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ABSTRACT

A nonlinear viscoelastic model has been developed

to describe the non-Newtonian viscosities and the pri-

mary normal stress differences of high polymers at

steady-state shearing flow.

It has been demonstrated that the Huang-Shangkuan

model gives the best representation of the experimental

data for a wide range of shear rates. In the high shear

rate region the Huang-Shangkuan model is distinguished

among other models by its capability to predict the non-

Newtonian viscosities and the primary normal stress dif-

ferences which the other models fail to predict.

Continuum mechanics, Lodge's network theory and

Rouse's theory provide specific information in develop-

ing our model. The theoretical aspect of this model is

also supported by the experimental data, which were

taken using the accurate Weissenberg rheogoniometer.
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CHAPTER 1 INTRODUCTION

(1.1) General Description

Most fluids of industrial importance are character-

ized by the well-known Newtonian hypothesis (5), in which

the shear stress is proportional to the shear rate. How-

ever, for liquids or solutions of very high molecular

weight (say, M.W.> 104 ) striking deviations from the above

hypotheses are obviously observed. Similarly other struc-

turally complex materials, such as liquid crystals, soap

solutions and pastes, deviate from Newtonian behavior. All

these fluids are referred to as "non-Newtonian fluids".

Classification of Fluids

(1.2) Viscous Fluids--Newtonian Fluids

The stress-deformation behavior of this ideal body

is best considered by imagining two parallel plates of very

large area (A) separated a very small distance r by the vis-

cous fluid. A shear force J is applied to the top plate and

the top plate is moving with a constant velocity V along the

x-direction (Fig. 1-1).

Fluids which obey the following simple relations



(1.3) Non-Newtonian Fluids

Non-Newtonian fluids can also be classified into three

broad classes of flow behavior (10); time-dependent, time-

independent and viscoelastic fluids.

(a) time-independent fluids

Fluids in which the shear stress is a function of

the shear rate only are defined mathematically by the equa-

tion

(b) time-dependent fluids

Fluids are those in which the shear stress is a

function of both the shear rate and time. These fluids are



There are three kinds of time-dependent fluids: thixotropic,

anti-thixotropic and rheopectic (50).

(c) viscoelastic fluids

Viscoelastic fluids are those which are predomi-

nantly viscous but which exhibit partial elastic recovery

after deformation. One simple form in representing the

viscous and elastic properties of fluids is

The viscoelastic property of fluids manifests itself

in such phenomena as die swell and calender swell in indus-

trial processing. Examples of economically important uses

of viscoelastic fluids are to be found in the plastics in-

dustry and in the production of synthetic fibres, in oil

well technology (drilling fluids), in biology, in rocket

fuels and in the application of coatings. (See the August

1964 issue of Chemical Engineering Progress.)

(1.4) Failure of Previous Viscoelastic Models

In the recent years, many attempts have been made to

*     The detailed mathematical description is in chapter 3.



L.

derive rheological equations which could describe visco-

elastic behavior. Unfortunately it is commonly found that

most derived equations could not predict experimental ob-

servations, particularly those at high shear rates (8)(9)(42)

except occasionally in simple steady flow situations where

elastic effects are assumed negligible. On the other hand

linear viscoelastic models and molecular theories in gen-

eral are restricted to very small rates of shear flow or

cannot show a nonlinear viscoelastic behavior at large rates

of shear.

The most successful models in the past come from the

nonlinear extensions of the differential or integral equa-

tions from generalized Maxwell equations or from Lodge's

network theory (29)(50). For example, the models such as the

Spriggs and WJFLMB models (25)(27)(42)(47) are shown to

describe qualitatively all viscoelastic properties with

rate-of-shear dependence. The Bird-Carreau model is able

to predict the behavior of a large variety of fluids at

low range of shear rates. However it fails to describe

rheological properties of some polymer solutions under a

steady state when the shear rate becomes quite high (6)(12).

(1.5) The Purpose of This Thesis

The main purpose of this work is to obtain a realistic

rheological model which not only is free of the weak points

of previous models but also describes reasonably the behav-



for of polymer solutions for a wide range of shear rates.

Whenever possible, information from molecular theories will

be used to interpret the physical meanings of parameters in

our model.

5



CHAPTER 2 TENSOR APPLICATION TO RHEOLOGICAL EQUATIONS 

(2.1) Introduction

Generally speaking, the rheological equations defin-

ing the properties of an element of a viscoelastic fluid

may involve all the kinematic and dynamic quantities. The

form of the completely general rheological equations should

be restricted by the requirement that the equations describe

rheological properties independent of the coordinate systems.

In order to describe the motion of a continuous media, it

is inconvenient to use a fixed set of coordinates. Instead,

a convected (moving) frame of reference is needed in connec-

tion with the description of the deformations of fluids. In

the present chapter, tensor methods for describing finite

deformations of fluids are applied to the development of

rheological equations.

(2.2) Convected and Space-Fixed Systems

The motion of fluid can be described mathematically

by (29)

where xi is the fixed space coordinate of space points at

an instant time t;t C is the convected body coordinate of

P particle in space at an instant time t. Tr the Above

6
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equation, x stands for a set of coordinates x
1
,x

2
,x
3 
and t

-0
for a set of coordinates	, t

3
. We may assign numbers

to the convected coordinates of the particle at some refer-

ence time t 0 .

(2.3) Base Vectors, Metric Tensors, Displacement Tensors

and Deformation Tensors

Given a position vector r in a fixed coordinate system

we have (40)(41)

In a shorter notation eq. (2-2) can be written as

then

	

D I	)

	

where ---	is defined asE. .g. (g. ). The quantities I .

are defined as a covariant base vector andg as a covariant
ij

metric tensor. Similarly contravariant base vectors can be

defined as the solutions of
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where d
j 

is a Kronecker delta.

Contravariant metric tensors are given by

In the convected system base vectors and metric ten-

sors can be defined in the same way as those in the fixed co-

ordinate system. Namely

where y(Σt): convected covariant base vector

1(s ..0: convected contravariant base vector

convected contravariant metric tensor

j	convected covariant metric tensorg=t,

The convected base vectors or metric tensors can be

related in the same manner as two sets of base vectors or

metric tensors are related in classical vector and tensor

analysis (52). Thus we have

and
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where x
i 
and tare related by ea. (2-1).

From Noll's terminology (33) one may define a displace-

ment tensor F and its inverse F
-1 

for the purpose of de-
..

scribing deformation tensors which are extensively applied

to the building of nonlinear viscoelastic models (2)(3)(4)

(13)(25)(27)(29)(44). The representations for F and F
-1 

are

F and F
-1 

defined in above two equations are satisfied by:

where	is the unit tensor. In eq.(2-13) the tensor F
δ

transforms the covariant base vector associated with a given

particle at time t o into the convected covariant base vector

associated with the same particle at time t. The functions

of F or F
-1 

in eqs. (2-14),(2-15),(2-16) could be explained

similarly as that in eq. (2-13). The transposes of F and F
-1

could be written as



1 0

In terms of displacement tensors one can now define

deformation tensors such as the Cauchy tensor, the Finger

tensor, the Green tensor and the Piola tensor as follows (18)

The notation above displays explicitly the relations among

the four tensors. For example, if the reference state t o

and the present state t are interchanged (i.e. t o -lot), then

the Green tensor becomes the Cauchy tensor. Through the

transformation rules of tensors (32)(36), the above equa-

tions can be written in a fixed-coordinate system.



The Cauchy, Finger, Green or Piola tensors with their

derivatives * are usually starting points for modifying the

small rate of the deformation tensor - in the generalized

Maxwell model, in order to obtain a reasonable rheological

model which could predict the Weissenberg effects of elastic

effects of polymers at large rates of deformation (6)(12)

(31)(32).

For details of derivatives of these tensors, refer to
reference (18).

1 1



CHAPTER 2__NONLINEAR VISCOELASTIC MODEL BUILDING

(3.1) Introduction

The response of a material to an applied stress can,

in principle, be predicted if the rheological equation of

the material is known. During the past two decades, much

effort has been put into developing rheological models in

order to predict the rheological properties such as non-

Newtonian viscosities, normal stress differences, etc..

It would be most satisfying to be able to develop every-

thing and to predict experimental observations with a non-

linear equation from a molecular point of view. However

due to complex physical phenomena of high polymers at large

rates of deformation (7)(14), successful molecular theories

to rheological model building in general are restricted to

very small rates of deformation* . Therefore several re-

search groups have put much effort into developing nonlin-

ear rheological equations only from the phenomenological

point of view (24). In the phenomenological approach, em-

phasis is put on formulating the relationship between the

components of stresses (shear stress or normal stress) and

the rate of deformation. The parameters involved in a rheo-

logical model presumably represent the characteristics of

the material. Whenever possible, information from the mo-

Sec. (1.5) in chapter 1.

12
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lecular theories will be applied to explain the flow prop-

erties. There are two general approaches toward nonlinear

viscoelastic model building. These will be discussed as

follows.

(3.2) Generalized Maxwell Model

The simple Maxwell element * is made up of combinations

of spring and dash-pot. One can regard the force on a spring

as proportional to strain and the force on a dash-pot as pro-

portional to the rate of strain. Consequently the spring

and dash-pot represent the elastic and viscous properties

of the fluid respectively. The equation is

in which η is the viscosity and G is the rigidity.

Fig. 3-1 Maxwell Body

*
Refer to Fig. 3-1.



In eq. (3-1) e_ is defined as the relaxation time
1

(7). The simple Maxwell body cannot describe normal stress

difference or non-Newtonian viscosity of real viscoelastic

liquids adequately in most cases, but it could be general-

ized by the idea that the total stress in the liquids is

the superposition of individual stress, each arising from

the motion of molecular segments of various sizes (32).

Therefore

Eqs. (3-2-A) and (3-2-B) can be written in three other

equivalent forms as (7)



15

Eqs. (3-2) and (3-3) are the differential forms of the gen-

eralized Maxwell model. In eq. (3-5) r ij (t') is defined

as an infinitesimal strain tensor *	= rad + (2U ) 4") where

LA is the displacement vector (6)(36); the last two equa-

tions are the integral forms in which the present time t

is taken as the reference state to which the states of the

fluid at past time t' are referred. Generally speaking,

the description of rheological properties of material at

small rates of deformation (i.e. linear viscoelasticity)

can be made quite satisfactorily with any of above four

equations (5). However in an attempt to predict rheologi-

cal behavior at large rates of deformation, the generalized

Maxwell model must be modified. A brief listing of the

modified models stemming from the above four forms can be

written as follows.

models based on

equation	
models

(3-2)	Spriggs (44), White-Metzner (48)

(3-3)	Oldrolyd (34), Roscoe (38)

(3-4)	Walters (47), Fredrickson (21)

(3-5)	WJFLMB (42), Bird-Carreau (6)(12)

It is understood that the principle of material objec-

tivity must be satisfied, when making modifications of the

)
+
 is the transpose of E(A .
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generalized Maxwell model, so that invariance properties

are not changed (29)(6)(12)(33)(36). The principle of ma-

terial objectivity states that the form of any rheological

equations must be the same in any two coordinate system; for

example finite strain tensors ( the Finger tensor etc. ) and

their derivatives with respect to time satisfy rules of ten-

sor transformation in both convected and fixed coordinate

systems. The generalized Maxwell model as mentioned satis-

fies the principle of material objectivity only under a very

small rate of deformation.

(3.3) Functional Analysis

The functional approach has been used to obtain var-

ious rheological models by Lodge (29), Coleman and Noll (15).

The definition of a functional is: a variable y is said to

be a functional of x(t) if the value of y is determined by

the value of x(t') throughout the interval t oE...tit. The

mathematical form is

One of the familiar examples in eq. (3-6) is the integra-

tion of x(t') from t o to t

A more general form of the above equation still linear in

x(t) is



in which K1(t;t') is defined as the kernel.

There is a fundamental theorem in the calculus of

functionals (29)(46), which states that y can be expressed

as a series of integrals. Therefore

where y1 is expressed in eq. (3-8) and

This process of generalization can be continued to obtain

the triple integral in y3 etc.. We may therefore follow

the same fashion in eq. (3-6) and express the contravariant

stress as

where 51 (t') is the convected contravariant metric tensor

as seen in eq. (2-8). The range of the variable t' is ex-

tended to	the assupmtion that the stress at any time

t in an element of material is determined by the flow his-

tory of the shape of that element. The expansion of eq.

(3-11) by the use of eq. (3-9) results in

17



where

Q1
The form of'

)	
and higher terms in eq. (3-12) is much

A LI),	ALT
more complicated because 3	(t'), 5 (t") must satisfy

the principle of material objectivity. One possible com-

bination is (29)

Similarly the contravariant stress tensor can be expresse

by

where	7,- is the covariant stress tensor

A
q (t)is the convected covariant metric tensor

For the form in eq. (3-15), Coleman and Noll have shown

that the application of functional analysis and the prin-

ciple of material objectivity lead to the following rheo-

logical equation expressed in the fixed-coordinate system

(16)

18



and Cij(t,t") is the Cauchy tensor given in eq. (2-24).ij

ti1, /A2, 3 are unspecified memory functions. In eqs.

(3-16), and (3-17), g
1
 ij (x) are the covariant components of
3

the fixed metric tensor. It is interesting to note that

the general equation (3-16) reduces after simplification to

some equivalent viscoelastic models, which extend from the

generalized Maxwell equation (14).

19



CHAPTER 4 SOME PHENOMENA OF POLYMERIC FLUIDS 

(4.1) Steady-State Shearing Flow

Consider a fluid placed between two parallel plates

as shown in Fig. 1-1 in which there exists a non-zero com-

ponent of velocity in only the x-direction. If the sub-

scripts x,y,z denote, respectively, the flow direction,

the direction of velocity variation, and the neutral direc-

tion, then the flow is defined as the steady-state shearing

flow ; that is

For detailed definitions of this type of flow, see ref.
(29).
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where	is the magnitude of the rate of deformation

e*	

ten-

.
sor e and is usually called the "shear rate" (p. 4 ref. 7

and p. 8 ref. 32). Shear stresses τxy and normal-stress

differences, which exist in steady-state shearing flow, are

among the most commonly measured rheological properties of

viscoelastic fluids. They are very important in engineer-

ing problems involving the flow of polymer solutions or

polymer melts. Hence, any adequate rheological model must

have a good description of the rate-of-shear dependence of

the non-Newtonian viscosities and normal stress differences.

The simple steady-state shearing flow can also exist in

other flow geometries such as cone and plate flow, cylin-

drical flow (Poiseuille flow), Couette flow etc..

(4.2) Definition of the Coefficient of Normal-Stress Dif-

ference

The coefficients of the normal-stress difference in

polymeric fluids are defined as

*
eyx is the yx-component of the rate of deformation ten-

sor	=	+17k+) where + indicates the transpose. The

quantity S- is the magnitude of le defined by i =	(è

 . In steady-state shearing flow )--= e xy1=1Pxyl

where	is defined as - A-X/reji



where 0	and	(only two of which are independent) are

functions of	& is the primary normal-stress coeffi-

cient and	is the secondary normal-stress coefficient. The

definitions of &	, \C3 are taken in eqs. (4-3)(4-4)(4-5)

because many fluids exhibit a quadratic dependence of normal

stress differences on shear rate in the limit of shear rate

(p. 10 ref. 32). For some time it is thought that

(or \3 = 0) and this relation is called the Weissenberg hy-

pothesis. The normal stress differences do not exist for

Newtonian fluids; therefore, 6	= N3 = 0.

(4.3) Some Illustrations of the Normal-Stress Effects of

Polymeric Materials

In order to illustrate the main differences between

the behavior of Newtonian and non-Newtonian fluids, the

following experiments were proposed (7)(29). The Newtonian

Fig. 4-1 Climbing Effect of Non-Newtonian Behavior
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fluid is indicated on the left and the polymeric material

on the right in each figure.

In Fig. 4-1 is an observation of the shape of the

surface of a fluid in a beaker, into which a rotating rod

is inserted. The Newtonian fluid on the left graph is mov-

ing toward the wall of the beaker because of the centrifugal

force; the polymeric fluid placed on the right beaker moves

toward the rotating rod and climbs up the rod due to normal

stress effect. This phenomenon is called the Weissenberg

effect which has been fully explained by Weissenberg him-

self (29).

An additional measurement can be made by putting pres-

sure taps at A and B. For the Newtonian fluids the pressure

at B exceeds that at A because of centrifugal force; on the

other hand the pressure at A exceeds that at B for non-New-

tonian fluids.

When a solution of a polymer of sufficiently high mo-

lecular weight flows out of a tube, the diameter of the

emerging liquid increases; this is named the die swell

effect of polymers shown in Fig. 4-2, which has been ob-

served very often in many industrial operations. However,

for the Newtonian fluids, the diameter of the emerging

fluids is reduced by 13% because of a consideration of

momentum conservation (29).

In Fig. 4-3 is the axial laminar flow in a concen-

tric annulus (28). The pressure taps are mounted on either
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	contraction of	pronounced swelling
Newtonian fluid	effect of polymers

	

Fig. 4-2	Die Swell Effect

for Newtonian fluids
pressure sensors at A
and B read the same

for polymers pressure
sensors at A and B
do not read the same

Fig. 4-3	Pressure Difference in the Axial Laminar Flow
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side of the annular gap at the same height. For Newtonian

fluids, pressure readings at A and B are the same; on the

other hand, the pressure reading at A is greater than that

at B for the non-Newtonian fluids.

(4.4) Summary

From above illustrations one comes to the conclusion

that at steady-state shearing flow the polymeric fluids

and Newtonian fluids have striking differences in behavior

due to normal stress effects. Since 1950 normal stresses

have been studied by phenomenological approach with exten

sive experimental observations. However molecular theories

developed so far to explain the complicated phenomena in

polymeric fluids are still not satisfactory. The presently

available molecular theories in the literature seem to fall

into three main categories:

(a) Bead-spring theories appropriate for dilute macro-

molecular solutions (38)(54).

(b) Chain-chain interaction theories, appropriate for

solutions of intermediate concentrations.

(c) Network theories, appropriate for concentrated

solutions and melts (29)(53).



CHAPTER 5 A PROPOSED RHEOLOGICAL MODEL 

(5.1) Types of Rheological Models

In the past two decades we have seen that for the

steady state shearing flow at small rates of deformation the

generalized Maxwell model could provide an adequate descrip-

tion of rheological behavior of dilute polymer solutions.

However, when the rates of deformation become large, any one

of the four forms of the generalized Maxwell equation given

in eqs. (3-2-A) to (3-5) fails to predict the rheological

properties. The types of rheological models can be classi-

fied as

(a) linear viscoelastic models

The differential forms or integral forms of the

generalized Maxwell model fall into this category; they are

written in fixed coordinates for the infinitesimal strain

or the infinitesimal rate of strain Y'

(b) nonlinear viscoelastic models

In attempting to develop these nonlinear models,

most investigators have chosen to begin with any one of the

generalized Maxwell model and modify it in various ways to

make the equation capable of describing some large deforma-

tion phenomena. From continuum mechanics we have the re-

quirement of material objectivity. This means that an ac-

ceptable rheological equation should be independent of rigid

26



body motions; in other words, the form of any rheological

equation must be the same in any two coordinate systems.

If one uses convected coordinates correctly in formulating

rheological equations, this requirement is satisfied auto-

matically (36). For example, the Spriggs model is a nonlin-

ear differential extension of the generalized Maxwell model

given in eq. (3-2) , where Y: j is replaced by the finite rate-
.

of-strain tensor C (35)(40)(43) and δ/δt is substituted by

the nonlinear operator Fabc . Therefore the Spriggs model

can be written as

where the nonlinear operator is defined by

In eq. (5-2)	is the Jaumann derivative.

The inclusion of the rate-of-strain invariant L 2 in

the memory function given in eq. (3-5) is an example of the

nonlinear integral extension of the generalized Maxwell mod-

el where L 2 is defined as

	* 
ie in the convected coordinate system is defined as

(''' '' ' tV)-t)2 where rS(t.-t) is the convected contravariant met-
ric tensor.



so that the memory function in eq. (3-5) can be written as

(5.2) Description of Lodge's Network Theory (29)

It is assumed that the polymer solution in the network

theory consists of an assembly of very long chain molecules

linked together to form a network of segments of various

lengths. A given molecule may be linked to the network at

two or more points (junctions), but the segment between suc-

cessive linkages can contain many links (repeating units);

the number of repeating units of a segment effectively linked

to the network will be different for different segments. The

following main assumptions have been made in Lodge's network

theory:

(a) The flowing polymer is treated as an imcompressible

fluid.

(b) The contribution of the free energy to the stress

from the solvent and unattached polymer molecules of seg-

ments with loose ends is negligible. The stress is made up

of the sum of contributions from all previous time t'. The



contribution to the stress in the interval t' and t'+dt'

arises from chain molecules which joined the network and

are still part of the network at the current time t; from

the kinetic theory of rubber elasticity (45), the concen-

tration of network junctions which were formed in the in-

terval t', t'+dt' and which still exist at the present time

t is

where N(t-t') is the network junction age distribution.

(c) The Gaussian network is assumed. The chain mole-

cules are formed from freely-jointed rigid straight links

each of length 1; when the ends of any chain segment in the

network occupy fixed positions of separation r, the number

of density of configurations (of equal energy) available to

that segment is a Gaussian function

where n is the number of links in the segment, and K is a

constant whose value is immaterial.

(d) The volume is constant for a constant temperature.

From the above assumptions, the following equations are ob-

tained:
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(5.3) Memory Functions in the WJFLMB Model and in the Bird-

Carreau Model

As pointed out by many previous workers on rheological

model building (6)(29)(42), the memory function m(t-t'),

which is a function of t-t' only, can be generalized to in-

clude the rate-of-strain invariants so that better predic-

tions of the normal-stress differences and the non-Newtonian



viscosities vs. the rates of deformation for polymer solu-

tions are available. Lodge (29) suggests that the memory

function m(t-t') can be generalized by allowing the memory

function to depend on the second rate-of-strain invariant

L2, which in convected coordinates is defined as*

so that the memory function can be written as

The above modifications of the memory function gives

a polymer solution whose non-Newtonian viscosities and

normal-stress coefficients 6 ,	in eqs. (4-3), (4-4)

and (4-5) depend on the shear rates at steady-state shearing

flow.

The memory function of the WJFLMB model is obtained

from Lodge's suggestion that

Therefore the shear-rate-dependent memory function is

The summation has been omitted on the right hand side
of eq.(5-6).
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with

where ηo	is the zero-shear-rate viscosity

λ	is a time constant

c	is a constant (When c=1, the Weissenberg hypoth-

esis is valid.)

α	is a dimensionless parameter

Bird and Carreau (6) extended the WJFLMB model and

proposed the memory function as

with

where λ1, λ2	are two time constants

α1,α2	are two dimensionless parameters

η1,η2  are two atbitrary constants

In eqs. (5-12-B) and (5-12-C)λ1p and λ2p are two

sets of time constants. The use of λ1p, λ2p and can be ex-

plained by Lodge's network theories; the set of time con-

stants λ lp is associated with the rate of creation of net-

work junctions and λ2p associated with the rate of loss of
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network junctions. At the present time the Bird-Carreau

model has been recognized as satisfactory in predicting the

non-Newtonian viscosities and the primary normal-stress be-

havior for polymer solutions at both low and intermediate

shear rates. However, it is inadequate to predict the rheo-

logical properties at high shear rates. *

Development of the Huang-Shangkuan Model 

(5.4) A Proposed Memory Function in the Huang-Shangkuan Model

Due to the incapability to predict the rheological

properties at high shear rates using the Bird-Carreau model,

we generalize the memory function in eq. (5-8) as

By the use of the above equation, the following memory func-

tion can be set up

in which we postulate the time constant λ2p and the viscosity

parameter 17 are dependent on the second rate-of-strain in-

See Figs. 6-5 and 6-6.
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variant L2. This idea is original in comparison with any

other previous models.

(5.5) Reduction of Parameters

A rheological equation is of limited value until the

parameters are properly reduced. Ideally one would hope to

construct a model starting completely from a theory with

basic microscopic variables such as chain geometry, molecu-

lar weight, etc. However, this approach is not quite suc-

cessful for polymer solutions at intermediate and high con-

centrations. For very dilute solutions, there has been good

progress, developing from the early theories of Rouse and

Ruche (19)(39), which apply to linear deformations or to

steady-state shearing deformations of high polymers at low

shear rates. In other words, these theories are not suffi-

cient to predict shear-dependent viscosities and normal stress

differences of concentrated polymer solutions at high shear

rates. Proper extensions of Rouse's theory to concentrated

polymer solutions result in a very useful rheological model;

the unlimited number of parameters in the Huang-Shangkuan

model are properly reduced based on the modification of

Rouse's theory.

The dilute solution theory of Rouse (39) indicates that



wnere η0  a zero-near-rate viscosity

X is the longest relaxation time which is related to

polymer properties such as temperature, degree of

polymerization, root-mean-square end-to-end distance

of a polymer segment,

Corresponding to eqs. (5-15),(5-16) we consider the following

empirisms for the constants in our memory function-,

where /15 1d-z) , )\,5(1-,).) are functions of the second rate-of-

strain invariant. Eqs,(5-17-A), (5-17-B), (5-17-C) could

be reduced to
'

)7	)■1 , ?ap in eqs. (5-12-A) to (5-12-C) in
P 	P

the Bird-Carreau model provided that



(5.6) Choice of Finite Strain Tensors

As shown in chapter 3, the generalized Maxwell equation

cannot predict shear-rate-dependent non-Newtonian viscosities

and normal stress effects at large rates of deformation; there-

fore, the replacement of ri j(t') by a finite strain tensor is

necessary. There are many finite strain tensors to choose

from*, but we select a simple strain tensor (the Finger tensor)

which is suggested by continuum mechanics (29). Therefore we

replace

where 2,- is the Kronecker delta and C(&o is the Finger tensor.

(5.7) Expressions of the Finite Strain Tensor and the Second

Rate-of-Strain Invariant L2 at steady State Shearing Flow

between Two Parallel Plates

For computational purposes, it is often very handy to

have the Finger tensor expressed by Cartesian coordinates.

If we denote the Cartesian vector by e i , the convected covariant

base vector (it)and the convected contravariant base vector_ ,ro(G

In chapter 2, the Cauchy tensor, the Finger tensor, the
Green tensor or the Piola tensor with their combinations are
the choice for finite strain tensors.



can be expressed in Cartesian coordinates through coordinate

transformation

Therefore, the displacement tensor F and its transpose FT

in eqs. (2-12-A), and (2-18) in Cartesian coordinates become

Consider the steady state shearing flow between two parallel

plates, which is shown in Fig. 1-1



Fig. 1-1	Shear Deformation

where Xi and Xi' are the Cartesian coordinates of a particle

at time t (present time) and t' (past time) respectively.

The velocity profile is

where

In order to determine F and F
T , we first integrate eq. (5-21)

Therefore



Take the particle f at time t' as the reference state t o ;

therefore E = ( ).	, b ) and X = ( X , ,j , ) . From

eqs. (5-19) and (5-20)

The Finger tensor, which is defined in eq. (2-21), is equal

to



Therefore the finite strain tensor in eq. (5-18) becomes

From eq. (5-6), L2 in convected coordinates is defined

as

which could be written in fixed coordinates as

where e r or	are the components of the rate-of-strain

tensor given in section (4-1).

In the Cartesian coordinate system, L2 in eq. (5-28)



can be further simplified to

At steady state shearing flow, the shear rate is

Therefore

where

From eq. (5-31), it is understood that L2 is closely related

to the shear rate. This is very helpful to correlate shear-

rate-dependent material functions to the invariant property

(L2).

(5.8) Expressions of Shear Stress and Normal Stress Differ-

ence at Steady-State Shearing Flow between Two Parallel

Plates

After eqs. (5-14) and (5-27) are combined, the pro-



posed rheological model can be written in the matrix from

as *

From the above equation, the following components are ob-

tained:

At steady-state shearing flow the notation (x,y,z) = (1,2,3



The integrals in eqs. (5-34), (5-35) are easy to compute b:

use of

and we get

Therefore



Some interesting results can be observed from 17 and 0 in

the above two equations:	contains .X,2p but /7

contains only )72 and ),,y, . In the limit case that •2f, = 0,

the model could describe purely viscous fluids without normal-

stress effect.

(5-9) Asymptotic Expressions for the Material Functions at

High Shear Rate

The material functions in eqs. (5-40) and (5-41) are

not very useful until the unlimited sets of constants /7 (L )
2 '

X,T(L2 ) and )7q7 are reduced. It has been shown that L 2 = 2); -2.

in eq. (5-31) at steady-state shearing flow. After substi-

tuting L2 , "117 (1,2 ),	, yli2 ) given in section (5-5) into

eqs. (5-40) and (5-41) and rearranging them, we obtain



0-0

where .2 . (,-L p	is the Riemann-Zeta function. Only

the first few terms of the above rapidly convergent series

are necessary to determine 7 and 9 at low shear rates.
However, for large shear rates, the asymptotic expression

in a closed form are obtained by use of the Euler-Maclaurin

sum formula (37) (12)*:

In consideration of )/5(2)% -t) and ,\,5 (4-3) in the above two

The detailed derivations of the asymptotic expressions
of part (A) and part (C) in eqs. (5-42) and (5-43) at high
shear rates refer to reference (12).



equations, there could be many choices. But we select one

simple form:

where a, b, c and d are *dimensionless parameters. Therefore,

we can rewrite the material functions as

In the above two equations, there are a total number of

nine parameters:

η0	is the zero-shear-rate viscosity

λ1, λ2	are time constants

α1, α2 are dimensionless parameters related to

power-law behavior



a, b, c, d	are dimensionless parameters related to ex-

perimental observations at high shear rates.

(5.10) A Method of Nonlinear Parameter Estimation

Due to the complicated behavior of polymer solutions,

the usual nonlinear least-square method fails to predict the

parameters in our model. Instead, the method of superposi-

tion is applied; the first approximation in estimating the

parameters from experimental observations can be made by

the analysis of eqs. (5-48) and (5-49) in which, for conven-

ience, we label



Therefore both equations (5-48) and (5-49) are rewritten as

48

Generally the experimental data of the non-Newtonian viscos-

ity vs. the shear rate of high polymers can be visualized

as four regions shown in Fig. 5-1 where

region I : the viscosity is nearly constant at quite

low shear-rate region.

region II : the transition period is between region I

and the power-law region (region III).

region III : in this region, the slope of viscosity

vs. shear rate is approximately constant

(power-law region).

region IV : the slope of log / vs. log j' deviates

from that in the power-law region and in-

creases steadily. For some polymeric flu-

ids of which the region IV does not exist* ,

As suggested by Dr. Huang and Dr. Phillipoff, approxi-
mately 10% of polymer solutions could have the existence
of region IV.



Fig. 5-1	Experimental Non-Newtonian Viscosity vs. Shear

Rate for Polymeric Fluids
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Fig. 5-2	Non-Newtonian Viscosity vs. Shear Rate

for Polymeric Fluids
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therefore, the power-law region extends

directly to region IV.

The procedures to estimate parameters are

(a) When Y-f. 0, 2--+y, where	, the viscosity at zero shear

rate, can be estimated from Fig. 5-1 or obtained from the

literature.
at

(b) From eq. (5-50-A) and the slope 	 ) of the curve (A)

in region III in Fig. 5-2,	and X i are evaluated.

(c) The evaluation of parameters a, b from eq. (5-51) and the

curve (B) in Fig. 5-2 are based on the technique of pattern

search (49). In the pattern search, an objective function

must be applied. We define an objective function as SUM=
, / A 

2

1,:yye ) where	fromfrom the curve (B) in Fig. 5-2 is

regarded as a set of data points and Yi is computed from eq.

(5-51). When the program of pattern search continues, the

optimal values of parameters a and b are computed after the

objective function SUM reaches the minimum value (49).

(d) Similar to the procedure in part (b), v4,2 and 'X,7 in eq.

(5-52-A) are obtained from the slope ( 1--°'6") of the curve

of log C' vs. log	shown in Fig. 5-3*.

(e) By use of the same procedure for the non-Newtonian vis-

cosity given in part (c), parameters c and d can be estimated

from eq. (5-53) and the curve (D) in Fig. 5-3.

(f) By incorporating the initial values of parameters from

Log	vs.LoNthas the similar curve as that of the non-
Newtonian viscosity as shown in Fig. 5-1. Note that -k -1 1 - 7)/11
is the Superposition of three curves (C'),(B) and (D).	10



Fig. 5-3 Normal-Stress Differences vs. Shear Rates

for Polymeric Fluids
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steps (a) to (e) and the experimental data in Figs. 5-2 and

5-3 as the input to the computer program in Appendix 2, a

final adjustment of the input parameters can be executed in

order to get an optimum set of parameters. The technique

used in the computer program is based on the pattern-search

technique. The objective function associated with this
'	A 2

technique is defined as '."_((Yi-Yi)/Yi) where Yi is a set

of data points of /7 or -(%-722,) and Yi is computed from

eq. (5-54-A) or from eq. (5-55-B).

(5.11) Description of the Spriggs and Bird-Carreau Models

In order to compare our model with the other models

in the next chapter, we describe simply the Spriggs model

and the Bird-Carreau model here. The Spriggs model is a

nonlinear extension of the generalized differential Maxwell

model given in eq. (3-2). This model is treated as a special

case of the following equation (35)(43).

where the nonlinear operator is defined by



-a-- is the Jaumann derivative in the above equation (52).
D -E

Spriggs has proposed a 4-constant model by setting

/Ito= 0, 17=1fi l ,	. The unlimited number of para-

meters Xif , and )7f, are reduced by modifying Rouse's theory:

where X is a time constant, I/ 6 is the zero shear viscosity

and Z(04) is the Riemann zeta function. The following mate-

rial functions are derived from eqs. (5-56) to (5-59) at

steady-state shearing flow

1
where C = (2/3) 2 when the Weissenberg hypothesis is used.

There are a total of four constants / 0 ,	, X , C in the

Spriggs model.

By the use of the memory function in eqs. (5-11) to

(5-12-C) and the finite strain tensor in eq. (5-27), Bird

and Carreau generalize the Maxwell equation (3-5) given in



integral form. Therefore, the following material functions

at steady-state shearing flow are obtained:

.55

where five parameters are included: η0	,α , α 2 , λ1 andλ2.



CHAPTER 6 EXPERIMENTAL EVALUATION OF THE MODELS

(6.1) Introduction of the Weissenberg Rheogoniometer

The experimental data in this thesis was taken with a

Weissenberg Rheogoniometer, a cone and plate apparatus which

can be used to measure shear and normal stresses for steady

rotation and/or oscillatory motion. The fluid to be tested

is placed between the cone and the plate. If the angle be-

tween the cone and the plate is small enough, the shear rate

in the fluid is very nearly uniform throughout the gap.

Measurement of rotational speed and torque required to drive

the cone yields the shear rate vs. shear stress relation of

the fluid. The amount of normal force that results from

this specimen can be found through the measurement of total

force exerted by the specimen on the bottom platen. In Fig.

6-1 is a typical arrangement of the Weissenberg Rheogoniome-

ter which was designed by Weissenberg and manufactured by

Farol Research Engineers Ltd., England. Due to its precise

measurements and simplified working equations to predict

rheological properties, the Weissenberg Rheogoniometer is

now widely used both commercially and academically. It con-

sists of three major parts; the drive unit, the measuring

unit and the control unit with read-out system.

(a) the drive unit: At the left side in Fig. 6-1 is

the drive unit which contains a 1 h.p. 1800 RPM synchronous

56



Fig.6-1 TYPICAL ARRANGEMENT OF THE WEISSENBERG RHEOGONIOMETER
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motor driving a gear box next to it with gear ratios from

1:1 to 1:10 -5 ' 9 in sixty logarithmic steps. The drive from

the gear box is transmitted into the electromagnetic brake/

drive at the left-hand side of the measuring unit. The drive

passes from the brake unit into a two-way drive box and then

into the main drive box. A bronze spur gear on the drive

shaft in the two-way drive box transfers the drive to a hor-

izontal 4-start worm via a steel spur gear near the left end

of the worm. A horizontal worm gear in the main drive box

transfers the drive to the lower platen shaft of the cone-

and-plate viscometer.

(b) the measuring unit (central part in Fig. 6-1): It

is rigidly constructed and contains the cone-and-plate vis-

cometer (Fig. 6-2).

Fig. 6-2 Simplified Picture of the Cone-
and-Plate Viscometer in the Measuring Unit
of the Weissenberg Rheogoniometer
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The torsion bar in Fig. 6-2 is used to detect the move-

ment of the upper cone in order to get the shear stress. The

lower platen shaft can take the total force acting on the

lower plate by the specimen. The total force can be trans-

mitted to press a leaf spring beneath the lower platen shaft

(Fig. 6-3). The rear end of the leaf spring is held rigidly

as a cantilever in a rigid block. The leaf spring has its

free end on line with the micrometer and the spring loaded

plunger vertically. As the normal force is increased, the

leaf spring will be deflected. But its deflection can be

adjusted to zero through the functions of the servomotor and

the spring loaded plunger. In other words, the spring loaded

plunger will lift the free end of the leaf spring to zero

position and the servo motor, at the same time, absorbs the

deflection on the leaf spring exerted by the lower platen

shaft. Therefore, the total force can be obtained by the

product of the reading of the micrometer and the spring rate

of the leaf spring.

(c) the control unit with read-out system: This part

of the instrument (Fig. 6-1) consists of various controllers

and recorders. The signals from the transducers are picked

up by "Penderford multimeters" whose signals can, in turn,

be displayed on an x-y recorder or photographed from an os-

cilloscope screen. The transducer meter is calibrated to

read linear displacement directly in microns with ranges



Fig. 6-3 ARRANGEMENT OF NORMAL FORCE MEASUREMENT
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from 5 to 2000 microns of full-scale deflection.

(6-2) Working Equations for the Computation of Non-Newtonian

Viscosities, Primary Normal-Stress Difference and Shear

Rates in a Cone-and-Plate Viscometer

We use a system of spherical polar coordinates

(1, 2, 3).0p, Q , )') in which the origin is C and the axis

0= 0 is vertically upwards. Let the angular velocity of

the lower platen shaft be IL . We consider a state of flow

for a fluid filling the gap between plate and cone is such

Fig. 6-4 Spherical Polar Coordinates System
(Origin C) for Shear Flow between a Cone-and-
Plate in Relative Rotation
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that the angular velocity	of the liquid varies from the

value ft c, at the plate to the value zero at the cone 6.i+ AO;

therefore, fL=4(&).

(a) working equations of shear stresses and non-

Newtonian viscosities

The equations of motion in a spherical polar coor-

dinate system can be applied to derive these working formulas.

The-component of the equation of motion is

Assume that the fluid in the gap of cone-and-plate

is under steady-state shearing flow. Therefore the following

assumptions are valid (8).
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and

depend only on the shear rate "or .

Because of the symmetry of the state of flow with

respect to arbitrary rotations about the cone axis. Therefore

Applying the assumptions in eqs. (6-2-B), (6-2-D), (6-2-E)

and (6-2-F) to eq. (6-1), we obtain

The above equation can be rewritten as

which, on integration, gives

Since ;P/4+0 for points in the gap; the constan t
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here must be independent of r and ϕ.	gϕθ is also independ-

ent of θ when Δθ is very small because it is a function of

r alone . The total torque M exerted by the fluid on the

plate is given by

where R is the radius of the plate. From eqs. (6-4) and

(6-5) we obtain

and

If the torsion bar constant kt and the movement

of torsion head transducer ΔT are known we can express eqs.

(6-6-A) and (6-6-B) as

See eq. (6-2-C)



where R is the radius of platens (cm)

M is the torque

T is the movement of torsion head transducer in

microns

K
t 

is the torsion bar constant in dynes-cm per micron

movement of the transducer

(b) working equation of shear rates

From eq. (6-6-B), we know that	can be treated

as a constant when 49 becomes very small. We obtain the

relationship between go and the gradient of Ito from the

following equation (5)

When this equation is inserted into eq. (6-6-A), we get the

following ordinary differential equation

Based on the following conditions:

(i) ito = o at 0 = +d62,

(ii) 1)-0 .11,r at 0 = 3E

(iii),D is very small

The solution of the above differential equation can be

approximated by (5)
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The definition of	is

Therefore, by the use of eq. (6-10), we obtain

(c) working equation of primary normal-stress differ-

ences

The Y. -component of the equation of motion in a

spherical coordinate system has the following form
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Based on the assumptions in eqs. (6-2-A), (6-2-B),

(6-2-C), (6-2-D) and (6-2-F) (neglecting the centrifugal

force term -PV2ϕ/r) we get

where π = P + 1yy . A rearrangement gives

The above equation may be integrated from r = R to r = r

to give

where Tro- Irp; -217 yy is constant based on the fact that eq.

(6-2-C) is valid. The total thrust of the fluid on the

plate minus the thrust associated with atmospheric pressure

Pa is

Insertion of 76 from eq. (6-15) into (6-16) gives after

integration
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Then we make use of the fact that, if the free surface of

the fluid is a spherical surface at r = R, Pa = πnr(R).

q. (6-17) finally yields

From section (6-1) we know that the total thrust is the

product of the reading of the micrometer and the rate of the

leaf spring kN . Therefore the working formula of primary

normal-stress difference becomes

where 61j is the reading or movement of micrometer in micron

kN is the rate of the leaf spring in dynes per micron

movement of the free end

(6.3) Presentation of Experimental Data and Model Evaluation

To gain insight into viscoelastic solution behavior

three typical samples were tested. The first one used in

this study is

(a) the polymer solution with 2% by weight polyiso-

butylene (PIE) in primol (a phamaceutical white oil). This

solution was prepared by Dr. W. Philippoff and the experi-

mental data by Dr. D. Huppler in University of Wisconsin.

The cone angle used in the Weissenberg rheogoniometer is
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1 °37 with the plate diameter 7.5 cm.

The experimental data of this sample along with

the predicted results from the Huang-Shangkuan (our) model

are presented in Figs. 6-5 and 6-6. These results are also

given in Table 6-1. The parameters estimated, by the use

of the procedures given in section (5-10) for 2% PIB in

primol, are : 110 (9968),A (5.56), 'XI (90.5), 04_ (4.69),

-2\z(46.2), a(0.788), b(0.223), c(0.495), d(0.356).	The

results from the Spriggs and Bird-Carreau models are also

given in the same figures (Figs. 6-5 and 6-6) for the pur-

pose of comparison among these models.

As noted from these figures, the Spriggs model

is found to have the following main weak points:

(i) The curve of log -(111 -1;2_) vs. log ); has,
incorrectly, the same slope in the power-law region.

(ii) The slope of log	42.) vs. log	is

too rigidly related to the slope of the viscosity curve.

In other words, only one parameterc4 is incorporated to

predict the power-law behavior in both	and -(/1) -, 6h)

data. Therefore the difference between the predicted and

the experimental data is significant. More experimental

data along with the predicted results from the Spriggs mod-

el are given in Appendix 1 for the purpose of illustrating

those discrepancies.

The Bird-Carreau model, developed later, has the

capability to compensate for the above weak points. However,
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Table	6-1

Tabulated Rheological Data for 2% Polyisobutylene in Primol

r	a shear rate (sec)

It ,: experimental non-Newtonian viscosities
(poise)

(041, 

: the viscosity from the Huang-Shangkuan

model (poise)

-	experimental primary normal-stress

differences (dyneAm 2 )

(1/440,i+ primary normal-stress differences from the
Huang-Shangkuan model (dyne/cm2)
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Table	6-1

)114\4p Loy,  j	f
l

-(grci7'1 -57-7-)i	coy,.

5.27x10 -2 2.18x10 3 2.16x103 2.93x102 3.36x102

6.69x10 -2 1.93x103 1.82x103 3.30x102 3.78x102

8.39x10 -2 1.67x103 1.54x103 3.93x102 4.24x102

1.05x10 -1 1.42x10 3 1.32x103 5.35x102 4.76x102

1.33x10-1 1.17x10 3 1.11x103 5.45x102 5.39x102

1.67x10-1 1.01x10 3 9.59x10
2

6.20x102 6.09x102

2.11x10
-1

8.48x10
2

8.02x10
2

7.50x10
2

6.94x10
2

2.65x10
-1

7.51x10
2

6.88x10
2

7.50x10
2

7.90x10
2

3.33x10
-1

6.22x10
2

5.87x10
2

9.50x10
2

9.03x10
2

4.20x10

-1

5.19x10
2

5.00x10
2

1.14x103 1.04x103

5.27x10
-1

4.55x10
2

4.48x10

2

1.42x103 1.19x103

6.69x10 -1 3.72x10
2

3.69x10
2

1.47x103 1.39x103

8.39x10
-1

3.21x10
2

3.17x10
2

1.74x103 1.62x103

1.05 2.71x10
2

2.75x10
2

1.89x10 3 1.89x103

1.33 2.35x10
2

2.35x10
2

2.28x103 2.23x103

1.67 1.98x10
2

2.04x10
2

2.66x103 2.63x103

2.11 1.75x10
2

1.76x10
2

3.09x103 3.14x103

2.66 1.48x102 1.54x10

2

3.75x103 3.77x103

3.33 1.29x10
2

1.34x10
2

4.50x103 4.54x103

4.20 1.15x10
2

1.17x10
2

5.40x103 5.53x103

5.27 9.45x10

1

1.03x10
2

6.60x103 6.67x103

6.69 8.86x10

1

9.01x101 8.40x103 8.46x103

8.39 7.66x10

1

7.97x101 1.06x10

4

1.05x104

1.05x10
1

7.07x10

1

7.07x101 1.35x10
4

1.33x10
4

1•33x10
1

6.35x10

1

6.27x101 1.74x10
4

1.70x10
4

1.67x10 1 5.81x10

1

5.60x101 2.27x10
4

2.20x10
4

2.11x10

1

5.12x10

1

5.00x101

3.04x10
4

2.90x10
4

2.66x10 1 4.67x10

1

4.50x101 3.86x10
4

3.85x104

3.33x10
1

4.25x10

1

4.07x101 5.30x10
4

5.17x104



Fig.	6-5

Non-Newtonian Viscosities for 2% Polyisobutylene (PIB)

Data of Dr Huppler (55)
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A A A

•••••suouta.	 •

Experimental data from the Weissenberg Rheogoniometer

The Spriggs model (13)

the parameters are	)70 : 11500 poise

04: 3.5

A: 145 sec

: 0.39

The Bird-Carreau model (13)

the parameters are	)70: 9968 poise

2.85

Diet : 2.33

X I : 149.5 sec

170.3 sec

••••••■*••■••••	•••••••n■••

The Huang-Shangkuan model

the parameters are ID : 9968 poise

044 : 5.56

041 : 4.69

90.5 sec

46.2 sec

: 0.788

b : 0.223

c : 0.495

: 0.356
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Fig.	6-6

Normal-Stress Difference for 2% Polyisobutylene (FIB).

Data of Dr. Huppler (55)

Experimental data from the Weissenberg Rheogoniometer

The Spriggs model (13)

the parameters are	: 11500 poise

: 3.5

: 145 sec

0.39

The Bird-Carreau model (13)

the parameters are	lo : 9968 poise

: 2.85

2.33

X I : 149.5 sec

170.3 sec

The Huang-Shangkuan model

the parameters are	1 : 9968 poise

: 5.56

„42 : 4.69

2,4 : 90.5 sec

Az : 46.2 sec

: 0.788

b	4.47

C : 0.495

: 2.81
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discrepancies at high shear rates in the Bird-Carreau model

have been obviously observed; the power-law behavior in re-

gion III extends directly to region IV at high shear rates.

Contrary to the unsatisfactory predictions by the Bird-

Carreau and Spriggs models, a good agreement between the ex-

perimental data and the Huang-Shangkuan model is observed

from Figs. 6-5 and 6-6. One comes to the conclusion that,

if parameters a and c in eqs. (5-46) and (5-47) are

(i) larger than 0, the Huang-Shangkuan model de-

scribes exactly region IV behavior of polymer solutions; in

this case, 2% PIB solution is a typical example.

(ii) equal to 0, the Huang-Shangkuan model describes

the power-law behavior. In this case, the Huang-Shangkuan

model can be reduced to the Bird-Carreau model. Therefore,

we can regard the Bird-Carreau model as a special case of

the Huang-Shangkuan model.

(b) The experimental data of two polymer solutions were

taken in our laboratory and evaluated using the Huang-Shangkuan

model in order to illustrate the condition (ii) mentioned

above. The results are given in Figs. 6-7 and 6-8. The

cone angle 1°58' with the plate diameter 5 cm are used in

the Weissenberg rheogoniometer.

The discussions above reveal that the Huang-Shangkuan

model has a better agreement than the other two models when

these typical samples were tested. We also include in Ap-

pendix 1 some other important constitutive equations or
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rheological models proposed in recent years, such as the

Tanner-Simmons model, the Nakamura-Yoshika rigid-chain model,

etc. to illustrate the inadequacy in their predictions of

the viscosity and normal stress data. Rather intensive re-

view of these models has been given by Spriggs and Carreau

(14)(43).



Fig. 6-7

Non-Newtonian Viscosities and Normal-Stress Differences

for 2% MD-333 in Primal 355.

aaAAA	
: Experimental data of viscosity

Awa A
: Experimental data of normal-stress

difference

Evalution of the Huang-Shangkuan model

the parameters are

. 51 poise1)	'
: 1.398

: 0.6589

0.3263 sec

)\). : 0.5317 sec

a : 0

b : arbitrary constant

C

e4 : arbitrary constant

78



102

102
102

1 0 -1 10

( SEC - 1 )

1 0

10
4

1 0

10
5

10
4

•103



80

Fig.	6 - 8

Non-Newtonian Viscosities and Normal-Stress Differences

for Polystyrene S-111 15% in Aroclor-1248 "denatured"

: Experimental data of viscosity

A A A A	: Experimental data of normal-stress

difference

: Evaluation of the Huang-Shangkuan model

tha parameters are

% 6700 poise

: 1.8416

oz .4 : 0.3803

x o : 0.272

: 0.2285

: 0

b : arbitrary constant

d : arbitrary constant
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

The principal objective of this dissertation is to

propose a realistic rheological model in conjunction with

Rouse's theory and Lodge's network theory. The Huang-

Shangkuan model has three important aspects:

(a) It has been demonstrated that our model gives the best

representation of the experimental data for a wide range of

shear rates in comparison with the Spriggs model and the

Bird-Carreau model.

(b) In the high shear rate region (region IV) the Huang-

Shangkuan model is distinguished among other models by its

capability to predict the shear stress and the primary nor-

mal stress difference which the other models fail to predict.

(c) Our approach to nonlinear viscoelastic model building is

original in that we postulate that the time constant and the

viscosity parameters are dependent on the second rate-of-

strain invariant.

In summary, the following areas are considered in de-

veloping and testing the Huang-Shangkuan model:

Continuum mechanics provides the mathematical framework

(kinematic definitions, tensor equations, etc.) for express-

ing a specific relation between the stresses and kinematic

variables.

Lodge's network theory has provided some specific information

in explaining molecular behavior such as the creation and

82
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the loss of network junctions in polymer solutions. Rouse's 

theory has provided the starting point in reducing an unlim-

ited number of parameters in the Huang-Shangkuan model.

Primary experiments, including the measurement of normal

stress differences and viscosities, provide the necessary

tests for our model.

RECOMMENDATIONS 

There are a number of interesting studies which merit

consideration:

(a) Develop some successful rheological models for concen-

trated polymer solutions entirely from the molecular point

of view. Although some molecular theories such as bead-

spring theories, chain-chain interaction theories or net-

work theories, have been developed in recent years, they

are not quite successful in predicting rheological preper-

ties of high polymers. A sound molecular theory would help

in properly relating model parameters to physical proper-

ties such as molecular weight, chain branching, chain

stiffness, temperature and other important variables of

high polymers.

(b) There is a lot of controversy concerning the magnitude,

sign and shear rate dependence of the second normal stress

difference -(L-J 3 ). Accurate measurement and theoreti-

cal study of this stress would permit us to understand the

relation between	-17.i) and -(1,2.



(c) For extremely difficult flow problems where the pros-

pects of getting an analytical solution seem hopeless, di-

mensionless analysis may be possible. In our model, the

parameters η0, α1, α2, λ1 ,λ2, a, b, c and d can be

used to construct dimensionless groups. These groups may

then be employed to get data correlations. Due to the fact

that complicated behavior exists in polymer solutions, such

correlations will require an enormous amount of effort to

derive.



NOMENCLATURE

a,b,c,d	dimensionless parameters related to experi
mental observations at high shear rate in
region IV

C(t,t
0 )
	Cauchy tensor

C
-1

(t,t
0 )
	Finger tensor

C(t n ,t)	Green tensor

C
-1

(t
0'

 t)	Piola tensor

	

Jaumann derivative

e	rate of deformation tensor

	

the total thrust of the fluid on the plate
in a cone-and-plate viscometer

F,F
-1

	

displacement tensors

F
T

	

the transpose of F

F
-1T

	The transpose of F
-1

	

a functional of t' throughout the interval
to

≤t'≤t

gi	covariant base vector in a fixed coordinate
system

gij	contravariant metric tensor in a fixed coor-
dinate system

gα(Σt)	convected covariant base vector

gα(Σt)	convected contravariant base vector

k	Botzmann's constant

k
n	

the rate of the movement of the leaf spring
in the Weissenberg rheogoniometer

k
t	torsion bar constant

Ki	the kernel of i-th integral of a functional

L
2	second rate-of-strain invariant

M	the torque exerted by the fluid on the torsion
bar
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n 1 ,n2	
two constants in the Bird-Carreau model

N(t-t')	the junction age distribution function

R	the radius of the plate in a cone-and-plate
viscometer

SUM

	

an objective function defined asE.((Y.-Y.
a.
)/Y.)

VV	dyadic product of gradient V and velocity V

Xi	fixed coordinate system

Yi	experimental or observed points

Yi	computed points from the Huang-Shangkuan model

T	movement of torsion head transducer in microns

N	reading or movement of micrometer

η0	angular velocity

εc	convected coordinate system

Txy(Txy)	shear stress on the xz(ik) plane vertical to
y(j) axis

-(T11-Tzz)	primary normal stress difference

-(Tθθ-Tpp)	primary normal stress difference in a cone-
and-plate system

μ	Newtonian viscosity

η0	zero-shear-rate viscosity

η	non-Newtonian viscosity

ηp	viscosity of p-th segment in a polymer chain

λs,ηs	functions of the second rate-of-strain invariant
in the Huang-Shangkuan model

λ,ρ	the time constant of p-th segment of a polymer
chain associated with the rate of creation of
network junctions

λ2ρ	the time constant of p-th segment of a polymer
chain associated with the rate of loss of
network junctions
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δ	the magnitude of ;:lx at steady-state shearing
flow

γyx	infinitesimal rate of strain tensor

λ1,λ2	time constants associated with XT ,

α1,α2	dimensionless parameters associated with the
slope in the power law region

δj	Kronecker delta

Γjfinite strain tensor

μ1,μ2,μ3	unspecified memory functions in Coleman and
Noll's functional analysis

θ	primary normal-stress-difference coefficient

β	second normal-stress-difference coefficient
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APPENDIX 1 

Rheological Data with the Predicted Results

from the Bogue Model, the Spriggs Model, the

Tanner-Simmons Model, the Bird-Carreau Model

and the Nakamura-Yoshika Rigid-Chain Model



Fig. A-1

Non-Newtonian viscosity and primary normal stress

difference for 4% polystyrene, PS-4.0-1800-48 (28)

__________________	the Bogue model

------------------	the Spriggs model

- - - - - - - - - 	the Tanner-Simmons model

A A A A A A A A A	experimental data of viscosity

AAAAAAAAAAAAAAAAA	experimental data of normal

stress difference
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Fig.	A-2

Non-Newtonian viscosity and normal stress differnece

for 1.5% polyacrylamide (SEPARAN-30)	(28)

_________________ 	the Bird-Carreau model

- - - - - - - - -	the Nakamura-Yoshika rigid chain

model

A A A A A A A A A	experimental data of viscosity

AAAAAAAAAAAAAAAAA	experimental data of normal stress

difference
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APPENDIX 2

The Computer Program in Search of Optimal

Parameters in the Huang-Shangkuan Model
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C	PROGRAM MAIN

DIMENSION GAMMA(100),EP12(100),P12(100),EP1122(100),

1EB2(100),B2(100),C2(100),D4(100),EC3(100),zeta(100),

2EZETA(100),C3(100)

CC

C	INCORPORATE ZERO VISCOSITY ZETAO

ZETA0=9968.

NA=29

CC

C	READ IN SHEAR RATE AND EXPERIMENTAL DATA OF SHEAR

C	STRESS AND NORMAL-STRESS DIFFERENCE

READ(5,1) (GAMMA(I),I=1,NA)

1 FORMAT(8F10.4/8F10.4/8F10.4/8F10.4)

READ(5,1) (EP12(I),I=1,NA)

READ(5,1) (EP1122(I) ,I=1,NA)

DO 20 I=1,NA

CC

C	CALCULATE NON-NEWTONIAN VISCOSITY

C	INCORPORATE PARAMETERS R,S,M,N WHERE LOGR=A, 1/S=B,

C	LOGM=C, 1/N=D

20 EZETA(I)=EP12(I)/GAMMA(I)

R=2.2

S=4.47

XM=1.64

XN=2.81

DO 2 I=1,NA

C2(I)=R**(GAMMA(I)**(1./S))

EB2(I)=EP12(I)/C2(I)

D4( I ) =ID/I"( GAIVNIA ( I )**(1./XN)

EC3(I)=EP1122(i)/(C2(I)*D4(I))

WRITE(6 ,11)GAIVIMA(I) ,R,S ,C2(I)

11 FORMAT(1X,' 	 1,1GAMMA,R,S,C2',4(2X,E15.6)/)

2 WRITE(6,4)XM,XN,D4(I)

4 FORMAT(1X,'******** 1 , 1 XM,XN,D4 1 ,3( 2 X,E 1 5. 6 )/)

AMDA1=85.5
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AMDA2=39.2

DO 3 M=1,10

CC

C	START TO SEARCH BEST SETS OF PARAMETERS AMDA1, AMDA2,

C	ALPHA1, ALPHA2

AMDA1=AMDA1+1.0

ALPHA1=5.06

DO 3 N=1,10

ALPHA1=ALPHA1+1.0

SUMB2=0.

C	SUMB2, SUMP12, SUMZE ARE OBJECTIVE FUNCTIONS

SUMP12=0.

SUMZE=0.

DO 3 I=1,NA

B2(I)=ZETA0/(Z(ALPHA1)-1.)*3.1416*(2.**(ALPHA1)*AMDA1

1*GAIVIMA(I) )"*( ( 1. -ALPHAI) /ALPHA1)/(2.*ALPHAl*SIN(1.+

2ALPHA1)/(2.*ALPHA1)*3.1416))*GAMMA(I)

SUMB2=SUMB2+((B2(I)-EB2(I))/EB2(I))**2

WRITE(6,5)AMDA1,ALPHAI,GAMMA(I),EB2(I),B2(I),SUMB2

5 FORMAT(1X,'AMDA1,ALPHA1,GAMMA,EB2,B2,SUMB2 1 ,6(1X,E14.5)/)

P12(I)=B2(I)*C2(I)

ZETA(I)=P12(I)/GAMMA(I)

SUMP12=SUMP12+((P12(I)-EP12(I))/EP12(I))* * 2

SUMZE=SUMZE+NZETA(I)-EZETA(I))/EZETA(I))**2

WRITE(6,7)GAMMA(I),EP12(I),P12(I),SUMP12

7 FoRMAT(1X,'GAMmA,EP12,P12,SuMP12',4(2x,E15.6)/)

WRITE(6,8)EZETA(I) ,ZETA(I),SUMZE

8 FORMAT(lx,'EZETA,ZETA,SUMZE I ,3(2X,E15.6)/)

3 CONTINUE

AMDA1=90.5

ALPHA1=5.56

AMDA2=40.2

DO 21 M=1,10

AMDA2=AMDA2+1.0

ALPHA2=4.29
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DO 21 N=1,10

ALPHA2=ALPHA2+0.1

WRITE(6,12) AMDA2,ALPHA2,AMDA1,ALPHA1,XM,XN

12 FORMAT(1X, IAMDA2,ALPHA2,AMDA1,ALPHA1,XM,XN',6(1X,F10.4)/)

SUMC3=0.

SUMPN=O.

DO 21 I=1,NA

C3(I)=ZETAO*2.**(ALPHA2+1.0)*AMDA2/(Z(ALPHA1)-1.0)*

13.1416*(2.**ALPHA1*AMDA1*GAMMA(I))**((1.-ALPHAl-ALPHA2

2)/ALPHA1)/(2.*ALPHAl*SIN((1.+ALPHA1-ALPHA2)/(2.*ALPHA1)

3*3.1416))*GAMMA(I)**2

SUMC3=SUMC3+((C3(I)-EC3(I))/EC3(I))**2

P1122(I)=C2(I)*C3(I)*D4(I)

SUMPN=SUMPN+((P1122(I)-EP1122(I))/EP1122(I))**2

WRITE(6,26)GAMMA(I),EP1122(I),P1122(I),SUMPN

26 FORMAT(1X,'GAMMA,EP1122,P1122,SUMPN',4(2X,E15.6))

21 WRITE(6,22)GAMMA(I),EC3(I),C3(I),SUMC3

22 FORMAT(1X,'GAMMA,EC3,C3,SUMC3',4(1X,E15.6)/)

STOP

END

FUNCTION Z(X)

C	THIS IS A RIEMANN ZETA FUNCTION SUBROUTINE

Z=1.

T=-X

E2=EXP(T*0.6931471806)

E3=EXP(T*1.0986122887)

E4=E2*E2

Z=Z+E2+E3+E4+EXP(T*1.60943791240)+E2*E2+EXP(T*1.94591 0149 0

1 )+E2*E4*( 0.5+8 ./( X-1 . )+X*0.01041667*( 1.0-0.000260417*

2(X+1.)*(X+2.)*(1.0-0.000372*(X+3)*(X+4))))

RETURN

END
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