rLF = KτN (170)

ψ = ψLF + ψWF (171)

where motion due to 1st-order wave loads are added directly

to the output.

The wave-induced motions ψWF are computed using

the RAO transfer function:

RAO(s, ψr) =
ψWF (s, ψr)

ζa
(172)

For certain ships like large tankers it is necessary to add

a nonlinear maneuvering characteristic. Again a zero-

frequency assumption is used. A frequently used nonlinear

model is [Norrbin, 1963]:

T ṙLF + rLF + αKr3LF = KτN (173)

where α > 0 describes the nonlinear maneuvering charac-

teristic.

10.2 Frequency-Dependent Autopilot Model

The frequency-dependent model (seakeeping theory) is:

[Iz + M̃A66(ωe)]ṙ + Ñ66(ωe)r = τN (174)

which relates to maneuvering theory (ωe = 0) according to:

−Nṙ , M̃A66(0) (175)

−Nr , Ñ66(0) (176)

The unified model takes the form:

ψ̇ = r (177)

[Iz + M̃A66(∞)]ṙ + Ñ66(∞)r

+

Z t

0

K66(t− τ)r(τ)dτ + αr3 = τ env + τN (178)

where the disturbance τ env represents wave loads due to

Froude-Krylov forces, diffraction forces, and wave drift etc.

Notice that we have added the nonlinear damper αr3 di-

rectly to the time-domain equation (178). We have now ex-

tended the classical autopilot model (173) to describe dif-

ferent sea-states.

The integral term in (178) can be numerically computed

e.g. by using trapezoidal integration. An alternative ap-

proach could be to approximate the impulse response:

µ =

Z t

0

K66(t− τ)r(τ)dτ (179)

by a state-space model (Ar,br, cr, dr) [Kristiansen and

Egeland, 2003]. Hence, we can write the unified autopilot

model in state-space form as:

ψ̇ = r (180)

[Iz + M̃A66(∞)]ṙ
+Ñ66(∞)r + µ+ αr3 = τ env + τN (181)
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χ̇ = Arχ+ brr, χ(0) = 0 (182)

µ = c>r χ+ drr (183)

The state-space model (182)–(183) will typically be of order

5 in order to approximate the impulse response (179) accu-

rately. Hence, the autopilot model including the fluid mem-

ory effect is compactly represented as 2 + 5 = 7 ODEs.

The advantage of the model representation (180)–(183) to

(169)–(171) is that it incorporates the memory effect of the

fluid for varying sea states.

10.3 Autopilot Design

The autopilot systems of Sperry and Minorsky were both

single-input single-output (SISO) control systems where the

heading (yaw angle) of the ship was measured by a gyro

compass. Today, this signal is fed back to a computer in

which a PID-control system (autopilot) is implemented in

software. The autopilot compares the operator set-point (de-

sired heading) with the measured heading and computes the

rudder command, which is then transmitted to the rudder

servo for corrective action.

The main difference between the autopilot systems of

Sperry and Minorsky and the modern autopilot is the in-

creased functionality that has been added with sophisticated

features like [Fossen, 2002]:

� Wave filtering; avoids 1st-order wave disturbances

being fed back to the actuators.

� Adaptation to varying environmental conditions,

shallow water effects and time-varying model para-

meters, e.g. changes in mass and centre of gravity.

� Wind feedforward for accurate and rapid course-

changing maneuvers.

� Reference feedforward using a dynamic model,

ψd, rd, and ṙd, for course changing maneuvers.

Course-keeping is obtained by using a constant refer-

ence signal, ψd = constant, as input to the reference

model.

We will discuss some of these features more closely in the

next sub-section.

10.3.1 Conventional Autopilot Design (Maneuvering

Model)

Assume that both ψ and r are measured by using a compass

and a rate gyro. A full state feedback PID-controller τN for

(169)–(171) can then be designed as [Fossen, 2002]:

τN = τFF −
1

K

⎡
⎢⎣Kpψ̃ +KpTd| {z }

Kd

r̃ +Kp/Ti| {z }
Ki

Z t

0

ψ̃(τ)dτ

⎤
⎥⎦

(184)

where τN is the controller yaw moment, τFF is a feedfor-

ward term to be determined, and

ψ̃ = ψLF − ψd (185)

r̃ = rLF − rd (186)

represent the yaw angle and yaw rate tracking errors for the

reference signals ψd and rd. The controller gains are:

Kp > 0 proportional gain constant

Td > 0 derivative time constant

Ti > 0 integral time constant

The controller gains can be found by pole placement, e.g.

[Fossen 2002]:

Kp = Tω2n
Kd = 2ζωnT − 1
Ki =

ωn

10
Kp

where ζ is the desired relative damping ratio and ωn is the

desired natural frequency of the closed-loop system.

The feedforward term is chosen as:

τFF =
T

K
T ṙd +

1

K
rd (187)

The resulting error dynamics is:

T ˙̃r + (1 +Kd) r̃ +Kpψ̃ +Ki

Z t

0

ψ̃(τ)dτ = 0 (188)

10.3.2 New Autopilot Design for the Unified Model

The conventional autopilot can be extended to include the

memory effect of the fluid. This has not been tested in a

practical design as far as the author knows, but it is straight-

forward to derive a pole-placement algorithm that incorpo-

rates the frequency-dependent terms of the model.

Consider the unified model (180)–(183) in the form:

ψ̇ = r (189)

Mṙ + [D +Dmem(s)]r + αr3 = τ env + τN (190)

where

M , Iz + M̃A66(∞) (191)

D , Ñ66(∞) (192)

and the transfer function matrix Dmem(s) (memory effects)

is:

Dmem(s) , c
>
r (sI−Ar)

−1br + dr (193)

This is done with a gentle abuse of notation since the sig-

nal Dmem(s)r must be implemented by filtering r using

Dmem(s).
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A nonlinear PID-controller with feedforward:

τN = τFF + αr3 −Kpψ̃ −Kdr̃ −Ki

Z t

0

ψ̃(τ)dτ

τFF = Mṙd + [D +Dmem(s)]rd (194)

now gives the error dynamics:

M ˙̃r+[Dmem(s)+D+Kd]r̃+Kpψ̃+Ki

Z t

0

ψ̃(τ)dτ = τenv

(195)

which represents a stable system for proper tuning of

Kp,Kd, and Ki.

11 Dynamic Positioning and Maneu-

vering Systems

Already in the 1960s three decoupled PID-controllers were

applied to control the horizontal motion of ships (surge,

sway and yaw) by means of thrusters and propellers. This

was referred to as dynamic positioning (DP) systems. As for

the autopilot systems, a challenging problem was to avoid

that 1st-order wave-induced disturbances entered the feed-

back loop. Several techniques like notch and low-pass fil-

tering and the use of dead-band techniques were tested for

this purpose, but with different levels of success. In 1963

linear quadratic optimal controllers and the Kalman filter

were published by Kalman and coauthors. This motivated

the application of LQG-controllers in ship control since a

state observer (Kalman filter) could be used to estimate the

LF and WF motions. The LQG design technique was ap-

plied for this purpose by Balchen, Jenssen and Sælid (1976,

1980), and Grimble, Patton and Wise (1979, 1980). More

lately, LQG control has been discussed by Sørensen et al.

[1995]. Grimble and coauthors suggested to use H∞ and

µ-methods [Katebi et al., 1997] for filtering and control in

DP.

The control plant models for DP maneuvering systems

will be classified according to the speed range in which the

models are valid. Design of single model-based control sys-

tem for DP and maneuvering at all speeds is currently an

important field of research. This is the motivation for pre-

senting the unified model of Section 5 since such a model

can serve as basis for model-based control.

11.1 Speed Regimes

Strip theory programs can be applied on monohulls and

catamarans at low as well as high speed. It is convenient

to classify the models and speed regimes according to:

Low Speed U ∈ [0, UDP ] Dynamic positioning (station-

keeping and low-speed maneuvering): Low-speed

maneuvering is typically defined by the speed range

in which a linear speed independent hydrodynamic

model is valid. Experience suggests that:

UDP = 1.5 m/s ≈ 3 knots (196)

(1) For DP applications in the horizontal plane (surge,

sway, and yaw), the LF ship model can be approxi-

mated by [Fossen and Strand, 1999]:

η̇LF = R(ψ)νLF (197)

Mν̇LF+DνLF +GηLF = τ +R>(ψ)b(198)

ḃ = 0 (199)

where

M=MRB + J
∗TA(0)J∗, Ṁ = 0 (200)

D= J∗TB(0)J∗ (201)

τ = [τ1, τ2, τ6]
> is the control input, νLF =

[uLF , vLF , rLF ]
>, ηLF = [nLF , eLF , ψLF ]

>, and

b is the n-frame bias due to currents. The WF

model ηWF = [nWF , eWF , ψWF ]
> is computed us-

ing RAOs or three linear shaping filters:

nWF (s) =
Kw1s

s2 + 2λ1ω1s+ ω21
w1(s) (202)

eWF (s) =
Kw2s

s2 + 2λ2ω2s+ ω22
w2(s) (203)

ψWF (s) =
Kw3s

s2 + 2λ3ω3s+ ω23
w3(s) (204)

driven by the white noise terms wi(s) (i = 1, 2, 3)
such that the total motion becomes:

η = ηLF + ηWF (205)

(2) The unified DP model in a seaway can be written

as, see Section 6.2:

η̇ = R(ψ)ν (206)

Mν̇ +Dν + µ+Gη= τ +R>(ψ)b (207)

ḃ = 0 (208)

where

M=MRB + J
∗TA(∞)J∗, Ṁ = 0 (209)

D= J∗TB(∞)J∗ (210)

Moderate Speed U ∈ [UDP , Umax] Maneuvering at mod-

erate speeds: The maximum speed depends on the

Froude number:

Fn =
U√
gL

(211)
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where L is the length of the ship. The traditional strip

theory, developed by Salvesen et al. [1970] , is valid

up to Fn = 0.25–0.3. This suggests that:

Umax = 0.3
p

gL (212)

Hence, for a 80 m long supply vessel Umax = 8.4
m/s.

(1) The LF maneuvering model is described in Sec-

tion 8.

(2) The unified state-space model for this speed range

is presented in Section 5.

High Speed U > Umax High-speed maneuvering: For

high-speed craft lift theory must be taken into ac-

count. For Froude numbers Fn ≥ 0.4, the high-speed

formulation developed by Faltinsen and Zhao [1991a,

1991b] can be applied. In the Froude number range

of 0.3–0.4, a comparison between the two methods

should be carried out.

11.2 DP and Low-Speed Maneuvering

Control System Design

The interested reader is recommended to consult Fossen

[1994, 2002] and Perez [2005] for design methods and ref-

erences on ship control systems design including DP, posi-

tion mooring, autopilot design, way-point tracking, rudder-

roll damping, fin stabilization, and maneuvering control.

The first book focuses on PID-control, pole-placement

methods, and linear quadratic optimal control theory while

the second book is dedicated to nonlinear control using Lya-

punov methods. The third reference discusses autopilot de-

sign and combined fin stabilization and rudder-roll damping

systems.

12 Case Study

The numerical computations for a zero-speed application

using strip theory will now be presented. The S-175 con-

tainer ship is used as case study. The main particulars of the

S-175 container ship are given in Table 2.

Table 2: The S-175 main particulars

Ship S-175

Length between perpendiculars (Lpp) 175 m

Beam (B) 25.4 m

Draught (T ) 9.5 m

Displaced volume (∇) 24,140 m3

Block coefficient (cB) 0.572

LCG relative to midships -2.48 m

Froude number 0.25

12.1 Marine Systems Simulator (MSS)

The Marine Systems Simulator (MSS) [MSS, 2004] at the

Norwegian University of Science and Technology can be

used for time-domain simulation of ShipX (VERES) strip

theory coefficients in Matlab/Simulink (see Section 7.2 and

Appendix B).

In the MSS two Matlab m-files for postprocessing of the

ShipX (VERES) data are provided. These are:

Veres2ABC.m Computes the model matrices, retardation

function, state-space models etc.

Output file: ABC.mat

Veres2force.m Creates a table of generalized diffraction/

Froude-Krylov force coefficients.

Output file: Forces_TF.dat

The data flow is shown in Figure 13 where the S-175 con-

tainer ship is used as case study.

VERES
2-D strip
theory
program

S175.re7

S175
geometry
file

S175.re8

Veres2ABC.m

Veres2force.m

VeresFRC_DP.mdl
(time-domain
simulation in
Simulink)

ABC.mat

Forces_TF.dat

Figure 13: Flow chart showing the numerical computations.

The data file Forces_TF.dat is used as input for

the Simulink program VeresFRC_DP.mdl while the file

ABC.mat must be manually loaded into work space. The

numerical recipes used in the postprocessing of the data are

described in Fossen and Smogeli [2004].

The frequency-dependent added mass and potential

damping coefficients including viscous effects are shown in

Figure 15. Time series of hydrodynamic excitation forces

are shown in Figure 16. The retardation functions are given

in Figure 14. The numerical results are computed for beam

seas with the JONSWAP wave spectrum using significant

wave height H1/3 = 5 m and peak frequency ωp = 0.56
rad/s. The wave spreading factor was set to 4.

13 Conclusions

A unified state-space model for ship maneuvering, station-

keeping, and control in a seaway has been presented in a

vectorial setting using state-space models. A transforma-

tion procedure for the STF strip theory coefficients has been

developed by formulating the time-domain equations of mo-

tion in the body-fixed reference frame instead of the equi-

librium or hydrodynamic reference frame.
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Figure 14: The retardation functions Kii are computed from (224) using trapezoidal integrations and plotted as a function of

time t. The corresponding state-space models (5th-order) are plotted on top.

By doing this ill-conditioned terms like U/ω2e and

U2/ω2e, which are undefined for ωe = 0, are avoided when

computing the retardation functions. This gives excellent

numerical properties for U ≥ 0. The developed procedure

has been motivated by the results of Bishop and Price [1981]

and Bailey et al. [1998].

The unified model can be used to simulate ships and rigs

in a seaway for varying sea states and at different speeds (in-

cluding zero speed). The model is valid up to Froude num-

bers 0.25–0.3 which are the upper limit for conventional

strip theory programs like ShipX (VERES) and SEAWAY.

The unified model can also be related to the zero-frequency

maneuvering model and it is possible to include nonlinear

maneuvering terms by unifying the theories of seakeeping

and maneuvering.
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Figure 15: Frequency-dependent added mass Aii and damping Bii (i = 1...6) for the S-175 container ship. Circles indicates

VERES data points while the solid line is due to interpolation. For the Bii-data, the high-frequency approximation βii/ω
3

is applied. In addition, a viscous ramp function is added to the Bii-plots. For surge, added mass A11 is chosen as 10% of the

mass while B11 simply is a viscous ramp. Added resistance data can further be used to improve damping in surge. For roll,

the viscous effect to due bilge keels (and possible anti-roll tanks) is included in the B44-plot.
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Figure 16: Diffraction and Froude-Krylov forces and moments in 6 DOF versus time, simulated in Simulink using VERES

data tables.

A Cummins Equation

The hydromechanical reaction forces and moments, due to

time-varying ship motions, can be described using Cum-

mins [1962] formulation. From potential theory he showed

that a rigid-body with generalized inertia matrix M∗
RB sat-

isfies:

M∗
RB ξ̈ = δτH + δτ (213)

where δτ is the generalized external force vector and δτH

is the hydrodynamic generalized force vector:

δτH = −Ā∗ξ̈ −
Z t

−∞
K̄∗(t− τ)ξ̇(τ)dτ − C̄∗ξ (214)

in which Ā∗ is the generalized hydrodynamic added mass

matrix, C̄∗ is the spring stiffness matrix, and K̄∗(t − τ) is

a matrix of retardation functions. In honor of his work the

time-domain equation:

[M∗
RB+Ā

∗]ξ̈+
Z t

−∞
K̄∗(t−τ)ξ̇(τ)dτ+C̄∗ξ = δτ (215)

is referred to as Cummins Equation.

A.1 Relationship between the Time and

Frequency Domain Equations

The coefficients Ā∗, C̄∗, and K̄∗ in Cummins equation can

be determined by using the approach of Ogilvie [1964]. The

classical frequency domain description used in computer

programs based on potential theory starts with (98), i.e.:

[M∗
RB +A

∗(ω)]ξ̈ +B∗(ω)ξ̇ +C∗ξ = δτ (216)

where the frequency-dependent hydrodynamic coefficient

matrices A∗(ω) and B∗(ω) are due to added mass and po-
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tential damping and δτ is a vector of generalized excitation

forces.

In Ogilvie [1964] it is assumed that the floating object

carries out oscillations:

ξ = cos(ωt)I6×6 (217)

Substituting this expression into Cummins equation (215)

gives:

−ω2[M∗
RB+Ā

∗] cos(ωt)+ω

Z ∞

0

K̄∗(τ) sin(ωt−ωτ)dτ

+ C̄∗ cos(ωt) = δτ

where we have replaced τ by t − τ in the integral. This

gives:

−ω2
½
[M∗

RB + Ā
∗]− 1

ω

Z ∞

0

K̄∗(τ) sin(ωτ)dτ

¾
cos(ωt)

−ω

½Z ∞

0

K̄∗(τ) cos(ωτ)dτ

¾
sin(ωt)

+C̄∗ cos(ωt) = δτ (218)

The classical model (216) gives:

−ω2 {[M∗
RB +A

∗(ω)} cos(ωt)

−ω {B∗(ω) sin(ωτ)dτ} sin(ωt)

+C∗ cos(ωt) = δτ (219)

By comparing the terms in (218) and (219), it is seen that:

A∗(ω)= Ā∗− 1
ω

Z ∞

0

K̄∗(τ) sin(ωτ)dτ (220)

B∗(ω)=
Z ∞

0

K̄∗(τ) cos(ωτ)dτ (221)

C∗= C̄
∗

(222)

The first equation must be valid for all ω. Hence, we choose

to evaluate (220) at ω =∞ implying that:

Ā∗ = A∗(∞) (223)

The second equation is rewritten using the inverse Fourier

transform giving:

K̄∗(t) =
2

π

Z ∞

0

B∗(ω) cos(ωτ)dω (224)

This expression is recognized as a matrix of retardation

functions. Then, the relationship between the time-domain

equation (215) and frequency-domain equation (216) has

been established through:

[M∗
RB +A

∗(∞)]ξ̈

+

Z t

−∞
K̄∗(t− τ)ξ̇(τ)dτ +C∗ξ = δτ (225)

A.2 Alternative Representation for

Numerical Computations

From a numerical point of view is it better to integrate:

K∗(t) =
2

π

Z ∞

0

[B∗(ω)−B∗(∞)] cos(ωτ)dω (226)

than to use (224), sinceB∗(ω)−B∗(∞) is zero at ω =∞.

Hence, we rewrite (225) as:

[M∗
RB +A

∗(∞)]ξ̈ +B∗(∞)ξ̇

+

Z t

−∞
K∗(t− τ)ξ̇(τ)dτ +C∗ξ = δτ

This can be shown by writing (224) as:

K̄∗(t) =
2

π

Z ∞

0

[B∗(ω)−B∗(∞) +B∗(∞)] cos(ωτ)dω

= K∗(t) +
2

π

Z ∞

0

B∗(∞) cos(ωτ)dω (227)

Hence:

Z t

−∞
K̄∗(t− τ)ξ̇(τ)dτ

=

Z t

−∞
K∗(t− τ)ξ̇(τ)dτ +B∗(∞)ξ̇ (228)

since the inverse Fourier transform of the constant B∗(∞)
is an impulse. Moreover:

B∗(∞)ξ̇ =
Z t

−∞

µ
2

π

Z ∞

0

B∗(∞) cos(ωτ)dω

¶
ξ̇(τ)dτ

(229)

B STF Strip Theory

The STF strip theory coefficients can be decoupled into

[Salvesen et al., 1970]:

� Longitudinal modes (surge, heave, pitch)

� Lateral modes (sway, roll, yaw)

The longitudinal coefficients are given in Table 3 and the

lateral coefficients in Table 4. The superscript 0 denotes

speed independent terms.
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Table 3: Longitudinal STF Strip Theory Coefficients [Fathi

and Hoff, 2004]. The signs have been modified to comply

with the b-frame axes definition of Section 4.1.

A11 0

A13 (= A31) 0

B11 0

B13 (= B31) 0

A15 0

B15 0

A51 0

B51 0

A33 A033 − U
ω2e

bA33

B33 B0
33 + UaA33

A35 −A035 − U
ω2e

B0
33 − U

ω2e
xAbA33 − U2

ω2e
aA33

B35 −B0
35 + UA033 + UxAaA33 − U2

ω2e
bA33

A53 −Ao
53 +

U
ω2e

B0
33 − U

ω2e
xAbA33

B53 −B0
53 − UA033 + UxAaA33

A55 A055 +
U2

ω2e
A033 − U

ω2e
x2AbA33 − U2

ω2e
xAa233

B55 B0
55 +

U2

ω2e
B0
33 + Ux2AaA33 − U2

ω2e
xAbA33

Table 4: Lateral STF Strip Theory Coefficients [Fathi and

Hoff, 2004]. The signs have been modified to comply with

the b-frame axes definition of Section 4.1.

A22 A022 − U
ω2e

bA22

B22 B0
22 + UaA22

A24 (= A42) −A024 +
U
ω2e

bA24

B24 (= B42) −B0
24 − UaA24

A26 −A026 +
U
ω2e

B0
22 +

U
ω2e

xAbA22 +
U2

ω2e
aA22

B26 −B0
26 − UA022 − UxAaA22 +

U2

ω2 b
A
22

A44 A044 − U
ω2e

bA44

B44 B0
44 + UaA44 +B∗

44

A46 −A046 +
U
ω2e

B0
24 +

U
ω2e

xAbA24 +
U2

ω2e
aA24

B46 −B0
24 − UA024 − UxAaA24 +

U2

ω2e
bA24

A62 −A062 − U
ω2e

B0
22 +

U
ω2e

xAbA22

B62 −B0
62 + UA022 − UxAaA22

A64 −A064 − U
ω2e

B0
24 +

U
ω2e

xAbA24

B64 −B0
64 + UA024 − UxAaA24

A66 A066 +
U2

ω2e
A022 − U

ω2e
x2AbA22 − U2

ω2e
xAaA22

B66 B0
66 +

U2

ω2e
B0
22 + Ux2AaA22 − U2

ω2e
xAbA22
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