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A Nonparametric Approach to the
Analysis of Dichotomous Item Responses
Robert J. Mokkan

Central Bureau de voor de Statistiek, The Netherlands

Charles Lewis

Rijksuniversiteit Groningen, The Netherlands

An item response theory is discussed which is
based on purely ordinal assumptions about the
probabilities that people respond positively to
items. It is considered as a natural generalization of
both Guttman scaling and classical test theory. A
distinction is drawn between construction and

evaluation of a test (or scale) on the one hand and
the use of a test to measure and make decisions

about persons’ abilities on the other. Techniques to
deal with each of these aspects are described and il-
lustrated with examples.

Modern item response theory can be viewed in the historical perspective provided by preceding
test theory, e.g., Guttman scaling theory and classical test theory. This paper presents a ~~np~.~~-
metric elaboration of a type of model implied by most of the current parametric latent trait models.
The analysis is restricted to responses to dichotomous of the g~~~ss-f~~~~9 type, in which one al-
ternative is designated as &dquo;positive&dquo; with respect to the latent ability of interest. Only ordinal assump-
tions are used about the item response functions, however, without any further specifications to a par-
ticular parametric family of curves

In many situation s-fre quent in areas such as attitude scaling, the analysis of voting in legislative
bodies, and market research-either the items are difficult to obtain or the level of information con-

cerning item quality is low. Researchers in such situations are therefore more comfortable discussing
abilities and item difficulties at the ordinal level than in the interval or ratio terms provided by more
pretentious (if not overpretentious) parametric approaches. More than a decade of experience with
applications of the scale construction and evaluation procedures to be described here has suggested
that this nonparametric approach can be quite useful and satisfactory in such research situations.

The main reference to this nonparametric approach to problems in this domain is Il4okken

(19’~~~..~ recent introduction is provided by Stokman and Van Schuur (1980), and relevant computer
programs are described in the STAP User’s Manual (Technisch Centrum ~~~1~ 1’~~&reg;p see also Van de

~~~~~a~rt9 1981; Helming, 1976; andLippert, ~~b.~~~d~~9 ~ ~~k~~h~~9 1978).
The first section of this article presents basic assumptions and corresponding definitions of term-

inology ; the second describes scaling procedures available for constructing and evaluating tests; the
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final section describes procedures recently developed (Lewis, 1981) to aid in making inferences about
the abilities of individuals.

~~~~~~ and Definitions

Both in test construction on a calibrating sample of people and in ~~,~t ~~~~~~~s~a°~~~&reg;~ (ability esti-
mation) where single individuals are confronted with a test, the people can be considered to be
selected from a. certain population through a process itself governed by some probability distribution.

Monotone ~~~&reg;~~~~~ty and ~~~~ ~~~~~~d~~~~

A first property and corresponding assumption is dictated by the primary requirement of unidi-
~~~~~~~i~~~l measurement. The positive response probability n,, of person a may be considered as a
quantity which, in theory, can be observed or estimated for item directly through repeated applica-
tions to a person a. Consequently, all persons (a) could be ordered according to the magnitude of 7ii,,
for item i, if these probabilities were known. If the attribute the items constituting a test are measur-
ing is one dimensional, a necessary requirement is that the items order all persons similarly.

In test ~~a~a.~t~~ct~~~, then, only items which order all persons similarly should be selected: The de-
tection of such a set of items supports unidimensionality of the attribute and at the same time pro-
vides a set of items to measure (i.e., order) persons along the established dimension. However, in that
case, it is not difficult to see that for each item-and uniformly for all items-the persons can be
ordered along a continuum in such a way that the probabilities ~1Q increase monotonely along that
continuum. This is exactly the form of monotone increasing item response function which abounds in
the parametric models of item response theory and provides an explicit argument for their impor-
tance as measuring devices.

As a consequence, the probabilities iTi,, can be represented as functions ~(Q~ of the underlying (la-
tent) attribute or ability 0. The property that for all items the functions ~(6) are monotone increasing
m 9 can be designated as monotone ~a~~~~~~~~~ (Meredith, 1965, p~ 430-432)~ This gives the mono-
tone increasing item operating characteristic curves familiar in latent trait models. The scaling or test
construction procedures to be described have been designed primarily to detect or construct one-di-
mensional scales or tests consisting of sets of monotonely homogeneous items. However, additional
considerations may make it desirable to restrict test construction to a subclass of monotonely homo-

geneous items, characterized by a second type of monotony.
Prior to discussing this topic, however, another assumption, local independence, should be made

explicit. This assumption states that for any person with a given value of 0 the responses to a given set
of items are statistically independent. This assumption is basic to most item response theories.

Doubly Monotone Sets of Items

The h(9~ may be considered as local difficulties, measuring the difficulty of item for a person lo-
cated at point 0 along the ability continuum. In general, for sets of monotonely homogeneous items
the trace]ides can intersect. This implies that for persons located at different sides of such a point of
intersection the order of these local difficulties will be reversed for the two items concerned.

Sometimes in the ~~~~~~a~~~~~°r~~~e~a~ of tests, this may well be seen as undesirable, as it might be de-
sirable for the difficulty order of the items in a test to be the same for all persons to which the test is
administered. Other considerations in test administration, such as classifying persons in terms of
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their performance on the test, may imply the requirement that for all persons the (local) difficulty
order of the items be the same. This latter requirement is fulfilled whenever the item response func-
tions of a set of test items do not intersect, implying a second monotony property for sets of mono-

tonely homogeneous items.
The idea can be formalized by introducing a parameter to characterize the difficulty of an item

and by using this to specify a second monotony property. Assume that for each item &reg;f interest, there
is a unique value of 0 such that ~.(6) = .5. Define the difficulty bi of item as this value of 0, giving
P(b~) _ .5.

A set of item response functions with the property of monotone homogeneity (increasing in 0) and
the additional property of decreasing monotony in bt is necessary for double monotony. More precise-
ly, for a set of items, if
1. ~(~~ is monotone increasing in 0 and
2. bi < by, then P(9) > P,~0) for all 6,
then that set of items shall be called douhly aa~&reg;za&reg;t&reg;aa~.

Figure 1 illustrates double monotony for three items. Their item response functions do not inter-
sect, so for each 0 position along the axis the local difficulty ordering is the same. In Figure I a con-
vention of item numbering is used which shall be maintained in formulas throughout this article: The
items are numbered according to decreasing difficulty order, the most difficult item (largest value of
hi) numbered I and so forth. Consequently, if difficulty b; > &~ then item number a < j.

The discussion can be summarized as follows. If n items are selected for a test to measure (i.e.,
order) persons unidimensionally according to the attribute or ability 9, response functions are heeded
which are monotone increasing in 6. This property of monotone homogeneity is sufficient for the pur-
pose of test construction. For the purpose of test administration it may be necessary to require an ad-
ditional selective restriction in the form of the requirement of decreasing monotony in b,. There
should then be restriction to sets of doubly monotone items, a subclass of that of monotonely homo-
geneous items.

1
Double ~I&reg;~&reg;t~~~m Classes and Class Scores
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This simple model encompasses as special cases virtually all the parametric continuous or dis-
crete latent trait or latent structure models which have been suggested in the literature, of which the
normal ogive and the related logistic functions with three, two, or just one item parameter, as well as
ordered latent class models, may be mentioned here. The use of monotone items is obvious in all these

cases, but the additional aspects and properties of doubly monotone sets, as introduced by Mokken
(1971), seem to have been unnoticed in the literature.

Note that double monotony (as defined here) is a property of a set of items. The reader may verify
that a set of two- or three-parameter logistic items with varying discrimination (slope) parameters
would not be doubly monotone, since the item response functions would intersect.

Some Properties and Scalability

With the simple item response model based on monotone homogeneity, occasionally strength-
ened to double monotony, it is possible to derive a number of simple nonparametric properties of the
marginal response distribution for a population of persons. (They are nonparametric in the sense that

they do not depend on the form of the item response functions or the form of the population distribu-
tion of 0.) Only a few of these properties are discussed here. The interested reader is referred to Mok-
ken (1971, chap. 4) for proofs, additional results, and details. The results permit a definition of a scale
and form the basis for the test construction and evaluation procedures to be described in the next sec-
tion.

The population d~~~a~~l~~ ni of an item i is defined as the probability of a positive response to that
item in the population of persons under study. It is obtained by integration of the item response func-
tion ~;9~ over the population distribution of 0.’ If double monotony is assumed for a set of items, then
the ordering of the population difficulties is related to that of the latent difficulties, bi, by

For items whose response functions intersect, the ordering of the -nj will depend on the population dis-
tribution of 0 because the ordering of the aQ(0) is different for different values of 0. Thus, within the

family of inonotoneiy homogeneous items, inferring the order of the latent difficulties from that of the

population difficulties (or sample estimates of these) is only unambiguously justified for sets of doubly
monotone items.

Turning to the bivariate response distribution for pairs of items, let r~, (1,1) denote the probabil-
ity of a positive response to both items and y in the population of persons. For a person with a given
6, based on the assumption of local independence, this probability is the product ~(6)~(0). Integrat-
ing this product over the population distribution of e gives -aij (1,1).

If (0, 1) scoring is used for the two items and the scores are called u, and u,,., then the population
covariance between two items i and y which are monotonely homogeneous is equal to

If it is further insisted that -Pi and P, are strictly increasing in 9, then the covariance between ui and uj
will always be positive. For monotonely homogeneous items ~° and j the joint probability of positive re-

sponse is therefore larger than expected under conditions of marginal independence in the population
(namely, n,7i,).

’T’his integration is of a more general type than the one usually used in calculus, to provide valid results for discrete as well as
continuous 0.
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The above results provide a framework in terms of which a coefficient of scalability may be
selected. For a discussion and criticism of the coefficients used in Guttman scale analysis, the inter-
ested reader is referred to Mokken ~~9’7t9 chap. 2.5). On the basis of this study, the coefficient of
homogeneity N, originally suggested by Loevinger (1947, 1948), was seen to be particularly ~.~~~~~~1-
ate for use with the model presented in this article. Other ~.~tl~~rs9 including Green (1954, p. 357),
T’orgerson (1958, p. 326) and, more recently, Van Naerssen (1972), have also discussed the compara-
tive advantage of this coefficient over others. Of its generai properties it may first be mentioned that
N is based on the property of monotone homogeneity. Secondly, it can be derived as a variance ratio
involving the simple test score (number correct) in a form familiar to users of Guttman scaling
methods. Finally, it can be written in terms of item coefficients Hi evaluating the scalability of a par-
ticular item with respect to the other items as a scale.

The item coefficient of scalability of item i is defined by

where

I 
-

From this d~~~~~~~c~~9 ~~ can be shown that can never exceed The coefficient of for
a set of n monotor~.ely items can then be given by

The coefficient of s~al~bi~~ty ~’ for a set ~~ ~ items (i.e., a test or scale) therefore is a weighted sum of
the item scalability coefficients H, of its constituting items.’

From these expressions and from Equation 2 it follows that for monotonely homogeneous tests of
n items, all N, will be non-negative and, for all practical purposes, positive. Combining this with the

general upper bound given above gives 0 < N; ~ 1 fop sets of monotonely homogeneous items. More-
over, it is clear that if the values of the constituting item coefficients H, are all greater than a given
positive constant c, then the same is true for Hi

H is always at least as large as the smallest item’s coefficient of homogeneity in the test.

2A similar formula can be given in terms of Hij, defined on the 2&times; 2 table for any pair of items i and j. Hij is just the value of H
for a set of two items. The reader may verify easily that Hij =phi/phimax, a familiar coefficient in the analysis of 2 x 2 tables.
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Sample estimates N and Ha can be obtained by inserting the sample relative frequencies cor-
responding to -ni and 7~ (1, 1) in Equations 3 and 5. Asymptotic sampling theory for these estimates is
completely developed by Mokken (1971, chap. 4. 3), and includes the following results:
1. One-sided tests for a scale (H &reg; 0 vs.H > 0) and for individual items (N, = 0 ~s. ~~ ~ 0);
2. Confidence intervals for J? (and N;); and
3. Tests of equality of ~ (and NJ for different populations.

It may therefore be concluded that N seems to satisfy fully four prerequisite criteria for a coeffi-
cient of scalability proposed originally by White and Saltz (1957, p. 82), together with a fifth one ex-
tending its a~s~f~nl~essm
1. Its theoretical maximum is 1 and hence invariant over scales.
2. Its theoretical minimum is 0, assuming monotone homogeneity and hence invariant over scales.
3. It is possible to evaluate scales as a whole with H and also to evaluate the scalability of individual

items with the item coefficients Hi.
4. It is possible to test theoretically interesting hypotheses about H and Hi.
5. It is possible to construct approximate confidence intervals for H and Hi.
Approximate tests of the equality of the H values of a set of items for different populations can also be
implemented. From these considerations N (and Hi) will be used as criterion of scalability for all pyro-
cedures to be described.

A scale (or scalable set) can be defined in terms of H9 which as such will be the sole criterion of

scalability.3 This makes it possible to discard the many additional and cumbersome criteria of scal-
ability of the more orthodox methods of Guttman scaling.

A scale is defined in simple terms:
A scale is a set of items which are all positively correlated and with the property that every item
coefficient of scalability (Hi) is greater than or equal to a given positive constant c (0 < c < 1).

Equation 6 implies that the value of ~9 the coefficient testing the scalability of the set of items as a
whole, will then also be greater than c, which can be designated as the scale-defining constant. Some

degrees of scalability may be distinguished in terms of the overall coefficient H. Although an empiri-
cal basis for this distinction is still ~~.~~i~~9 for practical use the following classification of scales was

suggested i

.50 Hi a strong scale;

.40 H < .50: a medium scale; and
e~0 ~ H < .40: a weak scale.

The concept of a strong scale corresponds to the original strong requirements for a Guttman
scale, values near unity indicating nearly perfect scales. Experience based on a variety of applications
has shown that the usual practice, based on a lower bound c = .30, performs quite satisfactorily, de-
livering long and useful scales. Recent studies by Molenaar (1982a) based on the simulation of Rasch
(1980) items for different population distributions may invite the investigation of if and to what extent
other values (e.g., c # ~15) can be admissible.

of Scaling Fboeedure§

The procedures presuppose dichotomous items. In the case of multicategory items the researcher
has to define the 66~c~rr~ct~’ or &dquo;positive&dquo; alternative beforehand.

3The term "scale" (or, for that matter, "test") is used here because it was, and probably still is, a familiar concept in the prac-
tice of social research. Obviously, it has no immediate bearing on the basic concept of a scale in axiomatic theories of measure-
ment, where it denotes the abstract triple of a numerical system, an empirical system, and a set of mapping rules.
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The scalability of a set of items may be investigated from many angles and from different levels of
analysis that may require different approaches and correspondingly different procedures. Most of
these possibilities have been incorporated into a package of programs (Technisch Centrum 1~~~~y
1980) as options. The most important alternatives are the following: i
lo The evaluation of a set of items as one scale;
2. The construction of a scale from a given pool of items;
3. Multiple scaling, the construction of a number of scales from a given pool of items i
4. The extension of an existing scale by means of a larger pool of items; and
5. The investigation of the double monotony of a set of items.
These procedures will be briefly indicated below. For further details the reader is referred to ~&reg;1~1~~~
(1971) or the corresponding manual (Technisch Centrum FSW, 1980).

The Evaluation of a ~~t &reg;f as One Scale

In most cases where the traditional techniques of Guttman scaling were applied, the researcher
was to have selected beforehand a set of n items that could be considered homogeneous with respect
to some variable. With the aid of these techniques, the whole set of items is then evaluated as just one
scale, and as a result some defective items are eliminated in the end. The procedures are based on the
estimates of the item coefficients Hi, the scale coefficient ~9 and an analysis of the 2x2 tables for all
item pairs, which should not be negatively correlated.

Such an evaluation can take place at two levels of statistical analysis. The first level implies a test
of the criterion of random response (marginal independence: N or ~a ~ 0 for some i). The cor-

responding estimates fI- and 9, are used to test these null hypotheses. The hypothesis of scalability
may be rejected for the whole set of items when its ~ value proves not to be significantly greater than
zero according to the test.

The second level aims at the estimation of corresponding population values. In this case confi=
dence intervals are sought for the population coefficients ~ and Hi as estimated with the sample coef-
ficients 9 and N, at a given level of confidence (I - a).

a. Scale fronl1 a Pool of Items

Here primary interest is in the exploration of the homogeneity of a pool of items which, on the
basis of their content alone, are thought to be more or less homogeneous. From this pool must be
selected a set of items, as large as possible, which satisfies the scale criteria and which may be used for
the ultimate measurement of the variable. Apart from the statistical criteria used, the ~~~~~~1 struc-
ture of this problem is a famillar one in statistical methods aiming at the optimal selection of n vari-
ables from a larger pool. 

_

The method summarily sketched here aims at a rather straightforward 6‘~~~f~p~~tl&reg;~9’ of 9 in
terms of the definition of a scale given in the previous section. It consists of a stepwise and recursive

technique of constructing a scale from a given set of items. A value for the defining constant c is
chosen (eo~a .30 in most applications). The analysis then proceeds from the cross-tabulations (2x2
tables) for all item pairs starting with the best (or a given) pair of items and progressively adding items
to the scalable set, ending with a test of the completed scale.

Multiple ~~g~~

Sometimes allowance should be made for the existence of more than one dimension or latent vari-

able and, hence, for the existence of more than one corresponding scale. The procedure provides for
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this contingency by the availability of criteria to took for various scales. The procedure starts with the
selection of items for the first scale. After the selection of this scale, the remaining pool of items, in-

eluding the items that were rejected, are subjected to the same procedure once more for the purpose
of selecting a second scale; this process is repeated until no more scales can be found.

Extension of an Existing Scale

Once a scale has been found and has demonstrated its usefulness in research, it may be worth-

while to develop and extend it further in subsequent research. In the exploratory phases referred to
above, scales often consist of only a few, say four to six, items. The old scale may then be extended by
trying out and adding new items in order to get a larger scalable set of items for future use. A modifi-
cation of the former procedure serves that purpose. Starting at once with the original set of scalable
items, new items may be added along the lines described.

hivestigating Monotony

The coefficient of scalability, N and Hi, and the definition of scalability are related to sets of

monotonely homogeneous items. Therefore, the procedures of test construction based on them may at
best be expected to result in the selection of sets of monotone items. Consequently, if it is desirable to
restrict selection to of doubly monotone items, the items will have to satisfy that stronger condi-
tion. Additional criteria and procedures will then be necessary in order to weed out further a mono-
tonely homogeneous set of items in search of &dquo;defective&dquo; items, trimming it down to a doubly mono-
tone set.

There are a few rough and ready but correspondingly simple means to perform such an inspec-
tion, An obvious method is to split a calibrating sample of persons in various groups and to invest-

gate whether the difficulty order of the items is invariant across groups (Molenaar, 1982b). One way is
to divide the sample into quantiles of the distribution of the test score (number correct), and to in-
spect the invariance of item difficulty order. If the sample is split according to n - 1 observed score
classes (excluding the for lack of information) and plotting the difficulty proportions for
each score class, the empirical item-test regression functions are checked.

Another check arises from a result of double monotony involving the following symmetric ma-
trices of probabilities: 1

where nij (0, 0) is the probability of a f 0, 01 response to items ~’ and j (responses incorrect or not posi-
tive) and where the diagonal elements -njj (1, 1) and ayi (0, 0) are not specified. Assume that the rows
(and columns) are numbered according to the ordering, ~o~e~ ~ ~~y9 n, < Ri. Then, double monot-

ony implies that the elements of row &reg;~ ~ will increase monotonically with column index j. Similarly,
the elements of row i of fl<°> will decrease monotonically with increasing column index y. By sym-
metry, the same is true for the rows. (Of course, significance margins can be taken into account in ac-
tual analysis.)
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of an Analysis

Detailed illustrations of all the scaling procedures described above (applied to political science
problems) are found, for instance, in Mokken (1971, chaps. 6-9) and Stokman (1977). The following
example uses only the simplest of the scaling procedures described above: evaluation of a set of items
as one scale. The example is taken from a recent study of subjective sleep quality, described by
Muldcr-Hayonides van der Meulen, Wijnberg, Hollanders, De Diana, & Van den Hoofdakker(1980).

The General Sleep Quality Scale consists of 14 dichotomous items (~~ree/dls~~r~~~e These are
chosen to measure sleep complaints (&dquo;positive&dquo; response) ranging from mfld to very severe (see Table
1). The original study was carried out with a group of 80 depressive patients using 27 items, from
which the 14 presented here were selected. An inspection of the matrix of sample item intcrcorrela-
tions (not reproduced here) revealed that no pair of items was negatively correlated.

In Table 1 the sample proportions of positive response (fti) and sample Ri values are given, to-
gether with N for the total scale. All Hi were significantly greater than zero (p < 6 x 1&reg;-&dquo; for all 14

tests simultaneously).
More interestingly, the smallest N, was .37 for item 12, and the total 9 of .52 would suggest that

this is a &dquo;strong&dquo; scale by the criteria given earlier.
A further inspection, which for reasons of space is omitted here, showed that there was no reason

to doubt the double monotony of the scale. Of course, no test or scale developed for general use
should be constructed on the basis of a small sample from a very specific population. The actual scale
was developed and cross-validated extensively.

Table 1

General Sleep Quality Scale

*Scored negatively.
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of Ability Estimation

When a set of items has been shown to form a satisfactory test or scale-for instance, by the
methods treated in the previous section-the next step is test administration: using the scale to obtain
estimates of the abilities of individuals. Common practice favors use of the simple score x (the number
of positive responses), which is adopted by fiat in classical test theory, formally justified in the deter-
ministic Guttman model, and-aniong stochastic item response models-uniquely associated with
the Rasch model (1980) as a minimal sufficient statistic for 0.

Assuming only monotonely homogeneous items, it has been noted by Lord and Novick, (1968, p.
386) and by Mokken (1971, p. 139) that the simple score has a monotone increasing regression on the
ability 6. Moreover, the variates x and the underlying ability 6 (assuming an arbitrary distribution for
0) are positively correlated, which warrants the use of x in linear structural models such as LISREL

(J6reskog, 1981). Moreover, it can be shown that for monotonely homogeneous items the &dquo;local&dquo; per-
son order (i.e., 0~ < 6,) always is given by the expected proportion correct (or expected score), and that

person order is item selection fr~e91.~., not dependent upon the particular selection of items. Since in
the nonparametric approach only ordinal properties of 0 are of interest, this result provides a justifi-
cation (by, e.g., Mokken, 1971) for the use of the simple score in the present context as well.

The possibility, especially when working with shorter tests, of going beyond the simple score as a

point estimate of 0 is the subject to which the rest of this section is devoted. The two greatest technical
problems associated with making inferences about individual abilities based on a relatively short test
are (1) the relatively limited amount of information provided by the responses themselves and (2) the
general inapplicability of results which are only asymptotically valid.

Working in the context of the nonparametric model developed here for the case of double monot-

ony, the method to be described addresses the first of these problems by allowing the introduction of

prior knowledge into the analysis (via Bayes’ theorem). It avoids the second by using exact, small

sample results. In addition, working directly with posterior distributions enables (1) obtaining inter-
val estimates for 0, (2) making classification decisions based on utilities associated with different

mastery levels, and (3) analyzing responses obtained in tailored adaptive testing situations.

Definitions and ~~ Results

Begin by defining for a set &reg;f a2 doubly monotonous items n + 1 ordered ability classes 0,, accord-

ing to the subdivision of the ability scale given by the item difficulties b « where (as usual) the items
have been ordered so that b y ~ ~2 ~ ... > b,~.

Specifically, let
, , .

Remembering that ~(6,) = .5 for each item, a given ability 6 will be a member of class 0. if

Q(8) > .5 forj = n, n - 1, ...9 a~ &reg; ~ ~ ~ (the &dquo;easiest&dquo; items) and

l§(8) < .5 forj &reg; r~ - ~9 M - i - 19 ...9 ~ 1 (the n - &dquo;most difficult&dquo; items).

Based on these ordered classes, there may also be assigned, for a person with ability 0, a correspond-
ing &dquo;class score&dquo; 0’t as follows:
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Note that the class score of a person may be directly interpreted as the ~z~~a~~~ of items which the per-
son ~~~a~an~~es, in the sense of having a positive response probability of at least .5 for each of these
items. Note also that &dquo;number of items dominated&dquo; (the class score) in the nonparametric context
plays the same role as number of positive responses (the simple score) does for the Guttman model:
&dquo;reproducing&dquo; the location of a person’s ability relative to the item difficulties. The situation de-
scribed above is illustrated in Figure 1. ..

of ~&reg;~ Knowledge

The main goal of the approach to ability estimation adopted here is to obtain posterior distribu-
tions for class scores e*, based on prior knowledge combined with the information from item re-
sponses. To do this necessitates beginning with a specification of prior knowledge regarding the un-
known probabilities of positive response for person a, denoted by iyi, rather than j~(9J, to emphasize
that the probabilities, and not the ability 8~, are the parameters being discussed. From double monot-
ony and the order of the bi is derived

In addition to using this critical piece of prior information, a natural conjugate prior density is

selected for the -ni., which takes the form of a product of beta densities, restricted to conform with

Equation 11. For information regarding natural conjugate priors in general and beta densities in par-
ticular, the reader is referred to Novick and Jackson (1974, especially chaps. 5 and 6). Here, it will
have to suffice to say that this choice provides a flexible family within which a wide variety of prior
knowledge may be specified. Moreover, when such a prior is combined with information from the
item responses, the posterior density for the ni,, belongs to the same family: a product of betas with the
restriction of Equation 1.

Of course, the real need concerns determination of distributions (prior posterior) for the class
score 0*. From Equations 9 and 10, these are directly obtainable in terms of the distributions of
the 71i~:

en working with product beta densities, the probabilities in Equation 12 may be obtained through
relatively straightforward numerical integration.

To give an idea of the importance of the prior information contained in the order restriction of
Equation 11, consider the following simple example. Suppose a uniform joint prior density is adopted
for the rij., one which gives equal weight to every permissible combination of values. When this den-
sity is integrated to obtain the probabilities given in Equation 12, it is found that 0~ has not a uniform
distribution but a binomial distribution with parameters n and .5. Thus, when n &reg; 10, the prior
chance assigned to a class score of 0 is only about 1 in ~~&reg;~&reg;,, whll~ ~ class score of 5 has a prior chance
of roughly 1 out of 4. All this is a direct implication of assuming that the increase monotonically
in difficulty for person a.
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The above example was not intended to suggest that a uniform prior for the n;~ (which is a bino-
mial prior for 0*) will normally be a suitable specification.. Instead, a careful examination of alterna-
tive priors in the light of available knowledge should typically take place. An interactive computer
program, ABILITY, is available to facilitate this process, allowing the investigator to easily specify
and obtain information about any chosen series of priors. In the same way, the investigator may com-
bine various priors with hypothetical item response patterns and see the resultant posterior distribu-
tions for 0*. This provides insight into the relative roles played by the prior and by data in any par-
ticular case and, as such, offers a guide in the choice of an appropriate prior,

Specifying a prior distribution for the 7Ti. as discussed above has, of course, a basically subjective
character. &dquo;Subjective&dquo; should not, however, be equated with &dquo;~rbitr~.ry~99 The specifications should
be at least broadly defensible, with regard to both their origins and their consequences.

of an Analysis

To illustrate the use of the ability estimation procedure described above, it is convenient to return
to the example of the previous section, namely the General Sleep Quality Scale, as administered to
Dutch harbor pilots and their wives (De Vries-Griever, De Vries, & ~~i~~~.n, 19~2~0

Although there are 14 items in the scale, for the purpose of this analysis, items were grouped to-
gether whose observed proportions of positive responses in the original study differed by less than .01.
This resulted in the 10 item groups shown in Table 2. These, in turn, defined 11 ordered ability
classes, 0,, and corresponding possible class scores, e* (from 0 to 10).

RerD-embering that the items are scored so that a positive response refers to an instance of a sleep
complaint, a person with a class score of 0 would be considered as having a high sleep quality in the
sense that his or her chance of a positive response would be less than .5 for each of the 14 items. A

person with a class score of 4 would have a chance greater than or equal to .5 of responding positively
to the items in only the four ~6~~si~sty’ groups (those measuring the mildest sleep complaints), i.e.,
Items 10,11,12,13, and 14.

This illustration is restricted to the subpopulation of wives of the youngest group of harbor pilots
(ages 29 to 34), and only the measurement of their quality will be considered for the period when
their husbands were working, on the earlier studies cited in the previous section, a product beta

prior distribution was specified for the ni, which assigns the highest prior probability to 0ji = 3, with a
96% interval for 6* going from 1 to 5 (inclusive). Thus, it was expected that women in this group
would have moderate, but not severe, complaints. The complete prior distribution for S* used in
subsequent analyses is given in Table 2. _

Table 3 shows the results of analyzing five selected response records. The first (Person 1) shows
the posterior distribution for a woman with no sleep complaints, and the second (Person 2) for a

Table 2

Item Groups, Class Scores, and Prior Distribution for Sleep Quality Scale
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Table 3

Analysis of Individual Response Records For the Sleep Quality Scale

*Proportion of positive responses per item group. .

woman responding positively to all 14 items. In both cases the posterior represents a compromise be-
tween prior and data.

According to well-known results in theoretical statistics, in any analysis the full information con-
tained in the complete response pattern will be necessary to make inferences about a person’s ability.
(For a criticism of the treatment of response patterns in traditional Guttman scaling procedures, see
Mokken, 1971, pp. 153-157). The last three records were chosen to illustrate this effect of pattern on

posterior with the number of positive responses held constant (at x = 6)~ A &dquo;perfect p~.ttern9~ results in
the most concentrated posterior (Person 3). A less consistent pattern shifts the mode and increases
variance and skewness of the posterior (Person 4). Finally, a pattern which shows little consistency
with the theoretical ordering of the items leads to a posterior which is actually broader than the prior
(Person 5).

Thus, the data in Tables 2 and 3 demonstrate that the method discussed here allows flexible spe-
cification of prior knowledge and delivers complete posterior distributions for latent ability, as mea-
sured the class score.
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