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Abstract

We investigate the problem of acoustic mod-

eling in which prior language-specific knowl-

edge and transcribed data are unavailable. We

present an unsupervised model that simultane-

ously segments the speech, discovers a proper

set of sub-word units (e.g., phones) and learns

a Hidden Markov Model (HMM) for each in-

duced acoustic unit. Our approach is formu-

lated as a Dirichlet process mixture model in

which each mixture is an HMM that repre-

sents a sub-word unit. We apply our model

to the TIMIT corpus, and the results demon-

strate that our model discovers sub-word units

that are highly correlated with English phones

and also produces better segmentation than the

state-of-the-art unsupervised baseline. We test

the quality of the learned acoustic models on a

spoken term detection task. Compared to the

baselines, our model improves the relative pre-

cision of top hits by at least 22.1% and outper-

forms a language-mismatched acoustic model.

1 Introduction

Acoustic models are an indispensable component

of speech recognizers. However, the standard pro-

cess of training acoustic models is expensive, and

requires not only language-specific knowledge, e.g.,

the phone set of the language, a pronunciation dic-

tionary, but also a large amount of transcribed data.

Unfortunately, these necessary data are only avail-

able for a very small number of languages in the

world. Therefore, a procedure for training acous-

tic models without annotated data would not only

be a breakthrough from the traditional approach, but

would also allow us to build speech recognizers for

any language efficiently.

In this paper, we investigate the problem of unsu-

pervised acoustic modeling with only spoken utter-

ances as training data. As suggested in Garcia and

Gish (2006), unsupervised acoustic modeling can

be broken down to three sub-tasks: segmentation,

clustering segments, and modeling the sound pattern

of each cluster. In previous work, the three sub-

problems were often approached sequentially and

independently in which initial steps are not related to

later ones (Lee et al., 1988; Garcia and Gish, 2006;

Chan and Lee, 2011). For example, the speech data

was usually segmented regardless of the clustering

results and the learned acoustic models.

In contrast to the previous methods, we approach

the problem by modeling the three sub-problems as

well as the unknown set of sub-word units as la-

tent variables in one nonparametric Bayesian model.

More specifically, we formulate a Dirichlet pro-

cess mixture model where each mixture is a Hid-

den Markov Model (HMM) used to model a sub-

word unit and to generate observed segments of that

unit. Our model seeks the set of sub-word units,

segmentation, clustering and HMMs that best repre-

sent the observed data through an iterative inference

process. We implement the inference process using

Gibbs sampling.

We test the effectiveness of our model on the

TIMIT database (Garofolo et al., 1993). Our model

shows its ability to discover sub-word units that are

highly correlated with standard English phones and

to capture acoustic context information. For the seg-

mentation task, our model outperforms the state-of-
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the-art unsupervised method and improves the rel-

ative F-score by 18.8 points (Dusan and Rabiner,

2006). Finally, we test the quality of the learned

acoustic models through a keyword spotting task.

Compared to the state-of-the-art unsupervised meth-

ods (Zhang and Glass, 2009; Zhang et al., 2012),

our model yields a relative improvement in precision

of top hits by at least 22.1% with only some degra-

dation in equal error rate (EER), and outperforms

a language-mismatched acoustic model trained with

supervised data.

2 Related Work

Unsupervised Sub-word Modeling We follow

the general guideline used in (Lee et al., 1988; Gar-

cia and Gish, 2006; Chan and Lee, 2011) and ap-

proach the problem of unsupervised acoustic mod-

eling by solving three sub-problems of the task:

segmentation, clustering and modeling each cluster.

The key difference, however, is that our model does

not assume independence among the three aspects of

the problem, which allows our model to refine its so-

lution to one sub-problem by exploiting what it has

learned about other parts of the problem. Second,

unlike (Lee et al., 1988; Garcia and Gish, 2006) in

which the number of sub-word units to be learned is

assumed to be known, our model learns the proper

size from the training data directly.

Instead of segmenting utterances, the authors

of (Varadarajan et al., 2008) trained a single state

HMM using all data at first, and then iteratively

split the HMM states based on objective functions.

This method achieved high performance in a phone

recognition task using a label-to-phone transducer

trained from some transcriptions. However, the per-

formance seemed to rely on the quality of the trans-

ducer. For our work, we assume no transcriptions

are available and measure the quality of the learned

acoustic units via a spoken query detection task as

in Jansen and Church (2011).

Jansen and Church (2011) approached the task of

unsupervised acoustic modeling by first discovering

repetitive patterns in the data, and then learned a

whole-word HMM for each found pattern, where the

state number of each HMM depends on the average

length of the pattern. The states of the whole-word

HMMs were then collapsed and used to represent

acoustic units. Instead of discovering repetitive pat-

terns first, our model is able to learn from any given

data.

Unsupervised Speech Segmentation One goal

of our model is to segment speech data into

small sub-word (e.g., phone) segments. Most un-

supervised speech segmentation methods rely on

acoustic change for hypothesizing phone bound-

aries (Scharenborg et al., 2010; Qiao et al., 2008;

Dusan and Rabiner, 2006; Estevan et al., 2007).

Even though the overall approaches differ, these al-

gorithms are all one-stage and bottom-up segmenta-

tion methods (Scharenborg et al., 2010). Our model

does not make a single one-stage decision; instead, it

infers the segmentation through an iterative process

and exploits the learned sub-word models to guide

its hypotheses on phone boundaries.

Bayesian Model for Segmentation Our model is

inspired by previous applications of nonparametric

Bayesian models to segmentation problems in NLP

and speaker diarization (Goldwater, 2009; Fox et al.,

2011); particularly, we adapt the inference method

used in (Goldwater, 2009) to our segmentation task.

Our problem is, in principle, similar to the word seg-

mentation problem discussed in (Goldwater, 2009).

The main difference, however, is that our model

is under the continuous real value domain, and the

problem of (Goldwater, 2009) is under the discrete

symbolic domain. For the domain our problem is ap-

plied to, our model has to include more latent vari-

ables and is more complex.

3 Problem Formulation

The goal of our model, given a set of spoken utter-

ances, is to jointly learn the following:

• Segmentation: To find the phonetic boundaries

within each utterance.

• Nonparametric clustering: To find a proper set

of clusters and group acoustically similar seg-

ments into the same cluster.

• Sub-word modeling: To learn a HMM to model

each sub-word acoustic unit.

We model the three sub-tasks as latent variables

in our approach. In this section, we describe the ob-

served data, latent variables, and auxiliary variables
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Figure 1: An example of the observed data and hidden

variables of the problem for the word banana. See Sec-

tion 3 for a detailed explanation.

of the problem and show an example in Fig. 1. In

the next section, we show the generative process our

model uses to generate the observed data.

Speech Feature (xi
t) The only observed data for

our problem are a set of spoken utterances, which are

converted to a series of 25 ms 13-dimensional Mel-

Frequency Cepstral Coefficients (MFCCs) (Davis

and Mermelstein, 1980) and their first- and second-

order time derivatives at a 10 ms analysis rate. We

use xi
t ∈ R

39 to denote the tth feature frame of the

ith utterance. Fig. 1 illustrates how the speech signal

of a single word utterance banana is converted to a

sequence of feature vectors xi
1 to xi

11.

Boundary (bi
t) We use a binary variable bi

t to in-

dicate whether a phone boundary exists between xi
t

and xi
t+1. If our model hypothesizes xi

t to be the last

frame of a sub-word unit, which is called a boundary

frame in this paper, bi
t is assigned with value 1; or 0

otherwise. Fig. 1 shows an example of the boundary

variables where the values correspond to the true an-

swers. We use an auxiliary variable gi
q to denote the

index of the qth boundary frame in utterance i. To

make the derivation of posterior distributions easier

in Section 5, we define gi
0 to be the beginning of

an utterance, and Li to be the number of boundary

frames in an utterance. For the example shown in

Fig. 1, Li is equal to 6.

Segment (pi
j,k) We define a segment to be com-

posed of feature vectors between two boundary

frames. We use pi
j,k to denote a segment that con-

sists of xi
j , x

i
j+1 · · ·x

i
k and di

j,k to denote the length

of pi
j,k. See Fig. 1 for more examples.

Cluster Label (ci
j,k) We use ci

j,k to specify the

cluster label of pi
j,k. We assume segment pi

j,k is gen-

erated by the sub-word HMM with label ci
j,k.

HMM (θc) In our model, each HMM has three

emission states, which correspond to the beginning,

middle and end of a sub-word unit (Jelinek, 1976).

A traversal of each HMM must start from the first

state, and only left-to-right transitions are allowed

even though we allow skipping of the middle and

the last state for segments shorter than three frames.

The emission probability of each state is modeled by

a diagonal Gaussian Mixture Model (GMM) with 8

mixtures. We use θc to represent the set of param-

eters that define the cth HMM, which includes state

transition probability aj,k
c , and the GMM parameters

of each state emission probability. We use wm
c,s ∈ R,

µm
c,s ∈ R

39 and λm
c,s ∈ R

39 to denote the weight,

mean vector and the diagonal of the inverse covari-

ance matrix of the mth mixture in the GMM for the

sth state in the cth HMM.

Hidden State (si
t) Since we assume the observed

data are generated by HMMs, each feature vector,

xi
t, has an associated hidden state index. We denote

the hidden state of xi
t as si

t.

Mixture ID (mi
t) Similarly, each feature vector is

assumed to be emitted by the state GMM it belongs

to. We use mi
t to identify the Gaussian mixture that

generates xi
t.

4 Model

We aim to discover and model a set of sub-word

units that represent the spoken data. If we think of

utterances as sequences of repeated sub-word units,

then in order to find the sub-words, we need a model

that concentrates probability on highly frequent pat-

terns while still preserving probability for previously

unseen ones. Dirichlet processes are particulary

suitable for our goal. Therefore, we construct our

model as a Dirichlet Process (DP) mixture model,

of which the components are HMMs that are used
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Figure 2: The graphical model for our approach. The shaded circle denotes the observed feature vectors, and the

squares denote the hyperparameters of the priors used in our model. The dotted arrows indicate deterministic relations.

Note that the Markov chain structure over the st variables is not shown here due to limited space.

to model sub-word units. We assume each spoken

segment is generated by one of the clusters in this

DP mixture model. Here, we describe the genera-

tive process our model uses to generate the observed

utterances and present the corresponding graphical

model. For clarity, we assume that the values of

the boundary variables bi
t are given in the genera-

tive process. In the next section, we explain how to

infer their values.

Let pi
gi

q+1,gi
q+1

for 0 ≤ q ≤ Li − 1 be the seg-

ments of the ith utterance. Our model assumes each

segment is generated as follows:

1. Choose a cluster label ci
gi

q+1,gi
q+1

for pi
gi

q+1,gi
q+1

.

This cluster label can be either an existing la-

bel or a new one. Note that the cluster label

determines which HMM is used to generate the

segment.

2. Given the cluster label, choose a hidden state

for each feature vector xi
t in the segment.

3. For each xi
t, based on its hidden state, choose a

mixture from the GMM of the chosen state.

4. Use the chosen Gaussian mixture to generate

the observed feature vector xi
t.

The generative process indicates that our model

ignores utterance boundaries and views the entire

data as concatenated spoken segments. Given this

viewpoint, we discard the utterance index, i, of all

variables in the rest of the paper.

The graphical model representing this generative

process is shown in Fig. 2, where the shaded circle

denotes the observed feature vectors, and the squares

denote the hyperparameters of the priors used in our

model. Specifically, we use a Bernoulli distribution

as the prior of the boundary variables and impose

a Dirichlet process prior on the cluster labels and

the HMM parameters. The dotted arrows represent

deterministic relations. For example, the boundary

variables deterministically construct the duration of

each segment, d, which in turn sets the number of

feature vectors that should be generated for a seg-

ment. In the next section, we show how to infer the

value of each of the latent variables in Fig. 21.

5 Inference

We employ Gibbs sampling (Gelman et al., 2004)

to approximate the posterior distribution of the hid-

den variables in our model. To apply Gibbs sam-

pling to our problem, we need to derive the condi-

tional posterior distributions of each hidden variable

of the model. In the following sections, we first de-

rive the sampling equations for each hidden variable

and then describe how we incorporate acoustic cues

to reduce the sampling load at the end.

1Note that the value of π is irrelevant to our problem; there-

fore, it is integrated out in the inference process
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5.1 Sampling Equations

Here we present the sampling equations for each

hidden variable defined in Section 3. We use

P (·| · · · ) to denote a conditional posterior probabil-

ity given observed data, all the other variables, and

hyperparameters for the model.

Cluster Label (cj,k) Let C be the set of distinctive

label values in c−j,k, which represents all the cluster

labels except cj,k. The conditional posterior proba-

bility of cj,k for c ∈ C is:

P (cj,k = c| · · · ) ∝ P (cj,k = c|c−j,k; γ)P (pj,k|θc)

=
n(c)

N − 1 + γ
P (pj,k|θc) (1)

where γ is a parameter of the DP prior. The first line

of Eq. 1 follows Bayes’ rule. The first term is the

conditional prior, which is a result of the DP prior

imposed on the cluster labels 2. The second term is

the conditional likelihood, which reflects how likely

the segment pj,k is generated by HMMc. We use n(c)

to represent the number of cluster labels in c−j,k tak-

ing the value c and N to represent the total number

of segments in current segmentation.

In addition to existing cluster labels, cj,k can also

take a new cluster label, which corresponds to a new

sub-word unit. The corresponding conditional pos-

terior probability is:

P (cj,k 6= c, c ∈ C| · · · ) ∝
γ

N − 1 + γ

∫

θ

P (pj,k|θ) dθ

(2)

To deal with the integral in Eq. 2, we follow the

suggestions in (Rasmussen, 2000; Neal, 2000). We

sample an HMM from the prior and compute the

likelihood of the segment given the new HMM to

approximate the integral.

Finally, by normalizing Eq. 1 and Eq. 2, the Gibbs

sampler can draw a new value for cj,k by sampling

from the normalized distribution.

Hidden State (st) To enforce the assumption that

a traversal of an HMM must start from the first state

and end at the last state3, we do not sample hidden

state indices for the first and the last frame of a seg-

ment. For each of the remaining feature vectors in

2See (Neal, 2000) for an overview on Dirichlet process mix-

ture models and the inference methods.
3If a segment has only 1 frame, we assign the first state to it.

a segment pj,k, we sample a hidden state index ac-

cording to the conditional posterior probability:

P (st = s| · · · ) ∝

P (st = s|st−1)P (xt|θcj,k
, st = s)P (st+1|st = s)

= ast−1,s
cj,k

P (xt|θcj,k
, st = s)as,st+1

cj,k
(3)

where the first term and the third term are the condi-

tional prior – the transition probability of the HMM

that pj,k belongs to. The second term is the like-

lihood of xt being emitted by state s of HMMcj,k
.

Note for initialization, st is sampled from the first

prior term in Eq. 3.

Mixture ID (mt) For each feature vector in a seg-

ment, given the cluster label cj,k and the hidden state

index st, the derivation of the conditional posterior

probability of its mixture ID is straightforward:

P (mt = m| · · · )

∝ P (mt = m|θcj,k
, st)P (xt|θcj,k

, st, mt = m)

= wm
cj,k,st

P (xt|µ
m
cj,k,st

, λm
cj,k,st

) (4)

where 1 ≤ m ≤ 8. The conditional posterior con-

sists of two terms: 1) the mixing weight of the mth

Gaussian in the state GMM indexed by cj,k and st

and 2) the likelihood of xt given the Gaussian mix-

ture. The sampler draws a value for mt from the

normalized distribution of Eq. 4.

HMM Parameters (θc) Each θc consists of two

sets of variables that define an HMM: the state emis-

sion probabilities wm
c,s, µ

m
c,s, λ

m
c,s and the state transi-

tion probabilities aj,k
c . In the following, we derive

the conditional posteriors of these variables.

Mixture Weight wm
c,s: We use wc,s = {wm

c,s|1 ≤
m ≤ 8} to denote the mixing weights of the Gaus-

sian mixtures of state s of HMM c. We choose a

symmetric Dirichlet distribution with a positive hy-

perparameter β as its prior. The conditional poste-

rior probability of wc,s is:

P (wc,s| · · · ) ∝ P (wc,s;β)P (mc,s|wc,s)

∝ Dir(wc,s;β)Mul(mc,s;wc,s)

∝ Dir(wc,s;β
′) (5)

where mc,s is the set of mixture IDs of feature vec-

tors that belong to state s of HMM c. The mth entry

of β′ is β +
∑

mt∈mc,s
δ(mt, m), where we use δ(·)
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P (pl,t, pt+1,r|c
−,θ) = P (pl,t|c

−,θ)P (pt+1,r|c
−, cl,t,θ)

=

[

∑

c∈C

n(c)

N− + γ
P (pl,t|θc) +

γ

N− + γ

∫

θ

P (pl,t|θ) dθ

]

×

[

∑

c∈C

n(c) + δ(cl,t, c)

N− + 1 + γ
P (pt+1,r|θc) +

γ

N− + 1 + γ

∫

θ

P (pt+1,r|θ) dθ

]

P (pl,r|c
−,θ) =

∑

c∈C

n(c)

N− + γ
P (pl,r|θc) +

γ

N− + γ

∫

θ

P (pl,r|θ) dθ

Figure 3: The full derivation of the relative conditional posterior probabilities of a boundary variable.

to denote the discrete Kronecker delta. The last line

of Eq. 5 comes from the fact that Dirichlet distribu-

tions are a conjugate prior for multinomial distribu-

tions. This property allows us to derive the update

rule analytically.

Gaussian Mixture µm
c,s, λ

m
c,s: We assume the di-

mensions in the feature space are independent. This

assumption allows us to derive the conditional pos-

terior probability for a single-dimensional Gaussian

and generalize the results to other dimensions.

Let the dth entry of µm
c,s and λm

c,s be µm,d
c,s and

λm,d
c,s . The conjugate prior we use for the two vari-

ables is a normal-Gamma distribution with hyperpa-

rameters µ0, κ0, α0 and β0 (Murphy, 2007).

P (µm,d
c,s , λm,d

c,s |µ0, κ0, α0, β0)

= N(µm,d
c,s |µ0, (κ0λ

m,d
c,s )−1)Ga(λm,d

c,s |α0, β0)

By tracking the dth dimension of feature vectors

x ∈ {xt|mt = m, st = s, cj,k = c, xt ∈ pj,k}, we

can derive the conditional posterior distribution of

µm,d
c,s and λm,d

c,s analytically following the procedures

shown in (Murphy, 2007). Due to limited space,

we encourage interested readers to find more details

in (Murphy, 2007).

Transition Probabilities aj,k
c : We represent the

transition probabilities at state j in HMM c using aj
c.

If we view aj
c as mixing weights for states reachable

from state j, we can simply apply the update rule

derived for the mixing weights of Gaussian mixtures

shown in Eq. 5 to aj
c. Assume we use a symmetric

Dirichlet distribution with a positive hyperparameter

η as the prior, the conditional posterior for aj
c is:

P (aj
c| · · · ) ∝ Dir(aj

c; η
′)

where the kth entry of η′ is η + nj,k
c , the number

of occurrences of the state transition pair (j, k) in

segments that belong to HMM c.

Boundary Variable (bt) To derive the conditional

posterior probability for bt, we introduce two vari-

ables:

l = (arg max
gq

gq < t) + 1

r = arg min
gq

t < gq

where l is the index of the closest turned-on bound-

ary variable that precedes bt plus 1, while r is the in-

dex of the closest turned-on boundary variable that

follows bt. Note that because g0 and gL are defined,

l and r always exist for any bt.

Note that the value of bt only affects segmentation

between xl and xr. If bt is turned on, the sampler hy-

pothesizes two segments pl,t and pt+1,r between xl

and xr. Otherwise, only one segment pl,r is hypoth-

esized. Since the segmentation on the rest of the data

remains the same no matter what value bt takes, the

conditional posterior probability of bt is:

P (bt = 1| · · · ) ∝ P (pl,t, pt+1,r|c
−, θ) (6)

P (bt = 0| · · · ) ∝ P (pl,r|c
−, θ) (7)

where we assume that the prior probabilities for

bt = 1 and bt = 0 are equal; c− is the set of cluster

labels of all segments except those between xl and

xr ; and θ indicates the set of HMMs that have as-

sociated segments. Our Gibbs sampler hypothesizes

bt’s value by sampling from the normalized distribu-

tion of Eq. 6 and Eq. 7. The full derivations of Eq. 6

and Eq. 7 are shown in Fig. 3.

Note that in Fig. 3, N− is the total number of seg-

ments in the data except those between xl and xr.
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For bt = 1, to account the fact that when the model

generates pt+1,r, pl,t is already generated and owns

a cluster label, we sample a cluster label for pl,t that

is reflected in the Kronecker delta function. To han-

dle the integral in Fig. 3, we sample one HMM from

the prior and compute the likelihood using the new

HMM to approximate the integral as suggested in

(Rasmussen, 2000; Neal, 2000).

5.2 Heuristic Boundary Elimination

To reduce the inference load on the boundary vari-

ables bt, we exploit acoustic cues in the feature space

to eliminate bt’s that are unlikely to be phonetic

boundaries. We follow the pre-segmentation method

described in Glass (2003) to achieve the goal. For

the rest of the boundary variables that are proposed

by the heuristic algorithm, we randomly initialize

their values and proceed with the sampling process

described above.

6 Experimental Setup

To the best of our knowledge, there are no stan-

dard corpora for evaluating unsupervised methods

for acoustic modeling. However, numerous related

studies have reported performance on the TIMIT

corpus (Dusan and Rabiner, 2006; Estevan et al.,

2007; Qiao et al., 2008; Zhang and Glass, 2009;

Zhang et al., 2012), which creates a set of strong

baselines for us to compare against. Therefore, the

TIMIT corpus is chosen as the evaluation set for

our model. In this section, we describe the methods

used to measure the performance of our model on

the following three tasks: sub-word acoustic model-

ing, segmentation and nonparametric clustering.

Unsupervised Segmentation We compare the

phonetic boundaries proposed by our model to the

manual labels provided in the TIMIT dataset. We

follow the suggestion of (Scharenborg et al., 2010)

and use a 20-ms tolerance window to compute re-

call, precision rates and F-score of the segmentation

our model proposed for TIMIT’s training set. We

compare our model against the state-of-the-art un-

supervised and semi-supervised segmentation meth-

ods that were also evaluated on the TIMIT training

set (Dusan and Rabiner, 2006; Qiao et al., 2008).

Nonparametric Clustering Our model automat-

ically groups speech segments into different clus-

ters. One question we are interested in answering

is whether these learned clusters correlate to En-

glish phones. To answer the question, we develop

a method to map cluster labels to the phone set in

a dataset. We align each cluster label in an utter-

ance to the phone(s) it overlaps with in time by

using the boundaries proposed by our model and

the manually-labeled ones. When a cluster label

overlaps with more than one phone, we align it

to the phone with the largest overlap.4 We com-

pile the alignment results for 3696 training utter-

ances5 and present a confusion matrix between the

learned cluster labels and the 48 phonetic units used

in TIMIT (Lee and Hon, 1989).

Sub-word Acoustic Modeling Finally, and most

importantly, we need to gauge the quality of the

learned sub-word acoustic models. In previous

work, Varadarajan et al. (2008) and Garcia and

Gish (2006) tested their models on a phone recog-

nition task and a term detection task respectively.

These two tasks are fair measuring methods, but per-

formance on these tasks depends not only on the

learned acoustic models, but also other components

such as the label-to-phone transducer in (Varadara-

jan et al., 2008) and the graphone model in (Garcia

and Gish, 2006). To reduce performance dependen-

cies on components other than the acoustic model,

we turn to the task of spoken term detection, which

is also the measuring method used in (Jansen and

Church, 2011).

We compare our unsupervised acoustic model

with three supervised ones: 1) an English triphone

model, 2) an English monophone model and 3) a

Thai monophone model. The first two were trained

on TIMIT, while the Thai monophone model was

trained with 32 hour clean read Thai speech from

the LOTUS corpus (Kasuriya et al., 2003). All

of the three models, as well as ours, used three-

state HMMs to model phonetic units. To conduct

spoken term detection experiments on the TIMIT

dataset, we computed a posteriorgram representa-

tion for both training and test feature frames over the

4Except when a cluster label is mapped to /vcl/ /b/, /vcl/ /g/

and /vcl/ /d/, where the duration of the release /b/, /g/, /d/ is

almost always shorter than the closure /vcl/. In this case, we

align the cluster label to both the closure and the release.
5The TIMIT training set excluding the sa-type subset.
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γ αb β η µ0 κ0 α0 β0

1 0.5 3 3 µd 5 3 3/λd

Table 1: The values of the hyperparameters of our model,

where µd and λd are the dth entry of the mean and the

diagonal of the inverse covariance matrix of training data.

HMM states for each of the four models. Ten key-

words were randomly selected for the task. For ev-

ery keyword, spoken examples were extracted from

the training set and were searched for in the test set

using segmental dynamic time warping (Zhang and

Glass, 2009).

In addition to the supervised acoustic models,

we also compare our model against the state-of-

the-art unsupervised methods for this task (Zhang

and Glass, 2009; Zhang et al., 2012). Zhang and

Glass (2009) trained a GMM with 50 components

to decode posteriorgrams for the feature frames, and

Zhang et al. (2012) used a deep Boltzmann machine

(DBM) trained with pseudo phone labels generated

from an unsupervised GMM to produce a posteri-

orgram representation. The evaluation metrics they

used were: 1) P@N, the average precision of the top

N hits, where N is the number of occurrences of each

keyword in the test set; 2) EER: the average equal er-

ror rate at which the false acceptance rate is equal to

the false rejection rate. We also report experimental

results using the P@N and EER metrics.

Hyperparameters and Training Iterations The

values of the hyperparameters of our model are

shown in Table 1, where µd and λd are the dth en-

try of the mean and the diagonal of the inverse co-

variance matrix computed from training data. We

pick these values to impose weak priors on our

model.6 We run our sampler for 20,000 iterations,

after which the evaluation metrics for our model all

converged. In Section 7, we report the performance

of our model using the sample from the last iteration.

7 Results

Fig. 4 shows a confusion matrix of the 48 phones

used in TIMIT and the sub-word units learned from

3696 TIMIT utterances. Each circle represents a

mapping pair for a cluster label and an English

phone. The confusion matrix demonstrates a strong

6In the future, we plan to extend the model and infer the

values of these hyperparameters from data directly.
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Figure 4: A confusion matrix of the learned cluster labels

from the TIMIT training set excluding the sa type utter-

ances and the 48 phones used in TIMIT. Note that for

clarity, we show only pairs that occurred more than 200
times in the alignment results. The average co-occurrence

frequency of the mapping pairs in this figure is 431.

correlation between the cluster labels and individ-

ual English phones. For example, clusters 19, 20

and 21 are mapped exclusively to the vowel /ae/. A

more careful examination on the alignment results

shows that the three clusters are mapped to the same

vowel in a different acoustic context. For example,

cluster 19 is mapped to /ae/ followed by stop conso-

nants, while cluster 20 corresponds to /ae/ followed

by nasal consonants. This context-dependent rela-

tionship is also observed in other English phones

and their corresponding sets of clusters. Fig. 4 also

shows that a cluster may be mapped to multiple En-

glish phones. For instance, clusters 85 and 89 are

mapped to more than one phone; nevertheless, a

closer look reveals that these clusters are mapped to

/n/, /d/ and /b/, which are sounds with a similar place

of articulation (i.e. labial and dental). These corre-

lations indicate that our model is able to discover the

phonetic composition of a set of speech data without

any language-specific knowledge.

The performance of the four acoustic models on

the spoken term detection task is presented in Ta-

ble 2. The English triphone model achieves the best

P@N and EER results and performs slightly bet-

ter than the English monophone model, which indi-

cates a correlation between the quality of an acous-

tic model and its performance on the spoken term

detection task. Although our unsupervised model

does not perform as well as the supervised English
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unit(%) P@N EER

English triphone 75.9 11.7

English monophone 74.0 11.8

Thai monophone 56.6 14.9

Our model 63.0 16.9

Table 2: The performance of our model and three super-

vised acoustic models on the spoken term detection task.

acoustic models, it generates a comparable EER and

a more accurate detection performance for top hits

than the Thai monophone model. This indicates that

even without supervision, our model captures and

learns the acoustic characteristics of a language au-

tomatically and is able to produce an acoustic model

that outperforms a language-mismatched acoustic

model trained with high supervision.

Table 3 shows that our model improves P@N by

a large margin and generates only a slightly worse

EER than the GMM baseline on the spoken term

detection task. At the end of the training process,

our model induced 169 HMMs, which were used to

compute posteriorgrams. This seems unfair at first

glance because Zhang and Glass (2009) only used

50 Gaussians for decoding, and the better result of

our model could be a natural outcome of the higher

complexity of our model. However, Zhang and

Glass (2009) pointed out that using more Gaussian

mixtures for their model did not improve their model

performance. This indicates that the key reason for

the improvement is our joint modeling method in-

stead of simply the higher complexity of our model.

Compared to the DBM baseline, our model pro-

duces a higher EER; however, it improves the rel-

ative detection precision of top hits by 24.3%. As

indicated in (Zhang et al., 2012), the hierarchical

structure of DBM allows the model to provide a

descent posterior representation of phonetic units.

Even though our model only contains simple HMMs

and Gaussians, it still achieves a comparable, if not

better, performance as the DBM baseline. This

demonstrates that even with just a simple model

structure, the proposed learning algorithm is able

to acquire rich phonetic knowledge from data and

generate a fine posterior representation for phonetic

units.

Table 4 summarizes the segmentation perfor-

mance of the baselines, our model and the heuristic

unit(%) P@N EER

GMM (Zhang and Glass, 2009) 52.5 16.4

DBM (Zhang et al., 2012) 51.1 14.7

Our model 63.0 16.9

Table 3: The performance of our model and the GMM

and DBM baselines on the spoken term detection task.

unit(%) Recall Precision F-score

Dusan (2006) 75.2 66.8 70.8

Qiao et al. (2008)* 77.5 76.3 76.9

Our model 76.2 76.4 76.3

Pre-seg 87.0 50.6 64.0

Table 4: The segmentation performance of the baselines,

our model and the heuristic pre-segmentation on TIMIT

training set. *The number of phone boundaries in each

utterance was assumed to be known in this model.

pre-segmentation (pre-seg) method. The language-

independent pre-seg method is suitable for seeding

our model. It eliminates most unlikely boundaries

while retaining about 87% true boundaries. Even

though this indicates that at best our model only

recalls 87% of the true boundaries, the pre-seg re-

duces the search space significantly. In addition,

it also allows the model to capture proper phone

durations, which compensates the fact that we do

not include any explicit duration modeling mecha-

nisms in our approach. In the best semi-supervised

baseline model (Qiao et al., 2008), the number of

phone boundaries in an utterance was assumed to

be known. Although our model does not incorpo-

rate this information, it still achieves a very close

F-score. When compared to the baseline in which

the number of phone boundaries in each utterance

was also unknown (Dusan and Rabiner, 2006), our

model outperforms in both recall and precision, im-

proving the relative F-score by 18.8%. The key dif-

ference between the two baselines and our method

is that our model does not treat segmentation as a

stand-alone problem; instead, it jointly learns seg-

mentation, clustering and acoustic units from data.

The improvement on the segmentation task shown

by our model further supports the strength of the

joint learning scheme proposed in this paper.

8 Conclusion

We present a Bayesian unsupervised approach to the

problem of acoustic modeling. Without any prior

48



knowledge, this method is able to discover phonetic

units that are closely related to English phones, im-

prove upon state-of-the-art unsupervised segmenta-

tion method and generate more precise spoken term

detection performance on the TIMIT dataset. In the

future, we plan to explore phonological context and

use more flexible topological structures to model

acoustic units within our framework.
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