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A NONLINEAR VARIATIONAL PROBLEM FOR IMAGE MATCHING*
YALI AMITt

Abstract. Minimizing a nonlinear functional is presented as a way of obtaining a planar mapping that matches
two similar images. A smoothing term is added to the nonlinear functional to penalize discontinuous and irregular
solutions. One option for the smoothing term is a quadratic form generated by a linear differential operator. The
functional is then minimized using the Fourier representation of the planar mapping. With this representation the
quadratic form is diagonalized. Another option is a quadratic form generated via a basis of compactly supported
wavelets. In both cases, a natural approximation scheme is described. Both quadratic forms are shown to impose
the same smoothing. However, in terms of the finite dimensional approximations, it is easier to accommodate local
deformations using the wavelet basis.

Key words, image matching, movement compensation, nonlinear variational problem, spectral methods,
wavelets
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1. Introduction. Let F and G be smooth functions on the two-dimensional unit square
12, and let 4(x) be a mapping of the unit square into itself, such that G(x) F(4(x)). It is
clear that if F and G have the same range, many such mappings exist, most of which would
be highly discontinuous and degenerate and not very interesting. However, if the mapping
q (x) is a smooth diffeomorphism of the unit square onto itself, then the extremal points of F
would be mapped via 4-1 onto the extremal points of G, level curves would be mapped onto
level curves, etc. Heuristically speaking, the graphs ofF and G considered as surfaces would
have similar topographies. Conversely, if F and G have similar topographies, then it should
be possible to find a smooth and locally nondegenerate mapping q such that F((x)) is close
to G in some sense.

To illustrate this idea, consider the images in Fig. 1, which are x-rays of two different
hands. If we consider the images as some smooth function sampled at the points of the pixel
lattice, we obtain two functions that indeed have very similar topographies. This would be
the case with any two images of some fixed organ of the body of two different patients, or of
the same patient obtained at different times, provided that these images came from the same
type of imaging device. Consequently, there should exist a smooth and locally nondegenerate
mapping q that transforms one image, called the template, into the other image, called the
data, via composition. The mapping q would automatically match between the corresponding
parts of the two images. See, for example, Fig. 1 where the various parts of the hand such as
the tips of the fingers or the joints are correctly matched.

One ofthe first attempts dealing with the issue ofimage matching can be traced to Horn and
Schnuck [5] and Huang and Tsai [6] in the context of optical flow and movement compensation
calculations for sequences of images. These ideas were further developed by Nagel 10] and
Terzopoulos 11]. In Bajcy and Kovacic [2] these ideas were applied to the issue of matching
medical images of similar organs, such as MRI images of the brain. Here the matching is not
intended to calculate movement, but to automate the analysis of medical images. This second
problem is also more difficult in that large deformations may occur, as opposed to relatively
small deformations in image sequences.
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DAAL03-90-G-0033.
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FIG. 1. The template corresponds to the function F and the data to the function G. The restoration was done
using the Fourier method. The white lines show the matching induced by the displacementfield. A point x in the data
is connected via the restoration to the point x -t- U(x) from which it obtained its grey level value. Thefinal difference
image shows IF(x + U(x)) G(x)] and the initial difference image shows IF(x) G(x)l.

The question is how to find the mapping b. We have addressed this problem by minimizing
the following functional:

(1) I(U) - IF(x + U(x)) G(x)12dx,

where U(x) qb(x) x is the displacement field and T2 is the unit torus. Minimizing I over
some set of vector fields provides a mapping b (x) x -t- U(x) of the torus into itself, such
that F o 4 (x) is close in the mean square norm to G.

It should be noted that the periodic domain is chosen for the sake of notational and
computational convenience. It takes care of the problem of what to do when x -t- U(x) is not
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VARIATIONAL PROBLEM FOR IMAGE MATCHING 209

in 12. Another possibility is that F is defined on some large domain D that includes 12. Then
one would want to minimize over mappings from I2 into D.

To rule out the discontinuous and irregular solutions to this minimization problem, it is
possible to introduce a smoothing or regularizing term, thus obtaining a new functional

(2) J(U) orS(U, U) -k- - IF(x q- U(x)) G(x)12dx,

where is a bilinear form penalizing nonsmooth functions. In all our applications, was
taken to be a Hilbertian norm equivalent to one of the Sobolev norms. Since the domain under
consideration is two dimensional, taking the Sobolev norm to be of order greater or equal to
two will ensure that the solutions are continuous. Higher-order Sobolev norms will, of course,
introduce additional smoothness. This approach was first described in a statistical setting by
Amit, Grenander, and Piccioni 1 ].

The functional J is nonlinear and may have many global and local minima. In the sequel
we will be interested mainly in finding local minima of J close to the initialpoint U(x) 0
that corresponds to the identity map. The nondegeneracy of the mapping q generated by a
local minimizer is then ensured by the fact that it is close to the identity map so that its
Jacobian is nonzero at most points.

There are several major differences between the work mentioned above and the approach
presented here. First, we do not use a data term derived from intensity conservation assump-
tions originally suggested by Horn and Schnuck [5], which is equivalent to linearizing the
functional I as described at the end of 2. It appears that the linearized problem will not
capture larger deformations (see Fig. 2).

Second, the solution of the variational problem is obtained by parametrizing the unknown
function in terms of its coefficients with respect to eitherthe Fourier basis or some wavelet basis,
thus allowing for a coarse-to-fine or multiresolution approach. This was indeed suggested in
11 using multigrid techniques, which may be appropriate for the linearized equations that
have a unique solution and are known to be efficiently soluble using multigrid techniques.
However, given that the nonlinear functional is to be used, and that this nonlinear functional is
not convex, it is not clear how well the classical multigrid approach will perform. The coarse
level displacement is calculated using only the information of a smooothed version of the data
on that same coarse grid, and there is some risk of information being lost. Moreover, when
moving to finer grids, a bilinear interpolation is used that may not be smooth enough and that
may introduce unnatural deformations.

Setting the problem in terms of an orthonormal basis directly incorporates interpolation
through the basis functions. The smoothing operator is automatically written in diagonal form
in terms of the basis chosen. Thus using the description in terms of a basis expansion, and
solving first for low-frequency coefficients, gradually increasing the number can be thought
of as a multigrid method translated onto the finest grid. Although some computational speed
is lost, the advantage is that all the data is used to drive the algorithm.

The level of smoothness versus locality can be controlled by the choice of wavelet basis.
Since the problem at hand is not really governed by physical fluid dynamical or elasticity laws,
there is no special advantage in using the Laplacian as a smoothing operator. The existence
of fast transforms for these bases makes the algorithm computationally feasible.

In 2 the smoothing term g is set to be a quadratic form generated by a linear differential
operator. The approximations are then described together with minimization procedure. The
basic idea is to diagonalize the differential operator using the Fourier basis and to solve the
problem in the spectral domain.
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210 YALI AMIT
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(b)

(c)

FI. 2. A transformation constructed with the Fourier basis was initially applied to the template to generate the
data. (a) was done using the Fourier basis. (b) was done using the wavelet basis. (c) was done using the linearized
equations.
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VARIATIONAL PROBLEM FOR IMAGE MATCHING 211

In 3 an alternative smoothing term is suggested. This time is directly given in a
diagonal form using a wavelet basis instead of the Fourier basis. The eigenvalues are set so
as to ensure the same type of smoothing.

In 4 the experiments are described, and the performance of the two approaches is com-
pared.

2. A nonlinear partial differential equation. Consider the bilinear form

1 fr )2B(f, g) 2(A + e f(x). g(x)dx,

where A denotes the Laplacian with periodic boundary conditions. This bilinear form defines
a Hilbertian norm equivalent to the standard Sobolev norm on H H2(T2). Set s(U, U)
B(U(1), U(1)) + B(U(2), U(2)) in (2). With this choice of the bilinear form in the functional
J, the Euler equation for the minimizer is the following nonlinear partial differential equation
(PDE):

OF
O(t -- E)2U(1) (G(x) F(x + U(x)))-x, (X + U(x)),

OF
o/(t + 8)2U(2) (G(x) F(x r- U(x)))-x2(X + U(x)).

The parameter a determines the relative weight of the regularizing term. Since the issue of the
choice of is not addressed here, we set ot 1. This is the parameter used in the experiments
as well.

For the purpose ofnumerical solutions, it is, ofcourse, necessary to find finite-dimensional
approximations to the functional J. Since the spectral decomposition of A is known, it is
convenient to write J in the spectral domain and then approximate it coordinatewise. Let
)kt, kl denote the eigenvalues and eigenvectors of A, then

kl (2:rt’)2(k2 + 12) + e and (kl(Xl, X2) e2ri(kx+tx2),

and the functional J can be rewritten as

--2 (1),2 (2).2.J(U) AklttUkl + Ukl
k,l=-x

(2) dx+ a(x)]
F(u(1), u (2)) + q(u (1),/1(2)),

(i)where Ukl f u(i)(x)cp/d(x)dx. The vector (u (1) u (2)) e2 e2, is simply the coordi-
nate vector of (U(1), U(2)) with respect to the basis t of L2(T2). We write (u (1), u (2))
zr(U(1), U()). Note that q(u (1), u()) I(U(1), U(2)) with I as in (1).

The finite dimensional approximations of the functional are obtained by taking the sums
in the linear term and those in the integrand between -(N 1) and N. The approximation
is therefore obtained by restricting the argument of J to the space HN HN, where Hv
sPan{dflkl}ff.l=_(N_l). The dimension of the approximate space Hv is (2N)z and zr(Hv x

HN)-- R (2N)2 R (2N)2.
Let Jv denote the approximate functional on Hv x HN. Each of the finite dimensional

functionals is positive and continuous. Moreover, Jv(U) as U o and therefore has
at least one global minimum. Let Sv be the set of global minima of Jv.
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212 YALI AMIT

THEOREM. Let UN SN for N 1, 2 Then UN has a convergent subsequence in
H x H, which converges to a global minimum of J.

Proof. Consider H x H with the Hilbertian norm defined by g(.,-). Since H x H is
compactly imbedded in C(T2) x C(T2), IUN UIHH --+ 0 implies uniform convergence
that, in turn, implies that G (x + UN (x)) -+ G (x + U(x)), as N -- cxz. Since G and F are
bounded, it follows from the dominated convergence theorem that I(UN) -+ I(U). Clearly,
(UN, UN) -- (U, U), so that J is continuous in H.
Now JN(UN) is a positive monotonically decreasing sequence so that it converges to some

value L. Moreover, since UN is the global minimum of J in HN x HN, and since k/= (HN x
HN) is dense in H x H, it follows from the continuity of J that L infunn J(U).

Since UNIHn (UN, UN) < Jm(UN) < J1 (U1) for all N 1, 2 the sequence
UN is weakly compact. Let Umk be a subsequence that converges weakly to some U H x H.
Again, since H is compactly embedded in C(T2), UNk converges in the uniform norm to U
as k -- o. As above, this implies that I(UN) -+ I (U). Together with the fact that J(UN)
converges, we conclude that (UN, UN) converges to L [(U) as k --+ o.

Now since the norm function is lower semicontinuous in the weak topology, we have
g(U, U) <_ L I(U), and since L is the infimum, we have g(U, U) + I(U) L and
(U, U) limko(UNk, UN). This, together with the weak convergence of UN to
U, implies strong convergence in H. Finally, since J(U) L, it is a global minimum
of J.

Observe that by using the same arguments as above, it is possible to show that the set of
global minima of J is compact in H.

Practical considerations. In practice, the template and the data are images and are given
only on a discrete pixel lattice of equally spaced points x, or,/3 0 L 1 in 12. The
unknown displacement field U is given in terms of its array of values at the points ofthe lattice,
which will also be denoted by U. We writeU U(xu) for all c,/3 0 L 1. The
approximate functional JN now has the form

N

(3) JN(U) kl(" (1).2 (2).2.
L-1

[uk, + [u, )+ -- Z [F(x + V) G(x)]2

k,l=-(N-1) or,/3=0

The array uk,l, k, -(N 1) N is the discrete Fourier transform of the array U, i.e.,

(i)_ 1
Ukl -’

l
otfl kl (Xotfl),

a,/=O

and we write u (i) 7r(u(i)). Since F is actually given only on the lattice, and
may not lie on the lattice, it is possible either to truncate to the nearest point or to use a linear
interpolation between the four nearest points. The resolution of the pixel lattice is the finest,
so that these corrections are negligible.

We have not tried to find the global minimum of the approximating functional. Instead,
we have done gradient descent starting at initial point zero. In other words, the following
ordinary differential equation (ODE) in R (2N)2 R (2N)2 was solved.

dt --klUkl
L-1() OF

L2 [F(xa + Ua(t)) G(xa/)] -xi(Xa + Ua(t)),l(Xa).
a,/=0

Writing
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VARIATIONAL PROBLEM FOR IMAGE MATCHING 213

OF7(i)(t) [F(xa# + Uu(t)) G(x,t)] -xi(Xu + Uu(t)),(5) .
the second term in (4) is simply ((Z (i) (t)))t. The choice of initial point zero is motivated by
the fact that the mapping generated by the solution is expected to be in some neighborhood of
the identity map. The symmetric difference approximation of the derivatives of F was used.

It was found that minimizing all 2(2N) coefficients at once for large N is not the best ap-
proach. It might be preferable to st out in a low-dimensional space and gradually to increase
the dimension until the desired maximum dimension is reached. The initial point in each space
is then ten as the local minimum obtained in the previous space. This procedure is also
faster. Heuristically, this can be intereted as matching global features in low-dimensional
spaces and moving on to the finer details as the dimension increases.

The algorithm is described as follows.

(i) Set N 0, initial condition u(0) 0.
(ii) Find local minimum for J, staaing from u (0).

SetNN+landu(0)= [ () for-N<k,lN,
(iii)

/ 0 otherwise.

(iv) Go to (ii).

Step (ii) is caed out by a simple Euler method.
(a) Fix time step dt, set 0.
(b) Generate U(t) from (u(1)(t), u(2)(t))-inverse DFT, U(i) n-l(u (i)) or

N

ua(i) (t) Z U(ki)l (t)qbu(x)
k,l=-N+l

ot, fl =0 L-1.

(c) Carry out quadrature (in (4)) for each eigenvector bkt-DFT, v(i)(t) yr(z(i)(t)) or

L-1

(t)
1 OF

kl Z F(x + Ul(t))xi(X + U(t))dpkt(x).
o,=o

(d) Add the linear term and carry out Euler step.

(i)(t-Jr 1) (i)(t)-dr. [r’r(/)(t)+a (i)(t)]Ukl Ukl kl kltkl

If difference is smaller than tolerance, setN u (t + 1) and go to (iii).
(e) Go to (b).

The time-consuming parts of the algorithm are steps (b) and (c). One option is to apply a
fast Fourier transform (FFT) and an inverse FFT. The dimensions ofthese FFTs are determined
by the size of the pixel lattice on which F and G are defined, i.e., 128 x 128 or 256 x 256.
However, when N is very small, or when the dimensions of the pixel lattice are not powers
of two, it may be faster to actually carry out the quadrature in step (c) for those frequencies
that are being updated and to carry out the summation in step (b) for all points (c,/3) on the
lattice.

In some cases it is possible to carry out the quadrature in (c) on a coarser lattice than the
original pixel lattice; then, of course, the summation in (b) is only done for the points on the
coarse lattice. This is particularly true when F and G are smooth functions. This is related
to the multigrid approach suggested in 11 ]. However, in 11 the number of unknowns is
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214 YALI AMIT

equal to the number of points used and this seems to be insufficient. This is also the case for
the pseudospectral methods described below. In the experiments described here the algorithm
did not produce much improvement for N > 10, and at low frequencies the coarse lattice
quadrature method is indeed faster than the FFT method.

In some experiments it was useful to actually smooth out the template and the data through
some low-pass filter (see Figs. 3 and 4). This tends to single out global topological features
and eliminate local ones. In this case the coarse lattice quadrature is very appropriate. For
images 128 x 128, one could work with a 16 x 16 lattice for the first four or five frequencies
and get good results.

Final Final
Frame 1 Difference Frame 1 Difference

Restoration Frame 2
LOW RESOLUTI ON

Restorati on Frame 2
HIGH RESOLUTION

Initial
Difference

FIG. 3. Frames and 2 are two subsequent picturesfrom an x-ray ofa catheter inserted into an artery. Frame
is used as the template and Frame 2 as the data. The displacementfield isfound by using the wavelet method at

the low resolution, and then applied to the high-resolution template (Frame 1). The black line in the restoration is
almost perfectly aligned with the black line in the secondframe.

If the full lattice has L x L pixels and the coarser lattice has K x K pixels, the number
of floating-point multiplications used in this method is of order K2 N2, with N being the
number of frequencies, whereas using the full FFT would be approximately L2. log L2. Thus,
depending on the number of frequencies to be used, it is possible to choose which is the most
appropriate. As a rule, K, the number of quadrature points, should be greater than N, the
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VARIATIONAL PROBLEM FOR IMAGE MATCHING 215

Final Final
Frame 1 Difference Frame 1 Difference

Restoration Frame 2 Restoration Frame 2

SMOOTH VERSION ORIGINAL VERSION

Initial Difference Displacement field

FIG. 4. The same setting as in Fig. 3. The restoration is done using the Fourier basis. The line in the restoration
is not aligned at the upper right-hand corner.

number of frequencies being solved. For high frequencies the coarse lattice approximation is
therefore not suitable, in which case it is clearly advantageous to use the FFT.

Another method is the pseudo-spectral method described by Gottlieb, Hussaini, and
Orszag in [4]. Since one does not expect to solve, say, for N > K (namely, the solution
that is assumed to be in H/( x Hx) using the periodic version of the sampling theorem, one
can write

K-1

u(i) (X) "-’orr(O S#(x),
a,=O

whereS (x) are trigonometric polynomials andx, or,/3 0 K 1 are equally spaced
points on the unit square called the collocation points. Thus

K-1

A2u(i) (x) Y ’-’o4tr(i) A2So (x)"
u,/=O

If the quadrature in (3) is carried out on the K x K lattice of collocation points, then the
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216 YALI AMIT

gradient descent equation has the form

dU(i)(t)
dt E [(i)cfl (t)(A2 - F,)Sot(Xy3)

OF
[F(x + Ua(t)) G(xva)] -xi(Xa + U(t)),

for y, 8 0 K 1. Now since the minimization is taking place in the space domain, the
coupling between the equations occurs in the smoothing term and not in the data term. The
derivatives of the functions S at all collocation points can be calculated off-line and stored as
a matrix.

The discrete time iterations for this ODE require only one time-consuming step, the
summation, as opposed to the previous schemes that had two time-consuming steps. If a
K x K lattice of collocation points is used, the number of floating-point multiplications is
approximately K4.

The disadvantage of this method lies in the fact that the number of frequencies being
updated is equivalent to the number of collocation points used. Thus if only very low frequen-
cies are to be updated, very few collocation points are used and they are insufficient to obtain
a good result. On the other hand, if more collocation points are used, the solution obtained
involves higher frequencies at the start and this might be undesirable. There is also no natural
way to gradually increase the dimension of approximation.

As mentioned in the Introduction, a further possibility would be to linearize the functional
by substituting F(x) + VF(x) U(x) for F(x + U(x)) in I(U). Then we obtain a quadratic
form in U(x), or in the coefficients u,t, which has a unique minimum. The Euler equations
for this functional are precisely those suggested by Horn and Schnuck [5]:

OF OF
o/(A "+" t)2U(1) -- (VF- U)-x (G(x) F(x))

OX
OF OF

u(A + s)2U(2) + (VF. U)x2 (G(x) F(x))-x2
Experiments with this option have not led to satisfactory results; see 4 and Fig. 2.

The disadvantage of the various spectral methods described above is the use of the Fourier
basis whose functions have global support. This makes local changes in U or in the mapping
b difficult to achieve. A very attractive alternative is the wavelet basis.

3. The wavelet method. Using a periodic wavelet basis obtained from certain types of
compactly supported wavelets, it is possible to rewrite the functional J in such a way that the
same regularization is achieved with a different bilinear form. First, a brief survey of various
results regarding these wavelets. For a detailed description of the discrete wavelet transform
used in the experiments see the Appendix.

Periodic wavelets. Let be a compactly supported wavelet as constructed by Daubechies
in [3] with support in [-R, R]. Let 4 be the corresponding function that generates the
multiresolution analysis. Observe that q has compact support on [0, 2R]. Defineenk(X)
2n/2 lC’=_ (2n(x-l)-k) andqe (x) 2n/:nk l=-oo b (2 (x l) k) for 0 < x _< 1. All
the functions with superscript P are periodic with period 1 and if k 2" then nk nO
similarly for qe. The number of terms in these sums is determined by the support of and
is bounded by 2R. For n > r log2 R + 1 there are at most two terms in the sum.

For small n the functions apP cannot be expressed as scales and shifts of P0 (x) _= P
nk

However, for n > r, we have pe(n+l)k(x) VCn(2X --k), where the argument is considered
modulo 1 or on the unit circle. Moreover, the family of functions pe for n 0, 1 andnk
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k 0, 1 2n 1 together with the function q0 1 form an orthonormal basis. Let
V0 span{40} (i.e., the constant functions) and Wn span{ "t’Pv,nk}2"-lk=0 Using the fact that
the ordinary wavelet basis spans L2(R), it is not hard to verify that

L2(T 1) V0 )nCX=l Wn,

where T is the one-dimensional torus. All that is necessary is to extend a periodic function

f to a function F 6 L2(R) by making 2R copies to the fight and to the left of the unit interval
and leaving the rest zero. Expanding F in the ordinary wavelet basis, we find that the part
supported on [0, 1 can be given in terms of the functions 1 and /tn/; see [9, Chap. III, 11 ].

By [3] for sufficiently large R, the functions ap and 4 are twice differentiable and the first
two moments of are zero. Hence by [9, Chap. II, Thm. 8], f 6 H2(T) if and only if

x 2n-i

C f f)- foo + J(1 + 42n) < ,
n=l k=0

where foo f f(x)dx and fnk f f(x)p(x)dx. This implies, via the closed graph
theorem, that the Hilbert norm C(f, f) defined above is equivalent to the Sobolev norm.

In two dimensions let

P,a

P,b P P P,c P11nk (X) rnk(X nl(X2), IInk (X) lk(Xl)rnPl(x2).
Let V0 denote the constant functions and

{ P’a] 2"-1 n-1n
a) span klInk

k,l=O

similarly for b and c. Setting Wn Wf’a @ Wne’b @ Wne’, we can show that

L2(T2) V0 nC= mn.
As in one dimension, f 6 H2(T2) if and only if

cx 2n-1

(f(b))2 ’(c)C(f, f)- f)o "p"Z (1 --t-. 42n) ((fn(])2 -I nkl "l- tdnkl )2) < 0,
n=l k,l=O

where fn] f f(x)Ttn)a (x)dx, similarly for b and c. Consequently, it is possible to redefine
e(U, U) in the functional J as C(U() U(1)) -k- C(U(2) U(2)) to obtain the same regularization
as before. Now the finite dimensional spaces are given by

N-1HN Vo )n=0 Wn"
Thus the regularization on the infinite dimensional space is the same as in the Fourier method;
however, the sequence of approximations is different, and hence should lead to different types
of solutions.

Observe that HN is of dimension 2N x 2N. Moreover, for f HN, the coefficients can
be arranged in a 2N x 2N array C so that Coo j and

(a) for 2n < k < 2n+a and 0 < < 2nkl

Ckt JC(b)nkt for 0 _< k < 2n and 2n _< < 2n+l,
c(c) for 2n < k < 2n+l and 2n < < 2n+lJnkl

forn 1 N-1.
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Practical considerations. The algorithm itself proceeds very much like the one described
in the previous section except that the Fourier transform is replaced by the two-dimensional
wavelet transform. In practice, we are working with discrete data so that we use the discrete
two-dimensional wavelet transform developed by Mallat in [8].

This transform takes the data D given on a discrete 2N 2N lattice as representing
the coefficients of some function f HN on the unit square with respect to the functions
P 2N(PNkt, k, 0 1. Think of f as an interpolation between the data values Dij given

on the discrete lattice using the compactly supported functions nkl" As above, the function

f can be decomposed into its coefficients with respect to the wavelet basis. Let C denote
this new 2N 2N array of coefficients, and write C W(D). Mallat [8] provides a very
simple and fast algorithm for calculating W (D), the forward wavelet transform, and W-1 (C),
the inverse wavelet transform. For the sake of completeness this is described in detail in the
Appendix.

Now the algorithm described previously is modified as follows. Let u (i) describe the
wavelet coefficients of U(i), i.e., u i) W (ui)). In step (iii) we now have

(i) { (N)kl
u (0)

0

for0 _< k,l < 2N 1,

for 2N < k < 2N+I or 2N < < 2N+I.

In other words, when increasing the level of approximation 3 2N zeros are added for each
component of the displacement field. In step (b) we have Ui) (t) W- (ui) (t)) and in step
(C) v(i)(t) W(Z(i)(t)) with z(i)(t) as in (5). In step (d) the eigenvalues )kt are replaced
by r/t 1 + 42n for 2n _< k < 2n+l, 0 _< < 2n, or 0 _< k < 2n, 2n _< < 2n+l, or
2n _< k < 2n+l 2n < < 2n+l

In this approach the smoothing term is, of course, decoupled as before. In addition, since
at higher frequencies aPnk have small support, the data parts of the equations are only locally
coupled. This is in contrast to the Fourier approach in which all the equations are coupled
through the data part.

This points to a clear advantage of the wavelet approach. It allows for local updates in
problematic regions where the difference between F(x + U(x)) and G (x) is still large, which
has a relatively small effect on other regions where the difference is small.

The periodic setting we have chosen greatly facilitates the discrete algorithm by elimi-
nating the need to store extra boundary terms at each level. Thus the size of the transformed
data at each level of resolution is precisely that of the original data.

In practice we have used R 3, which does not generate a wavelet smooth enough to
apply the above-mentioned theorems; however, it performed well enough for our purposes.

The wavelet algorithm was tried using only the discrete transform. Due to its speed and
ease of implementation there was no need to try the quadrature method for low-frequency
coefficients. Moreover, instead of smoothing the data G and the template F as in the Fourier
method, we take a lower resolution version ofboth, which consists of smoothing and sampling
at the coarser grid (see the Appendix). The field U is found on the coarser grid. This field is
then interpolated to the fine grid through the inversion formula (6) in the Appendix with the
y coefficients set to zero (see Fig. 3). Again, this is similar to multigrid techniques; however,
we did not apply it to a cascade of grids or continue the algorithm at the fine grid. This was
merely a way to help the algorithm to "see" similar topological structures.

4. Description of experiments. In the first experiment (Fig. 1), the transformation be-
tween one x-ray of a hand, the template, to another, the data, is found and is used to automat-
ically identify the location of important landmarks of the hand in the data image. The white
lines connect points in the template to the points they are mapped to by the displacement field.
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VARIATIONAL PROBLEM FOR IMAGE MATCHING 219

In this case, the tip of the index finger was successfully located in the data, whereas the tip of
the little finger was slightly misplaced. The restoration has definitely succeeded in correcting
the widths of the fingers and the palm. Observe that the fingers in the template are wider
than those in the data, as is the palm of the hand. The absolute value of the initial difference
between the images is shown as compared to the absolute value of the difference between the
restoration image and the data. The black area indicates large differences.

In the second experiment (Fig. 5), the restoration on the right represents the result using a
fixed dimension, whereas the restoration on the left used a sequence of increasing dimensions.
The maximum dimension used was N 7. Using the increasing dimension method not only
produces a better result, but is also much faster when the Fourier transform is calculated via
quadrature only for the frequencies being updated.

Final Final
Tern late DiTTerence Tern ate Diirerence

Restoration Data Restoration Data

INCREASING LEVELS (N=2-7) SAME LEVEL (N=7)

(a) (b)

FIG. 5. The restoration was done using the Fourier method. Using (a) increasing levels ofapproximation starting
at N 2 up to N 7, and (b) using afixed level N 7.

In the third experiment, we use a synthetic image consisting of two "humps" for the
template F. The data G was created by composing F with some field U. The field U was
generated by drawing the coefficients of the Fourier basis from independent Gaussian random
variables with variances 1/)nm for -9 < n, rn < 10. On the left in Fig. 2, we have the
restoration process using the Fourier basis and on the right using the wavelet basis. Observe
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that the final field obtained by both methods is very similar. Again, it is possible to see that the
topological landmarks the maxima, the saddle points, etc. are mapped into each other
by the field U. At the bottom we have the restoration using the linearized equations. These
did not do nearly as well in spite of the fact that the mean square error in the equation was
down to 10-5.

The fourth experiment (Fig. 6) shows what happens whenwe attempt to use a template with
the wrong topological features (Template 2) as compared to the correct template (Template 1).
The data in this case was the same as in the previous two pictures with added independently and
identically distributed Gaussian noise of variance 0.2, when the grey level values are scaled
to the interval [0, 1]. Even though the restoration using the wrong template is fairly good,
the displacement field is highly irregular when compared to the displacement field obtained
by using the correct template. This might indicate a method of determining which of several
possible templates corresponds to the objects in the noisy image.

Final Final
Tern late 1 Dfference Tern late 2 Difference

Restoration 1 Data Restoration 2 Data

Displacement field I Displacement field 2

(a) (b)

FIG. 6. Gaussian independently and identically distributed noise was added to the data. In (a) the correct
template was used, and in (b) a different template was used (one hump instead of two).

The fifth experiment illustrates the possible advantages of the wavelet basis. The template
F is a subimage from a sequence of x-rays of a catheter that has been inserted into a coronary
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artery. The data G is the corresponding subimage ofthe x-ray that follows in the sequence. The
idea is to use the algorithm to find the movement of the catheter between the two images. In
this experiment the template F is larger than what is actually seen in the image. In other words,
the function F is defined outside the unit square. When x + U(x) lies outside the unit square,
the value of F is taken from that point and not from the corresponding point on the torus.
Thus we did not wrap around when composing the template with the mapping. This allows
the algorithm to find possible movement in and out of the frame under consideration, and is,
of course, much better adapted to the issue of movement compensation between consecutive
movie frames.

Figure 3 shows the result using the wavelet basis. On the left side are the low resolution
versions of the template, Frame 1, and of the data, Frame 2, together with the restoration
obtained by using these lower resolution versions in the algorithm. On the right side are the
original Frame 1 and Frame 2 together with the restoration obtained by using the displacement
field from the low-resolution calculation. Most of the movement between these two consecu-
tive frames has occurred in the upper right-hand corner and, indeed, the restoration has found
that movement. Observe that in the low-resolution versions the black lines are widened and
thus begin to overlap. This is what generates a gradient for the algorithm to proceed along.

Figure 4 shows the result of using the Fourier basis. The smooth version is on the right
and the high resolution is on the left. Observe that this time the change in the upper right-hand
corner was not found by the restoration procedure. Apparently, the wavelet basis performed
better due to its ability to create a local change in the field without affecting other parts of the
image.

In this experiment both the data and the template images are quite noisy. In the Fourier
method the Fourier transforms of the template and the data are low-pass filtered and retrans-
formed to the original space domain. They are, therefore, much smoother than in the wavelet
case where a low-resolution version of the two is used, i.e., a low-pass filter that is not retrans-
formed to the original resolution. This explains why the final low-resolution difference image
in Fig. 3 is much noisier than the corresponding smooth version difference image in Fig. 4.

It should be noted that this movement analysis of the catheter is done without any pre-
processing of the images to find the line or edge corresponding to the catheter. The algorithm
was "helped" only by having it run on the low-resolution transform of the images. In such a
way the "canyons" corresponding to the lines become wide valleys that overlap and enable
the algorithm to draw them into one another. In other words, if the high resolution images are
used, small changes of the field do not produce a better mean square error because the error
along both canyons remains the same. Thus there is no clear gradient in any direction. On the
other hand when the "valleys" overlap, the direction in which the field could reduce the error
is clear.

In the sixth experiment (Fig. 7), we tried to find the movement between two subsequent
frames of x-rays of the coronary arteries themselves. The direction of movement varies
between different parts of the frame and the wavelet method managed to accommodate these
local changes. In this experiment the actual difference between the two frames is compared
to the actual difference between the restoration and Frame 2. The grey levels indicate values
close to zero. Black or white values indicate large differences.

5. Conclusion. We have presented a nonlinear functional whose minimizers represent
the mapping that transforms one image or function into another. The minimizers make sense
only in so far as the two functions considered as surfaces have similar topographies, so that
one function may be considered as a template for the other.

The functional is regularized using two different choices of a bilinear form. The first form
is generated by a differential operator and has a spectral representation using the Fourier basis.
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Frame 1 Restorati on Frame 2

Initial Difference FinalDiference

FIG. 7. Frames and 2 are two subsequent pictures from an x-ray movie of the coronary arteries. The
displacementfield corresponds to the movement between the twoframes. The initial difference and thefinal difference
pictures represent the actual difference. Grey values are close to zero and white and black values correspond to large
differences. The restoration was done using the wavelet method.

The second form is directly defined in the spectral domain using a wavelet basis of compact
support. Both bilinear forms generate the same type of regularization, namely, they constrain
the solutions to the same Sobolev space.

The variational problem is solved in terms of the expansion coefficients of the unknown
map in terms of the chosen basis. The solution starts at low frequency and gradually moves up.
The experimental results clearly indicate that the wavelet basis is more flexible and permits
local changes in the mapping.

Appendix. For the sake of completeness we briefly describe the discrete wavelet trans-
form so that the interested reader can code it without further reading. We start with the
one-dimensional case.
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Let N 2n and let x () (x0 XN-1) be the data. Given two vectors g
(go g2R-1), and h (ho h2R-1), let h x () and g x(), i.e.,

2R-1 2R-1

2k--" hjX[(k+j)modN], k-- gjX[(k+j)modNl,
j=0 j=0

fork 0 N-1. Now setx 1) 92i and yl) fi2i for/-- 0 N/2-1. Alternatively,
we write x (1) Hnx) and y<l) Gnx(O), where Hn, Gn are linear mappings from RN to
RN/2. As long as N > 2R, it is possible to write the N/2 x N matrix for Gn as follows:

go gl g2 g3 g2R-3 g2R-2 g2R-1 0 0

0 0 gO g g2-3 g2R-2 g2R-1

g2 g3 g2- 0 0 0 0

0 0

0 0

go gl

The N/2 N matrix for Hn is given in the same way using the vector h. (Observe that we
have indexed the matrices according to the log of the dimension.) This is the first level of the
transform. Using the properties of multiresolution analysis and other techniques (see [3] and
[8]) it is possible to find vectors g and h with the following properties.

(i) /2__R-I gi 0 and /2=R-I hi ,
(ii) gi (--1)nh2R-l-i,

(iii) HtnHn +GtnGn I,
(iv) HnGtn O.
The first item implies that the Hn matrix is a smoothing operator and that the Gn matrix is a

difference operator. The third item is the inversion formula. The fourth item is an orthogonality
condition. Given two vectors x, y of length N/2, then the corresponding vectors in the full
resolution space are orthogonal, i.e., Htnx, Gtny) O.

() for() andy g 2iThe second level of the transform is given by x{2) h -2i
0 N/4 1. yl remains unchanged. Thus, at each level, the smoothed version x i),

which is of length 2n-i, is decomposed into yet a smoother version x+1) and the difference
component y(i+l) both of length 2n-i-1. Clearly, this procedure comes to an end at step

n, where x (n) and y(n) are scalars. The sequence of vectors x 1) xn) are called lower
resolution versions of the original vector x.

From the inversion formula it follows that

n-1

X (i) gtn_ig_i_l --n--14-1
l=i

In Daubechies [3], numbers for the vectors h and g are calculated so as to satisfy the four
conditions listed above (see [3, p. 980]). Moreover, Daubechies shows that the wavelet corre-
sponding to these numbers satisfies certain smoothness conditions. In terms of the inversion
formula above this means that if we set xn) 1 and y(J) 0 for j 1 n, then the
vectors

x (i) Htn_i H;_i_ "HI
for small values of are smooth. It should be noted that since we are working here in the
periodic setting, x () would be constant.
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In two dimensions the wavelet transform is constructed using the one-dimensional opera-
tors described above. An initialN x N matrix xC) is decomposed into four components. First,
the one-dimensional transform is carried out on the columns, A Hnx) and B Gnx(O),
where A, B are N/2 x N matrices. Then the one-dimensional transform is carried out on the
rows of A and B or on the columns of A and Bt, and we obtain

X (1) nn At nn(nnx()) t, ya(1) Gn At Gn(nnx()) t,

yb
(1) nnBt nn(Gnx()) t, yc(1) Gn Bt Gn(Gnx())t.

The low-resolution version of x C0) is x 1). The transform continues by operating on x 1) with
the matrices G,,_, Hn-. Finally, the inversion formula has the form

,,-t (1))t (1)(6) x) Gtn (GtnY(c1) -- ly -- H (GnY + nx(1))
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