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Abstract

This paper presents a new learning-based approach to
speech synthesis that achieves mouth movements with rich
and expressive articulation for novel audio input. From a
database of 3D triphone motions, our algorithm picks the
optimal sequences based on a triphone similarity measure,
and concatenates them to create new utterances that include
coarticulation effects. By using a Locally Linear Embed-
ding (LLE) representation of feature points on 3D scans,
we propose a model that defines a measure of similarity
among visemes, and a system of viseme categories, which
are used to define triphone substitution rules and a cost
function. Moreover, we compute deformation vectors for
several facial expressions, allowing expression variation to
be smoothly added to the speech animation.

In an entirely data-driven approach, our automated pro-
cedure for defining viseme categories closely reproduces the
groups of related visemes that are defined in the phonetics
literature. The structure of our selection method is intrinsic
to the nature of speech and generates a substitution table
that can be reused as-is in different speech animation sys-
tems.

1. Introduction
High realism of speech, as seen in animated movies, is

still obtained by a direct mapping of the articulation taken
from a real actor to a CG model. The great challenge for
automatic speech generation is to reach comparable results
synthetically, given only a text or an audio file. This aspect
of speech animation has been addressed in many different
ways, and in this work, we follow a data-driven approach.

Data driven techniques exploit real motion samples,
which hold all the necessary information for natural behav-
ior, and strive to apply appropriate data representations and
generalization rules to carry as much of that information as
possible from data acquisition to the final animation render-
ing process.

We investigate the statistical distribution of mouth con-
figurations using a Locally Linear Embedding (LLE) data
analysis for nonlinear dimension reduction. The represen-

tation of data in the LLE-space reflects an intuitive distri-
bution of the data on which we build a nonlinear viseme
model. Visemes are the basic elements of visual speech
and form the visual counterparts of phonemes. Our viseme
model empirically reproduces some standard viseme tax-
onomies from the articulatory phonetics literature.

In natural speech, however, each viseme is influenced
significantly by the previous and following visemes, which
is known as coarticulation effect. Due to coarticulation, a
direct data-driven approach would need many viseme sam-
ples with different contexts, and choose the most appropri-
ate one for the synthesis of a new articulation. To get bet-
ter quality, the size of the database has to be increased and
quickly becomes problematically large. In this paper, we di-
rectly address that problem by proposing a new substitution
rule that allows the selection of appropriate visemes even
when they were not originally found in exactly the same
context as in the new sequence. The selection framework is
based on a similarity measure that compares the natural be-
havior of visemes and allows us to build a hierarchy which
will determine valid substitutions.

For generating of new sentences, we use a triphone-
based approach [6]. Triphones are short pieces of motion
sequence that span three phonemes, so each viseme is stored
with its context and therefore captures all of the coarticula-
tion effect caused by the direct neighbors. Our similarity
measure is easily extended from visemes to triphones, and
we can thus find the best overlapping triphone sequences in
our database that match any new sentences that needs to be
synthesized. Unlike earlier work on triphone methods [6],
our work is based on dense 3D surface scans, which makes
it more versatile than image-based techniques.

The new contributions of this paper are: (a) triphone-
based 3D speech animation, (b) a nonlinear statistical
analysis of viseme distributions using LLE, (c) a similar-
ity measure for visemes, (d) a criterion for substitution of
triphones for animation synthesis, (e) a rigorous empirical
basis for the classification schemes found in the literature
on articulatory phonetics, (f) a substitution table that can
be reused as-is in different speech animation systems.

Related Work Facial animation is facing two different
challenges: the first challenge is to produce realistic face



shapes in every single frame of the animation, and the sec-
ond challenge is to create a dynamically realistic motion
over time.

In contrast to physical models which generate deforma-
tions of the skin by simulating the facial tissue and muscles
[1, 22, 24], data-driven methods observe and generalize the
appearance of real faces, based on a statistical model. This
model may be based on marker point positions [7, 9, 15, 18],
3D scans [3, 14, 25, 28, 30] or images [6, 12].

All of these approaches are facing the problem of defin-
ing how the parameters of the model vary over time. For
speech synthesis, this involves the problem of coarticula-
tion. Cohen and Massaro[10] define dominance functions
of phonemes that control the interaction between subse-
quent phonemes as applied to muscle-based systems [1, 16].
Pelachaud et al.[20] assign to each phoneme a deformabil-
ity and context sensitivity value, and derive rules for their
mutual influence.

Unlike rule-based methods, statistical techniques derive
general properties of motion trajectories from training data.
Voice Puppetry[5] uses a Hidden Markov Model to learn the
dynamics of speech from audio, and transfer this informa-
tion to a face model. Another learning-based approach was
proposed by Ezzat et al.[12] and reused by Kim & Ko[15],
which uses regularization techniques to compute smooth
curves for the model parameters over time. In this model,
coarticulation is due to the smoothness of the curve and a
statistical representation of the variance of each viseme.

Instead of synthesizing motion entirely, Video Rewrite[6]
stores triphone motions in a database, and stitches them to-
gether to produce new utterances. The triphones capture
coarticulation in a natural way. If a desired triphone sam-
ple is not available, substitutes are selected instead which
belong to the same viseme class[19]. In our work, which
is closely related to Video Rewrite, we do not make use
of a priori assumptions of phoneme classes, but deduce
a phoneme similarity measure. This quantitative similar-
ity measure relaxes the selection rule of viseme grouping
and offers further substitution options. Similarly to Video
Rewrite, the optimal triphone sequence for the synthetic an-
imation is found by minimizing an error function that takes
both, viseme similarity and smoothness of the animation
into account. These criteria, however, differ in our work
from the ones proposed in Video Rewrite.

In data-driven methods, visyllables[17] have been pro-
posed as an alternative to triphones with advantages in terms
of storage requirements. Another concept of motion repre-
sentation is based on Animes[7, 8, 15], which contain mo-
tion sequences of phonemes. These are stored in an Anime
Graph that captures the context dependencies of individ-
ual instances of phonemes. By selecting Animes with an
appropriate context from the graph, the algorithm synthe-
sizes animation with coarticulation effects. Expression and
speech are separated by an Independent Component Analy-

sis [8]. Unlike Anime Graph our approach considers viseme
substitutions with motion segments with which they were
not associated to it in the first place and thus increases the
number of valid candidates. Wampler et al.[27] also use an
Anime-based graph algorithm, but rely on a bilinear model
for separating expression and speech. Another graph-based
method for coarticulation that uses Viterbi search in anima-
tion has been presented by Ma et al.[18].

Sifakis et al.[23] propose the concept of physemes to de-
scribe the time dependency of muscle activations over ex-
tended intervals, and use a physics-based simulation to gen-
erate speech animation with coarticulation.

In our work, we use Locally Linear Embedding (LLE)
[21] for a statistical analysis of the distribution of mouth
configurations in high-dimensional face space. This method
estimates a low-dimensional, nonlinear manifold from a set
of data points. In our system, LLE allows us to derive
a highly specific criterion for viseme similarity that dic-
tates appropriate triphone substitutions. LLE has been used
previously by Wang et al.[28] as a representation that al-
lows the separation of expression style from expression con-
tent with a bilinear model. Using a closely related Isomap
method, Deng and Neumann[11] present a data-driven ap-
proach to speech animation where users can edit facial ex-
pressions in sequences.

System Overview Our system is divided into two main
parts: the setup part which is performed only once, and
the animation synthesis part. The setup starts with the ac-
quisition and the registration of the data (Sec. 2). In the
LLE space (Sec. 3), we study the behavior of the differ-
ent visemes by deriving a nonlinear model (Sec. 4). This
model allows the generation of a substitution graph among
the viseme classes (Sec. 5), which is the central tool for the
selection of motion sequences from our database to create
animations. In the synthesis step (Sec. 6), a novel audio
file is decomposed into a sequence of phonemes. For each
phoneme triplet, candidate triphones are selected from the
database each associated with a substitution cost based on
the substitution graph. The optimal selection of samples
from these lists minimizes the combination of a concatena-
tion cost with the substitution costs and provides the most
natural articulation.

Throughout the paper, we will use the following
notation: phonemes (audio) are written with slashes,
e.g. /AH/, and visemes (visual) are written with vertical
bars, e.g. |AH|. Triphones, a sequence of three consecu-
tive phonemes or visemes, are written with angle brackets,
e.g. 〈AH,R,V〉.

2. Capturing 3D Motion Data
Our corpus of a 3D talking face was recorded with a

structured-light dynamic 3D scanner at a frame rate of 40
3D-scans per second and contains a total of about 17’000



frames (about 7mins without long silences) with a video
resolution of 480x640 pixels. The data is preprocessed and
then brought into correspondence based on an optical flow
algorithm similar to Blanz & Vetter [4]. As a result, each
3D frame is represented as a shape vector S in a morphable
model that consists of a collection of all x, y and z coordi-
nates of all n points of the model, combined into a single
3n-dimensional vector. In a further step we perform a Prin-
cipal Component Analysis (PCA) on the set of every 100th
shape vector. Using all vectors is computationally expen-
sive, and the data is likely to be highly redundant. The PCA
is used for data compression of all frames, allowing us to
store only a set of model coefficients for each frame. Like
in [2], the PCA is computed only on the region around the
mouth in order to cancel the influence of eye movements.
In our system, we use the 50 coefficients of the first, most
relevant principal components.

Expression Vectors The data registration stores deforma-
tion vectors relative to a selected reference face. We are
thus able to determine typical deformations to several ex-
pressions like fear, happiness or sadness (see Fig. 1), which
can then easily be added to the generated animation of our
talking head. In the final animation process, we use only a
single texture of the face for all the generated frames, the
wrinkle effect is thus not emphasized by the texture and re-
sults only from geometric deformations. Nevertheless, ex-
pression reproduction is not our main focus in this paper.

Figure 1. The recorded expression vectors for fear, happiness and
sadness.

3. Viseme Representation
For the exploration and representation of motion data,

we investigate two different statistical methods: PCA and
LLE. In the reduced space of the PCA, the observation of
the articulation curves for each viseme cluster does not re-
veal any specific pattern or structure (Fig. 2) and we there-
fore turn to an alternative representation using LLE.

Locally Linear Embedding We perform a Locally Lin-
ear Embedding (LLE) [21] to get a low dimensional rep-
resentation of the data manifold. This reduction separates
the most important deformations and gives a more intuitive
representation of the actual behavior of the mouth, mak-
ing the visemes easier to analyze (see Fig. 3). LLE maps

Figure 2. Triphone trajectories with common central phonemes
/G/ and /ER/ respectively, in the space spanned by the 3 first
PCA dimensions. The first frame of the occurrence of the cen-
tral phoneme is marked as a black point. The blue and the red
segments are the coarticulation path to the preceding and the suc-
ceeding phonemes.

a globally curved manifold into a linear space of a given,
pre-selected dimension by finding sets of nearest neigh-
bors locally, mapping these points into a low-dimensional
subspace, and combining all local subspaces into a global
space. Since mouth configurations form a continuous set
and are defined by a small number of parameters (muscle
activations), LLE is a promising method to estimate the
manifold of mouth configurations. Compared to a linear
analysis, we capture more of the structure of the data with
less dimensions in a representation that is adapted to its un-
derlying manifold.

Figure 3. A Locally Linear Embedding (LLE) over the recorded
data shows an intuitive and intrinsic low dimensional representa-
tion of the data. The central region of the star-shaped manifold
holds neutral mouth configurations, the four most important direc-
tions correspond to mouth shapes that are typical for |EH|, |W|,
|AW| and |I|.

In order to use the LLE in an efficient way, our data has
to be adapted and reduced to a lower dimensionality. In
order to keep the information of the mouth deformations,
we select nine points around the lips (see Fig 4-left) that best
reflect the movements of the mouth and combine them into
point vectors v = (x1, y1, z1, ..., z9) ∈ R27 on which we
perform a PCA, reducing the dimensionality further down
to 8. We now have for each recorded frame a representative
vector v′ ∈ R8. This reduction not only simplifies the LLE
computation, but also maps outliers in the measurements
to plausible configurations. This smoothing process helps
in making the data separation more distinctive. (refer to



Sec. 7-Statistical Data Analysis).
By the dynamic nature of our recorded data, its distribu-

tion is not homogeneous but samples are aligned along their
motion curves and their closest neighbors are thus likely to
be the same ones as the ones on the recording timeline. This
correlation among the neighbors has a strong impact on the
LLE results. LLE constructs a representation that is based
on the spatial relation among the samples. To get a better
representation of the underlying manifold inside the data,
we must first select a sub-group of samples that distribute
evenly in the original space. By measuring the distance be-
tween any pair of samples (Euclidean distance in the re-
duced space of the marker points), we consider the sam-
ples successively. If one lies closer than a given threshold k
to another sample, we remove it and add its frame label to
the remaining sample. With increasing k, neighbors lying
on a common articulation curve are slowly removed, until
the threshold reaches the typical distance that separates the
different curves, and samples start to disappear much more
quickly (see decay on curve from Fig. 4-right at k = 0.7).
The LLE is finally computed on the reduced data-set. We

Figure 4. Left: for generating the LLE, we reduced the compu-
tations by considering the three-dimensional movement of only a
few points around the lips. The selected nine points we selected in
our scenario are sufficient to represent the most important mouth
deformations. Right: in order to get a more homogeneous distribu-
tion of the data and reduce the amount of redundant samples, we
successively remove those which lie closer than a threshold dis-
tance k from the others. This procedure ensures that only the most
redundant samples get removed.

obtain the best separation of the data by selecting a neigh-
borhood connectivity of six samples and a target dimen-
sionality of six (LLE parameters). The reduction generates
the star shaped representation shown in Fig. 3; the central
region of the star holds neutral mouth configurations, the
four directions (we ignore one as it represents too few sam-
ples) go respectively towards mouth shapes that correspond
to typical |EH|, |W|, |AW| and |I|. Our algorithm defines
viseme clusters in the LLE space along these four main di-
rections.

4. A Measure for the Similarity for Visemes
The audio from the recorded corpus is decomposed

into a sequence of phonemes using the CMU-SPHINX
software[13] which gives us the time interval during which
a phoneme is heard. We take the first frame of each se-

quences as a viseme sample, and investigate the distribution
of these samples in our LLE representation.

The difficulty in a learning-based approach is that the
natural number of possible phoneme combinations form-
ing triphones is too large to be possibly recorded, without
even considering that several samples of each would be nec-
essary. However, different triphones have strongly corre-
lated motions. By identifying similar triphones, we offer
more valid substitution options to ensure good transitions
between visemes during coarticulation. The substitution be-
comes even more essential when desired triphones are not
directly available. We propose to do this with a LLE-based
similarity measure of visemes, and a viseme categorization
that defines substitution rules. For our algorithm we define
a data-driven distance measure between visemes that we ex-
tend to distances between triphones.

In the original corpus, all first frames of phoneme se-
quences are mapped to the LLE representation where they
form viseme clusters (see Fig. 5 for two examples). The
different clusters vary not only in how they spread along the
branches of the manifold, but also how they are distributed.
We use these two criteria to distinguish between the clusters
and to measure their similarities.

Figure 5. The representation in the LLE space of the recorded
viseme candidates for the different phonemes. The black points
show all the recorded frames from our corpus, the red squares il-
lustrate the distribution of the different viseme clusters.

We model our LLE representation by a star-shaped man-
ifold composed of four segments (see Fig. 6). The spread of
the clusters along each segment is measured after a chosen
quantization; in our case they range from 0 to 6. By taking
the segments in a fixed order, we are able to describe the
distribution of a cluster by a quartet that describes how far
the cluster extends on each branch.

This model is implemented the following way: we de-
fine four segments (axes) i ∈ {1..4} that connect each
of the manifold’s extremities to the origin. The length of
these segments are then normalized to 1 and all samples
are projected onto their clostest axis. We then measure the
averaged squared distance di of the samples to the origin.
Hence, for a given phoneme p, if Xi is a random process
describing the position of the samples along the axis i we
compute:



Figure 6. Each viseme cluster defines a distribution on the LLE
representation. Projected along the main axes we computed a
quantization for the spread along each axes, which taken in a fixed
order describes the distribution by simple fourtets.

dXi
=

1
ni

ni∑
j=0

x2
j,i (1)

where ni is the number of visemes on axis i. With N being
the total number of visemes for p, the quantization qp(i) of
the spread along the axis i becomes:

qp(i) =
ni

N
dXi

=
1
N

ni∑
j=0

x2
j,i (2)

qp(i) is weighted according to the distributions on the dif-
ferent axes in order to provides a more accurate descrip-
tion of the behavior of the different viseme clusters: when
a cluster has a large spreading along several axes, we lower
their quantization to favor other clusters which spread on
lesser axes and the final quantization will better character-
ize them. The maximum qp(i) over all phonemes in P is
then normalized to Q = 6 (the desired quantization steps1)
and the remaining qp(i) scaled accordingly. Finally, round-
ing to the closest integer gives us the quantization of the
spreadings along the axes.

In Table 1 we give the conversion to our quartet notation
for each of the visemes. The categorization in this table is
an intrinsic statistical property of speech and can thus be
directly reused in further animation systems.

PIT 0000 D 1123 P,B 2113 HH 3032
ZH 0002 IH 1221 TH, L, N, S, IY, DH V 3112
SH 0212 ER 1213 2122 OW 3211
CH 1011 JH 1312 M 2123 R 3212
AY 1022 OY 2010 AX 2212 EY 3331
DX 1023 AW 2013 UW 2221 Y 3312
Z 1032 NG 2022 K, T 2222 W 6111
F 1111 EH 2023 SIL 2223
AH 1112 AXR 2111 G, UH 2411
AE 1122 AA, AO 2112 IX 3031

Table 1. The phonemes and quartet notation with 6 quantization
steps. PIT is the neutral head (slightly open mouth), a generaliza-
tion to all phonemes and prevents our substitution rule from being
degenerative. /SIL/ is the “silence phoneme”.

1|W| is particularly concentrated on the first axis. We set Q = 6 to keep
a sufficient resolution to be able to distinguish among the other visemes.

5. Substitution Rules for Visemes
We can now formulate a rule for replacing visemes by

others when we select triphone candidates. Consider two
clusters |A| and |B| with a smaller sample distribution for
the latter. In the quartet notation, this implies that all digits
of the quartet [B] are pairwise smaller or equal to the digits
in the quartet [A], and we write: |B| ⊂ |A|. We argue that
samples in |B| are potential instances for the viseme |A| by
this inclusion rule, but not vice versa.

The substitution cost (or distance) is defined as the sum
of the digit differences of the desired viseme to its possi-
ble substitute. By extension, the distance of a triphone to
its substitute, is the sum of its three visemes’ distances to
their substitutes. We penalize the substitution of the central
viseme of the triphone by taking the square of its distance
in that sum.

With this rule, we built a substitution graph which is
used when we look for best matching triphones. The nodes
hold the quartet values and the edges indicate valid substi-
tutions and are weighted with their respective substitution
cost. Fig. 7 shows a sub-graph example. Following the
edges of the graph, all nodes that we cross are valid can-
didates. At every jump, at least one of the digits decreases
until we reach the quartet 0000 (|PIT|). This quartet is a
non-viseme cluster that doesn’t spread over any axis. If we
reach PIT without having found a fitting quartet, the neutral
face will be used in the substitution. However, experiments
showed that our rule is generous enough for the substitution
algorithm to never reach that case.

Figure 7. The acyclic directed substitution graph (here only a sub-
set) defines the valid visemes candidates and their substitution.

6. Sentence Generation
The audio file of a new sentence is decomposed into a

sequence of phonemes. In order to account for coarticu-
lation and to generate the most natural transition between
the visemes, the phonemes of the sequence are transformed
into overlapping target triphones. The phonemes in each
required triphone are mapped to quartets (Table 1) and the
algorithm searches for the available triphone candidates in
the database that match the given target triphone. For each
target, the system generates a list of all possible candidates
by verifying that every pair of visemes inside the triphones
are connected in the graph. For each of the candidates in the



lists, a substitution cost is attributed. Because triphones are
sampled from different portions of the sequence of training
scans, they will not describe a continuous curve and may
even be far apart in terms of face shape in the PCA space.

If two successive triphones lie far apart or move in op-
posite directions, the transition will most likely look abrupt.
For this reason, it is necessary to collect a list of all possi-
ble triphone candidates in the database, and then compute
the sequence of triphones that has a minimal concatena-
tion cost. In the following of this section, we present how
we computed this concatenation cost and the morphing be-
tween two triphones. To find the best suited triphone se-
quence, the sum of all substitution costs and concatenation
costs is minimized.

Concatenation of Triphones The concatenation cost ϕ
evaluates the compatibility of two triphones. This is, it
gives a measure of the smoothness between these two. A
triphone 〈v1, v2, v3〉, with vi as PCA vectors, is composed
of a central visemes |v2| and two neighbors |v1| and |v3|.
When we concatenate two successive triphones 〈v1, v2, v3〉
and 〈w1, w2, w3〉, we want to generate a curve that traverses
v2 and w2 and keeps the tangentiality and the direction of
the original curve at these points. We generate the “quad-
riphone” 〈v1, v2, w2, w3〉 from which we only retain the
〈v2, w2〉 segment (see Fig. 9-left). Let α be the angle be-
tween the curve tangents at |v2| and |w2| and we define our
concatenation cost function as: ϕ(α) = − cos α. Addi-
tional criteria, such as the distance between |v2| and |w2|,
did not improve the results further and thus can be omitted.

Given the set of desired target triphones for a new sen-
tence, we find the sequence of triphones from our database
that minimizes both the substitution cost θ and the concate-
nation cost ϕ. The new sentence is decomposed into a se-
quence of N triphones i ∈ 1, .., N . To compute the solu-
tion, the system provides a list of all Mi possible candidate
substitutions Ci,j in the database for each triphone i in the
sentence. A graph is constructed whose edges connect every
triphone from these lists, to all candidates in the preceding
and the next list (see Fig. 8). Each of the candidates holds
a substitution cost θi,j (the distance to the requested target
triphone) and the concatenation costs ϕi,j,k for the connec-
tion of Ci,j to one of the preceding candidate nodes Ci−1,k.

We want to find the path that minimizes the total cost

Θmin =
N∑

i=0

min
j∈{0,...,Mi}

min
k∈{0,...,Mi−1}

(θi,j + ϕi,j,k) (3)

We use a shortest path algorithm over the graph to find the
optimal solution.

Morphing the Optimal Triphones Consider the triphones
from the previous paragraph. The transition 〈v2, w2〉 has
to be computed knowing that: (1) the number of frames
available in 〈v2, v3〉 is not the same as in 〈w1, w2〉; (2) the
number of frames to be generated for the new animation is

Figure 8. The optimal sequence of triphone substitutions is the one
that minimizes the substitution cost θ and the concatenation cost
ϕ. This optimal selection is found by computing the shortest path
on a graph generated over the triphone candidates.

dictated by the phoneme sequence in the target audio file (3)
and variations in the speed of articulation between the two
transitions have to be taken into account.

For each frame t of a candidate triphone, we have ini-
tially transformed the original shape vector S into 50 PCA
coefficients a = (a1, a2, ..., a50)T , so we have a curved tra-
jectory a(t) in coefficient space that we can map back to
shape vectors S and render on the screen for reproducing
the original motion. We use a piecewise linear function to
interpolate between the discrete time steps of the original
frames. The argument t ∈ [t0, t1] of this function can be
substituted by a variable u ∈ [0, 1], u = t−t0

t1−t0
to obtain a

time-normalized function a(u). If the lengths of the transi-
tion phases in two subsequent triphones differ, this will be
corrected by the substitution of t by u (see Fig. 9-right).

α

v2

v3

w2

w1

v2

v1 v3

w3

w2

w1

Figure 9. Left: the angle α between two triphones 〈v1, v2, v3〉 and
〈w1, w2, w3〉. Right: when morphing two triphones, we trans-
form the time axis to a normalized variable u ∈ [0, 1]. The curves
a1(u) and a2(u) preserve the original velocities (time spacing
along the red and blue line).

The final animation curve is passed through a low-pass
filter which automatically smoothes the transitions where
(θ + ϕ) is most costly, and removes the noise present in the
measured data.

7. Results

Besides generating synthetic visual speech from audio
data, which we will discuss further below in this section, our
approach gives also some insights into the intrinsic structure
of natural articulation. Therefore, we discuss the statistical
distribution of data, and compare our empirical taxonomy



of phonemes to the standard viseme grouping in the field of
articulator phonetics.

Our data took a star-shaped distribution within the 6 di-
mensional manifold that was found by LLE. This means
that towards extreme mouth configurations the data are, in
fact, locally one-dimensional. This is in contrast to two- or
more-dimensional manifolds usually found by LLE, but it
is consistent with findings in the phonetics literature. The
following reasoning makes this data distribution more in-
tuitive: the representation constructed by the LLE bases
only on mouth configurations used in normal speech con-
text. This is, not all the physically plausible mouth shapes
are considered. When the mouth goes towards an extreme
configuration such as the viseme |O|, it looses degrees of
freedom due to the physical constraints such as tissue strain.
In the step where the data gets homogeneously distributed,
the constrained regions are getting less populated and are
therefore more separated in the LLE process. The observa-
tion of the representation shows that the mouth stretches to
only 4 typical configurations; the many phonemes are then
further modulated with the tongue, the nose or the epiglot-
tis.

Phoneme Similarity In our data analysis, we start with no
a priori assumptions of phoneme similarity. It is interest-
ing to compare our viseme groups with those found in the
literature on articulatory phonetics[19, 26].

In Table 2, we compare popular viseme associations
to our nonlinear model. Yau et al.[29] use the MPEG-
4 standard that actually comes close to the model pro-
posed by Binnie et al. which is discussed in Owens and
Blazek[19]. We highlight in bold face where our viseme en-
coding matches closely the standard grouping. Our model
matches well both classifications from Owens and Blazek
and from Walden et al. (refer again to [19]). A greater cor-
pus size would make our model converge more, but the tri-
phones would become more redundant. These results pro-
vide a rigorous empirical methodology for verifying the
classification schemes for the articulatory phonetics litera-
ture. Our viseme associations are less restrictive for substi-
tutions than the standard viseme grouping as visemes who
have little correlations can still be considered for substitu-
tion according to the context they are taken for.

Animation The supplemental video to this paper shows
examples of synthetic speech generated with our system.
In the generation of the video, high frequency motions are
smoothed out by a low-pass filter, while we made sure to
keep the cutoff frequency above the spectral range of natu-
ral mouth movements.

According to Section 2, expressions were added to make
the results look more lively. Furthermore, we added some
eye-candies that are learned from the acquired data. Eyelid
movements were recorded used for eye-blinking as well as
following the movement of the iris. Eye-movements are

produced by a simple, yet effective texture displacement.

A PCA-Based Similarity Measure In order to evaluate
the LLE-based similarity measure as a substitution rule, we
implemented a different rule based on the PCA representa-
tion. In the PCA space, we computed for every cluster its
average shape. Taken two by two, the Euclidean distance
between these average visemes gives the substitution cost.
Unlike the LLE-based substitution rule, the PCA-based rule
allows substitutions between any cluster with varying costs.

Syntheses with the full corpus show almost equivalent
results using both methods with slight disturbances for the
PCA scenario. In fact, with the full corpus, only few substi-
tutions occur and the algorithm turns out to find triphones
samples with the desired central viseme in the triphones.
In order to force substitutions, we reduced the size of the
corpus and generated new animations. In three stages, the
size of the corpus is each time divided by 2. At each reduc-
tion, the quality of the animation decreases for both meth-
ods. However, we noticed that because triphones are time
synchronized to the novel audio track, the rhythm of the
mouth movement produces by its own a realist effect. In
order to analyze the difference between the two methods,
we had to focus on the actual movements associated to each
phoneme. The LLE-based animations show on that aspect
more credible movements than the ones based on the PCA.

8. Conclusion

In this work, we proposed a new data-driven sys-
tem to automatic speech animation. Our novel selection
method takes full advantage of the dual association between
phonemes and visemes: not only can a phoneme take the
visual appearance of several visemes, but visemes can be
attributed to different phonemes as well. Our method deter-
mines visemes that can be used as a valid substitution for a
specific phoneme even if there is no such association in the
original corpus.

We developed a similarity measure among visemes that
goes beyond using standard viseme groupings defined in ar-
ticulatory phonetics: we propose a gradual measure, based
on a Locally Linear Embedding (LLE) of the data, to dis-
tinguish visemes and build a hierarchical substitution rule.
Furthermore, our measure could be directly extended to tri-
phone similarities. The benefit of the our approach is in the
tradeoff between database size and realism: while we keep
a relatively small corpus of real data information, we gen-
erate realistic articulation motions by finding the optimal
combination of triphones. Finally, the hierarchical structure
of our selection method that we derived from the data is in-
trinsic to the nature of mouth articulation and can thus be
reused as-is for different speech animation systems.



MPEG-4 (Binnie et al.) Owens and Blazek Walden et al. Nonlinear Model
/P,B,M/ /P,B,M/ /P,B,M/ 2113 2113 2123
/F,V/ /F,V/ /F,V/ 1111 3112 (|F| ⊂ |V|)
/TH,DH/ /TH,DH/ /TH,DH/ 2122 2122
/T,D/ - - 2222 1123
/S,Z/ - - 2122 1032
- /T,D,S,Z/* - 2222 1123 2122 1032
/K,G/ - - 2222 2411
/N,L/ - 2122 2122
- /K,G,N,L/* - 2222 2411 2122 2122
- - /T,D,S,Z,K,G,N,L/* 2222 1123 2122 1032 2222 2411 2122 2122
/CH,JH,SH/ - - 1011 1312 0212 (|CH|+|SH| ⊂ |JH|)
- /CH,JH,SH,ZH/* /CH,JH,SH,ZH/* 1011 1312 0212 0002 (|CH|+|SH|+|ZH| ⊂ |JH| )
/W/ - - 6111**
/R/ - - 3212
- /W,R/* /W,R/* 6111 3212

(∗) depend on the vowel context and can thus be further divided.[19] (∗∗) |W| has a specific distribution that matched no other viseme.
Table 2. Our nonlinear model is compared to popular viseme groups. We highlighted in bold face where the viseme encoding matches the
standard grouping closely.
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