

∂ Open access • Journal Article • DOI:10.1111/J.1467-9574.1996.TB01501.X

A nonparametric measure of spatial interaction in point patterns — Source link []

van Marie-Colette Lieshout, Adrian Baddeley

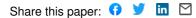
Institutions: University of Warwick, University of Western Australia

Published on: 01 Nov 1996 - Statistica Neerlandica (Wiley-Blackwell)

Topics: Nearest neighbour distribution, Complete spatial randomness, Point process, Function (mathematics) and Estimator

Related papers:

- Statistical analysis of spatial point patterns
- Stochastic Geometry and Its Applications
- An introduction to the theory of point processes
- spatstat: An R Package for Analyzing Spatial Point Patterns
- Non-and semi-parametric estimation of interaction in inhomogeneous point patterns



A nonparametric measure of spatial interaction in point patterns

A J Baddeley^{1,2,4}

M N M van Lieshout^{3,4}

 1 Department of Mathematics, University of Western Australia, Nedlands WA 6009, Australia

² Department of Mathematics and Computer Science, University of Leiden, Netherlands

³ Department of Mathematics and Computer Science, Free University

De Boelelaan 1081 a, 1081 HV Amsterdam, Netherlands

⁴ CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands

In memory of Philip Holgate

Abstract

The strength and range of interpoint interactions in a spatial point process can be quantified by the function J = (1 - G)/(1 - F), where G is the nearest-neighbour distance distribution function and F the empty space function of the process. J(r) is identically equal to 1 for a Poisson process; values of J(r) smaller or larger than 1 indicate clustering or regularity, respectively. We show that, for a large class of point processes, J(r) is constant for distances r greater than the range of spatial interaction. Hence both the range and type of interaction can be inferred from J without parametric model assumptions. It is also possible to evaluate J(r) explicitly for many point process models, so that J is also useful for parameter estimation. Various properties are derived, including the fact that the J function of the superposition of independent point processes is a weighted mean of the J functions of the individual processes. Estimators of J can be constructed from standard estimators of F and G. We compute estimates of J for several standard point pattern datasets and conclude that it is a useful indicator of spatial interaction.

1. INTRODUCTION

The statistical analysis of a point pattern usually begins with the computation of estimates of the summary functions F (empty space function), G (nearest-neighbour distance distribution function) and K (reduced second moment function), defined e.g. in [11, 14, 34, 35]. While these are useful descriptions of spatial pattern, and can easily be estimated from data, there are very few stochastic models for which F, G or K is known analytically, so that parameter estimation and inference based on F, G, K are difficult.

Recall that, for a stationary point process, F is the distribution function of the distance from an arbitrary fixed point to the nearest random point of the process, and G of the distance from a point of the process to the nearest other point of the process. This paper advocates the use of

$$J(r) = \frac{1-G(r)}{1-F(r)}.$$

This is a nonparametric measure of the type of spatial interaction: the value 1 can be interpreted as indicating complete randomness or lack of interaction, while values less than 1 imply 'clustered' pattern and values greater than 1 imply 'ordered' or 'inhibitory' pattern.

We show that, for a very large class of point processes, the function J is constant for values of r larger than the effective range of spatial interaction. Hence J can be used to infer both the range and type of spatial interaction. Furthermore we are able to evaluate J explicitly for several stochastic models, so that it could be used directly for parameter estimation.

An appealing interpretation of J is that it compares the environment of a typical random point of the process with the environment of a fixed arbitrary point. J(r) is the ratio of the probabilities, under these two situations, of the event that there are no points within a distance r of the given point. In terms of survival analysis, J is the ratio of the survival functions of the distance-to-nearest-point under these two situations; and our main result states that the hazard measures [25] of F and G are equal beyond the effective range of interaction r.

Special cases of these results are implicit in the literature. The forms of F and G for a Neyman-Scott cluster process were derived by Bartlett [9]; see [1, 31, 32], [10, pp. 8–9], and for detailed derivations [12, §8.3, p. 243 ff.], [41, p. 143]. For a general Poisson cluster process (Poisson parent points, i.i.d. offspring)

$$1 - G(r) = (1 - F(r)) E(r)$$

where E(r) is the probability that a randomly-chosen point in a typical cluster is more than r units distant from any other point belonging to the same cluster. Hence in particular if all offspring lie within a radius t of the parent point, we have J(r) = 1 for all r > 2t. Again, for a stationary, pairwise-interaction Gibbs process, Stoyan et al. [41, p. 159] exhibit a relationship between 1 - F(r) and 1 - G(r) when r is exactly equal to the interaction distance R. In this paper we extend the relationship to all $r \ge R$.

Statistical inference based on comparisons between F and G has occasionally been suggested. Diggle [13, (5.7)] proposed the statistic $D = \sup_r |\hat{F}(r) - \hat{G}(r)|$ as a measure of deviation from the Poisson process.

This paper is organised as follows. In Section 2 we review the main techniques from spatial statistics that are used in the sequel. Section 3 introduces the J-function; the main theorem states that J(r) is constant beyond the effective range of interaction. We also examine the behaviour of J under the basic operations of superposition and thinning and show that the J-function of a superposition of independent processes is a convex combination of the J-functions of the components. The relationship between the J-function of a thinned process and that of the original process appears to be rather complex; in particular, in contrast to Ripley's K-function, the J-function is not invariant under thinning.

In Section 4 we show that the J-function can be computed explicitly for a large class of point process models, including Poisson processes, Markov point porcesses, Neyman-Scott and Cox processes. For these examples at least, the classification of patterns as 'clustered' or 'regular' on the basis of their J-function values agrees with similar classifications based on F, G and K.

2. Background

In Section 5 we discuss briefly how the J-statistic can be used for parameter estimation, while Section 6 is a simple illustration on three standard data sets [14], representing regular, random and clustered patterns.

2. BACKGROUND

Throughout this paper we consider a stationary point process X in \mathbb{R}^k , regarded as a random set of points. For details of the theory of point processes see [12] or [11, 41].

Define the empty space function F of X to be the distribution function

$$F(r) = \mathbb{P}\left\{
ho(y, X) \le r
ight\}$$

of

$$\rho(y, X) = \min\{||y - x|| : x \in X\},\$$

the distance from an arbitrary fixed point $y \in \mathbb{R}^k$ to the nearest point of the process. By stationarity, the definition of F does not depend on y.

Write $B(y,r) = \{x \in \mathbb{R}^k : \rho(x,y) \leq r\}$ for the closed ball of radius r > 0 centred at y in \mathbb{R}^k . Then 1 - F(r) is the probability that X puts no points in B(y,r):

$$1 - F(r) = \mathbb{P}\left\{X \cap B(y, r) = \emptyset\right\}.$$

For example, for a Poisson process of intensity λ in \mathbb{R}^2 we obtain $F(r) = 1 - \exp\{-\lambda \pi r^2\}$. F has been variously dubbed the 'empty space, 'point-event distance' and 'spherical contact' distribution function.

To define G we need the Palm distribution \mathbb{P}^y of X at $y \in \mathbb{R}^k$, which can be regarded as the conditional distribution of the entire process given that there is a point of X at y [12, chap. 12], [11, pp. 630-631], [41, p. 110 ff.]. Then define

$$G(r) = \mathbb{P}^{y} \left\{ \rho(y, X \setminus \{y\}) \leq r \right\};$$

again this does not depend on y, by stationarity. Thus G is the distribution function of the distance from a point of the process to the nearest other point, and is known variously as the 'nearest-neighbour' or 'event-event' distribution function.

It is convenient to use the *reduced Palm distribution* $\mathbb{P}_y^!$ defined as the distribution of $X \setminus \{y\}$ under \mathbb{P}^y , i.e. the conditional distribution of the *rest* of the process given that there is a point at y. Then the definition of G reads

$$G(r) = \mathbb{P}^!_{oldsymbol{y}} \left\{
ho(y,X) \leq r
ight\}$$

in harmony with the definition of F. For example, for a stationary Poisson process of intensity λ , the reduced Palm distribution $\mathbb{P}_y^!$ is identical to \mathbb{P} , and $G \equiv F$.

Our main tool will be the Takacs-Fiksel formula which relates the reduced Palm distribution of X to its (ordinary) distribution:

$$\lambda \mathbb{E}_{y}^{!} f(X) = \mathbb{E}\left[\lambda(y; X) f(X)\right]$$
(2.1)

holding (under suitable conditions on X) for any bounded nonnegative measurable function on the space of realizations of X [22, 24, 42, 43] (see also [37], [29, 30], [35, p. 54-55], [15, §2.4]). Here λ is the intensity of X and $\lambda(y; X)$ is the *Papangelou conditional intensity* of X at y. In other words, (2.1) states that $\mathbb{P}_y^!$ is equivalent to the $\lambda(y; X)$ -weighted distribution of X. In particular

$$\lambda = \mathbb{E}\lambda(0; X). \tag{2.2}$$

A necessary and sufficient condition (in the stationary case) for validity of (2.1) is that $\mathbb{P}_y^!$ be absolutely continuous with respect to \mathbb{P} , whereupon $\lambda(y; X)$ is uniquely defined by (2.1). The Takacs-Fiksel formula holds in particular for all stationary Gibbs point processes [33, 35] and for Poisson cluster processes when the cluster distribution is absolutely continuous. The corresponding expressions for $\lambda(y; X)$ are given in Section 4. Examples of processes which fail to satisfy (2.1) are randomly translated grids, and cluster processes consisting of pairs of points separated by a fixed distance.

Kallenberg [29, 30] gives a detailed explanation of the duality between the Palm distribution and Papangelou conditional intensity. The reduced Palm distribution is concerned with the remainder of the pattern given that a point falls at a particular location ('internal conditioning'), while the conditional intensity describes the behaviour of the process at a single point in space given the realisation everywhere else ('external conditioning').

3. THE J-FUNCTION Definition 1 For a stationary point process X define

$$J(r) = \frac{1 - G(r)}{1 - F(r)}$$
(3.3)

for all $r \ge 0$ such that F(r) < 1.

For example, if X is a Poisson process then $F \equiv G$, so we obtain $J(r) \equiv 1$. Note that, even in a completely nonparametric context, the function J has an interpretation as the ratio of the survival functions of the distance to the nearest (other) point of X from (a) a point of the process, (b) a fixed arbitrary point. Values J(r) < 1 indicate that the survival function in situation (a) is smaller than that for (b), which may be interpreted as indicating 'clustered' pattern; values J(r) > 1 indicate 'ordered' pattern. In the examples in Section 4 we will reconcile this with other definitions of 'clustering' and 'ordering'.

Note that J(0) = 1 always. The denominator 1 - F is always absolutely continuous [3] but the numerator 1 - G need not be, so the discontinuity points of J are those of G. In general 1 - G(r) might be nonzero when 1 - F(r) is zero (e.g. for a randomly-translated unit square grid when $r = 1/\sqrt{2}$) but this does not occur for point processes of real interest.

Theorem 1 Let X be a stationary point process with intensity λ whose Papangelou conditional intensity $\lambda(y; X)$ exists. Then G(r) < 1 implies F(r) < 1 and 3 The J-function

$$J(r) = \left(\mathbb{E}_0^l \left[\frac{\lambda}{\lambda(0;X)} \mid X \cap B(0,r) = \emptyset\right]\right)^{-1}$$
(3.4)

In particular, suppose X has 'interactions of finite range R' in the sense that $\lambda(0; X)$ is constant (and thus equal to $\lambda(0; \emptyset)$) for all point patterns X which contain no points in B(0, R). Then

$$J(r) = \frac{\lambda(0; \emptyset)}{\lambda} \qquad \text{for } r \ge R.$$
(3.5)

Proof: Let A be the event $\{X \cap B(0,r) = \emptyset\}$, so that $1-F(r) = \mathbb{P}(A)$ and $1-G(r) = \mathbb{P}_0^!(A)$. Apply the Takacs-Fiksel formula (2.1) to

$$f(X) = \frac{\mathbf{1}_A}{\lambda(0; X)}, \quad r > 0$$

(cf. [41, (5.5.18), p. 159]). The right hand side of (2.1) is $\mathbb{E}[\lambda(0; X) f(X)] = 1 - F(r)$ giving

$$1 - F(r) = \lambda \mathbb{E}_0^! \left[\frac{\mathbf{1}_A}{\lambda(0; X)} \right]$$

Dividing this by $1 - G(r) = \mathbb{P}_0^!(A)$ gives the reciprocal of (3.4).

In the second case, if $\lambda(0; X) \equiv \lambda(0; \emptyset)$ on A then

$$f(X) \equiv \frac{\mathbf{1}_A}{\lambda(0;\emptyset)}$$

so that the left side of (2.1) is

$$\lambda \frac{1}{\lambda(0;\emptyset)} \mathbb{P}_0^!(A) = \frac{\lambda}{\lambda(0;\emptyset)} (1 - G(r))$$

yielding (3.5).

Next we examine the behaviour of J under the basic point process operations of superposition and thinning.

Theorem 2 Let X_1, X_2 be independent, stationary point processes with intensities λ_1, λ_2 and J-functions J_1, J_2 respectively. Then the J-function of the superposition $X = X_1 \cup X_2$ is a convex combination of the J-functions of the components:

$$J(r) = \frac{\lambda_1}{\lambda_1 + \lambda_2} J_1(r) + \frac{\lambda_2}{\lambda_1 + \lambda_2} J_2(r).$$
(3.6)

Proof: By independence

 $1 - F(t) = (1 - F_1(t))(1 - F_2(t)).$

Writing $P_{(i)}^0$ for the Palm distribution (on the entire probability space) with respect to X_i , i = 1, 2 and P^0 for the Palm distribution with respect to X, we have (e.g. [41, p. 116])

$$P^{0} = \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}} P^{0}_{(1)} + \frac{\lambda_{2}}{\lambda_{1} + \lambda_{2}} P^{0}_{(2)}$$

The joint distribution of X_1 and X_2 under $P_{(1)}^0$ is independent, with X_1 governed by its Palm distribution (the Palm distribution of its marginal distribution) and X_2 by its (ordinary) marginal distribution. Similarly for $P_{(2)}^0$. Hence

$$1 - G(t) = \frac{\lambda_1}{\lambda_1 + \lambda_2} (1 - G_1(t))(1 - F_2(t)) + \frac{\lambda_2}{\lambda_1 + \lambda_2} (1 - F_1(t))(1 - G_2(t)).$$
ng this by the identity for *F* gives (3.6)

Dividing this by the identity for F gives (3.6).

For comparison, the K-function of the superposition in the same situation is

$$K(t) = \frac{\lambda_1}{\lambda_1 + \lambda_2} \left[\frac{1}{\lambda_1 + \lambda_2} (\lambda_2 \pi t^2 + \lambda_1 K_1(t)) \right] + \frac{\lambda_2}{\lambda_1 + \lambda_2} \left[\frac{1}{\lambda_1 + \lambda_2} (\lambda_1 \pi t^2 + \lambda_2 K_2(t)) \right]$$
$$= \frac{1}{(\lambda_1 + \lambda_2)^2} \left[2\lambda_1 \lambda_2 \pi t^2 + \lambda_1^2 K_1(t) + \lambda_2^2 K_2(t) \right].$$

Theorem 3 Let X_p be the process obtained from a stationary point process X by randomly deleting or retaining each point independently of other points, with retention probability p > 0. Then the J-function of X_p is

$$J_p(r) = \frac{Q_r^0(1-p)}{Q_r(1-p)}$$
(3.7)

where Q^0_r, Q_r are the generating functions of $n(X \cap B(0, r))$ under $\mathbb{P}^!_0$ and \mathbb{P} respectively. [The J-function of X itself is the case p = 1.]

Proof: Let F_p, G_p be the F and G functions for X_p . Clearly $1 - F_p(r) = Q_r(1-p)$. To prove $1 - G_p(r) = Q_r^0(1-p)$ use the fact that the Palm distribution of X_p coincides with the effect of random p-thinning on the Palm distribution of X.

Thus while the K-function is invariant under random thinning [14, p. 67], [41, p. 134], in general the J-function is not. There does not appear to be a simple general relationship between J_p and J.

4. EXAMPLES

4.1 Poisson process

For a stationary Poisson process of intensity λ we have $F \equiv G$ so that $J \equiv 1$. We could also derive this from Theorem 1 by observing that $\lambda(0; X) = \lambda$ for arbitrary X.

4.2 Pairwise-interaction Markov point process

For a pairwise interaction point process [36], [41, section 5.5] with activity constant β and interaction $\gamma(u, v)$ between points $u, v \in \mathbb{R}^k$,

$$\lambda(y;X) = \beta \prod_{x \in X} \gamma(x,y). \tag{4.8}$$

4. Examples

The process is Markov (in the Ripley-Kelly sense [36]) with interaction range R, if $\gamma(u, v) = 1$ when $||u - v|| \ge R$. Examples include the hard core process defined by

$$\gamma(u,v) = \begin{cases} 0 & \text{if } ||u-v|| < R \\ 1 & \text{otherwise} \end{cases}$$
(4.9)

and the Strauss process defined by replacing 0 in (4.9) by a constant $0 < \gamma < 1$.

Theorem 4 For a Markov pairwise-interaction process with interaction range R,

(a) J(r) is defined for all r;

(b)
$$J(r) = \frac{\beta}{\lambda} \quad \text{for } r \ge R;$$
 (4.10)

- (c) for 'purely inhibitive' interactions ($\gamma(u, v) \leq 1$ for all u, v) we have $J(r) \geq 1$ for all r;
- (d) for the hard core process J(r) = 1/(1-F(r)) for r < R, and in particular J is continuous and monotone increasing for r < R. Furthermore $J(r) = 1/(1 - \lambda m(B(0, r)))$ for r < R/2.

Thus, the hard-core and Strauss processes yield values (for r outside the interaction range) indicating 'ordered' pattern in the sense defined below Definition 1. Equation (4.10) was implicitly computed in [41, (5.5.18), p. 159] for the value r = R only.

Proof: To prove this we note that the product in (4.8) depends only on points $x \in X$ with $||x - y|| \leq R$, so $\lambda(y; X)$ depends only on $X \cap B(y, R)$. Hence X has finite range interaction in the sense of Theorem 1(b) with $\lambda(0; \emptyset) = \beta$, and we get (4.10).

Note that λ , the intensity of X, is determined by the parameters β and $\gamma(\cdot, \cdot)$ in a generally complex way. However for a purely inhibitive process we have $\lambda(0; X) \leq \beta$ a.s. so that $\lambda \leq \beta$ using (2.2). This gives $J(r) \geq 1$ for $r \geq R$.

For values r < R it is again a complex task to compute J(r), except that for purely inhibitive γ we can again show that $J(r) \ge 1$ for all r. For a hard core process, clearly G(r) = 0 for r < R, so J(r) = 1/(1 - F(r)) for r < R. In particular J is monotone nonincreasing. Furthermore since spheres of radius r < R/2 centred at the points of a hard core process do not overlap, we have $F(r) = \lambda m(B(0,r))$ for r < R/2, and hence $J(r) = 1/(1 - \lambda m(B(0,r)))$, for r < R/2.

4.3 Markov point processes (general)

Many of the arguments in the preceding paragraph carry over to Markov point processes in general. A stationary process X is Markov with finite interaction range R if its conditional intensity $\lambda(0; X)$ at 0 exists and depends only on $X \cap B(0, R)$. It follows that for any X satisfying $X \cap B(0, R) = \emptyset$

$$\lambda(0;X) = \lambda(0;\emptyset)$$

so that Theorem 1(b) applies and J(r) is constant for r > R.

An example of interest is the area-interaction process [4] for which

$$\lambda(0;X) = \beta \gamma^{-m(B(0,t)\setminus U(X))}$$
(4.11)

where *m* is Lebesgue measure and $U(X) = \bigcup_{x \in X} B(x, t)$ for a fixed t > 0. The process is defined for all finite γ , with $\gamma < 1$ generating 'ordered' patterns and $\gamma > 1$ 'clustered' patterns. For any X such that $X \cap B(0, 2t) = \emptyset$ we have $U(X) \cap B(0, t) = \emptyset$ so that $\lambda(0, X) = \beta \gamma^{-m(B(0,t))} = \beta \eta$, say. Thus Theorem 1(b) applies with R = 2t, and

$$J(r) = \frac{\beta \eta}{\lambda} \qquad \text{for } r > 2t. \tag{4.12}$$

Since $0 \le m(B(0,t) \setminus U(X)) \le m(B(0,t))$ we have for $\gamma < 1$ that $\lambda(0; X) \le \beta\eta$ for all X so that $\lambda \le \beta\eta$ and hence $J(r) \ge 1$ for all r, i.e. this is also 'ordered' in terms of J. Similarly, for $\gamma > 1$ we have $\lambda(0; X) \ge \beta\eta$ a.s. so that $\lambda \ge \beta\eta$ and $J(r) \le 1$ for all r, i.e. this is 'clustered' in terms of J.

4.4 Poisson cluster processes

A stationary Poisson cluster process is constructed by generating a stationary Poisson process Y of 'parent points'; generating i.i.d. finite point processes ('clusters') Z_y for each $y \in Y$; and forming the superposition $X = \bigcup_{y \in Y} (y + Z_y)$ of the translated clusters. Neyman-Scott processes are the special case where the typical cluster Z consists of a random number N of i.i.d. points. The Matérn cluster process is the further special case of Neyman-Scott processes where N is a Poisson variable and the common distribution of the cluster points is uniform over the ball of radius t centred on the parent point.

Stoyan et al. [41, p. 142 ff.] (and Bartlett [10, p. 8–9]) show that for any stationary Poisson cluster process

$$1 - G(r) = [1 - F(r)] C_0 \{ Z \cap B(0, r) = \{0\} \}, \qquad r \ge 0$$

where C_0 is the Palm distribution of the typical cluster Z. This follows from a fundamental identity for the Palm distribution of a Poisson cluster process [41, (5.3.2), p. 142].

Since Z is a finite point process, C_0 can be interpreted as the n(Z)-weighted distribution of Z - z where, given Z, z is one of the points of Z chosen with equal probability. Hence we may interpret $C_0\{Z \cap B(0,r) = \{0\}\}$ as the defective distribution function of the distance from a typical point of Z to the nearest other point of Z, if any [41, p. 143]. Hence we have the following result.

Theorem 5 For any stationary Poisson cluster process, J(r) is defined for all $r \ge 0$;

$$J(r) = C_0\{Z \cap B(0,r) = \{0\}\}$$

is a monotone nonincreasing function, with values $J(r) \leq 1$, determined only by the distribution of the clusters.

If the typical cluster Z is a.s. contained within the ball of radius t around the parent point, then J(r) is constant for r > 2t where it is equal to $\mathbb{P}\{n(Z) = 1\}/\mathbb{E}n(Z)$.

Hence all stationary Poisson cluster processes are 'clustered' with respect to J as defined below Definition 1.

5. Statistical aspects

For example, for the Matérn cluster process in \mathbb{R}^2 with $\mathbb{E}n(Z) = \mu$ points per cluster we find

$$J(r) = \frac{1}{m(B(0,t))} \int_{B(0,t)} e^{-\mu V(x,r,t)} dx$$

= $e^{-\mu}$ for $r > 2t$

where $V(x, r, t) = m(B(x, r) \cap B(0, t))/m(B(0, t)).$

Note that Theorem 5 is proved using the cluster formula [41, (5.3.2), p. 142] rather than Theorem 1, and holds even in cases when the Papangelou conditional intensity does not exist. However, if the Palm distribution of the typical cluster Z is absolutely continuous with respect to the distribution of Z, then Theorem 1 applies and yields the conclusions of Theorem 5.

This result is perhaps less surprising in view of the recent proof [5] that Poisson cluster processes with bounded clusters are nearest-neighbour Markov processes in the sense of [6].

4.5 Cox processes

Cox point processes are constructed by generating a random measure Λ and, conditional upon Λ , generating an inhomogeneous Poisson point process X with intensity measure Λ .

Theorem 6 Let X be a Cox point process with driving random measure Λ which is stationary and a.s. nonatomic. Then the J-function of X is defined for all $r \ge 0$ and equals

$$J(r) = \frac{\mathbb{E}^{0} e^{-\Lambda(B(0,r))}}{\mathbb{E} e^{-\Lambda(B(0,r))}}$$

where \mathbb{E}^0 denotes expectation with respect to the Palm distribution of Λ .

This follows from the fact that the reduced Palm distribution of X is the distribution of a Cox process with driving measure distributed as the Palm distribution of Λ , cf. [41, p. 141].

For example, consider a mixed Poisson process, where Λ is a random constant multiple of Lebesgue measure, $\Lambda = \alpha m(\cdot)$ where α is any nonnegative random variable not identically equal to zero. Then the Palm distribution of Λ is simply the α -weighted distribution, and

$$J(r) = \frac{\mathbb{E}\left[\alpha e^{-\alpha \pi r^2}\right]}{\mathbb{E}\alpha \ \mathbb{E}e^{-\alpha \pi r^2}}.$$

5. STATISTICAL ASPECTS

5.1 Nonparametric estimation of J

Edge-corrected estimators for F and G based on observations of X within a bounded window $W \subset \mathbb{R}^k$ are reviewed in [35, chap. 3], [41, pp. 122-131], [11, chap. 8]. For recent variations see [3, 7, 8, 16, 17, 18, 19, 20, 21, 23, 39].

We propose estimating J by plugging into (3.3) estimates of F and G obtained by methods that are comparable to one another. For example one may estimate F by the standard 'border correction' estimator [35, chap. 3] and G by Hanisch's border correction estimator \hat{G}_4 [26] (see [41, p. 128] where G is called D). These are Horvitz-Thompson type ratio estimators with comparable denominators, and are pointwise unbiased for F and pointwise approximately unbiased for G, respectively. Alternatively the Kaplan-Meier style estimators of F and G proposed by Baddeley & Gill [3] could be used. These have the advantage of being proper distribution functions (possibly defective), and correspond to unbiased and approximately unbiased estimators of the hazard measures of F and G, respectively. Furthermore the estimator of F in [3] has the same continuity properties as F itself.

We know little about the sampling properties of either estimator of J. Clearly $\hat{J}(0) = 1$ always. It seems plausible that the relative error of J will increase with r, since this is true of standard estimators of F(r) and G(r) [3, 18, 20, 21]. Central limit theorems have been proved for \hat{F} and \hat{G} of both the Horvitz-Thompson and Kaplan-Meier types under various regimes [2, 3, 27, 28, 40], [11, p. 480]; a joint CLT for (\hat{F}, \hat{G}) , and hence for \hat{J} , seems plausible but has not been established to the authors' knowledge.

Edge effects have a far greater influence on \hat{G} than on \hat{F} [35, chap. 3],[3]. The sampling properties of \hat{G} and therefore of \hat{J} may be particular cause for concern when the sampling window W is irregular, or in dimensions higher than two [3, 7].

5.2 Estimation and inference based on J

In section 4 we were able to calculate the J function (at least for r > R) for a number of parametric or semi-parametric stochastic models. One could use these results to estimate the parameters of a chosen model from values of \hat{J} .

It should be stressed that this approach is merely a special case of the Takacs-Fiksel estimation method [22, 24, 42, 43], [35, p. 54-55], [15, §2.4], [37, 38] since the basic equations (3.4)-(3.5) are special cases of (2.1) with the choice of f given in the proof of Theorem 1.

For a Markov pairwise-interaction process, (4.10) gives the constant value of J(r) for all r > R in terms of the parameter β and the intensity λ . The intensity is determined by β and by the interaction function $\gamma(\cdot, \cdot)$ in a complex way. However λ may be estimated directly from the data, as $\hat{\lambda} = n(X \cap W)/m(W)$ in the usual way. If R is assumed known then β can be estimated via (4.10). This is semi-parametric estimation, since γ is unknown apart from the constraint that $\gamma(u, v) = 1$ for ||u - v|| > R.

Similarly, for an area-interaction process, (4.12) allows us to estimate the parameters β and $\eta = \gamma^{m(B(0,t))}$ given the interaction radius R = 2t.

Estimation of the interaction distance R, in any of the models studied, amounts to estimating the largest interval $[R,\infty)$ on which J is constant. At present we have only the *ad* hoc suggestion of taking

$$\widehat{R} = \inf \left\{ R : \sup_{r \ge R} \widehat{J}(r) - \inf_{r \ge R} \widehat{J}(r) < \epsilon \right\}$$

where ϵ is of order $n(X \cap W)^{-1/2}$.

6. EXAMPLES

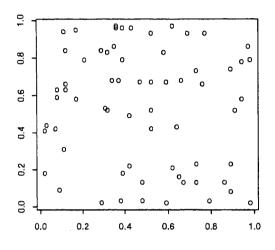
We have taken three standard point pattern datasets discussed at length by Diggle [14], entitled **pines** ('Japanese pine saplings'), **redwood** ('Californian redwood seedlings') and **cells** ('biological cells'). These were exhibited as typical examples of random, clustered, and ordered patterns respectively.

Figures 1-3 show the data and corresponding estimates \hat{J} obtained using the Kaplan-Meier estimators of F and G [3]. For pines the value of J is close to 1 for almost the entire range of r

6 Examples

values expect at high r values; for redwood it is below 1 and monotonically decreasing except for small fluctuations; and for cells it is above 1 for the entire range and is monotonically increasing. These results are consistent with our expectations.

We may conclude provisionally that the *J*-statistic is a useful indicator of the type of spatial pattern. Further numerical experiments will be described elsewhere.



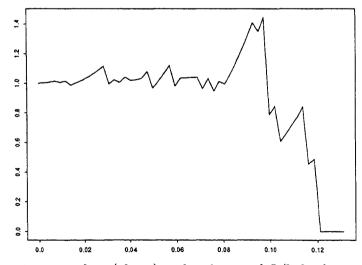
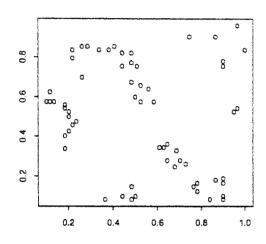


Figure 1: pines data (above) and estimate of J (below).



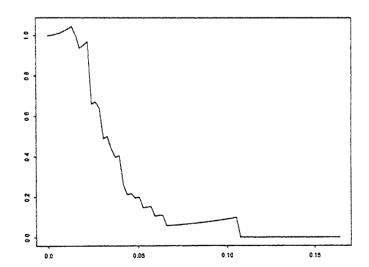
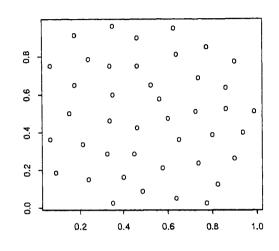


Figure 2: redwood data (above) and estimate of J (below).



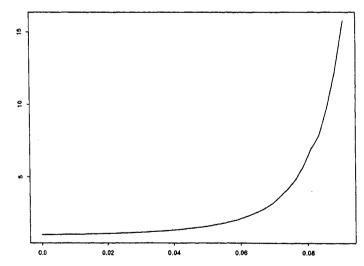


Figure 3: cells data (above) and estimate of J (below).

REFERENCES

References

- 1. R.V. Ambartzumian. Palm distributions and superpositions of independent point processes in \mathbb{R}^n . In P.A.W. Lewis, editor, *Stochastic point processes: statistical analyis, theory, and applications*, pages 626–645. John Wiley and Sons, New York, 1972.
- 2. A.J. Baddeley. A limit theorem for statistics of spatial data. Advances in Applied Probability, 12:447-461, 1980.
- 3. A.J. Baddeley and R.D. Gill. Kaplan-Meier estimators for interpoint distance distributions of spatial point processes. Research Report BS-R9315, Centrum voor Wiskunde en Informatica, July 1993.
- 4. A.J. Baddeley and M.N.M. van Lieshout. Area-interaction point processes. Research report BS-R9318, Centrum voor Wiskunde en Informatica, November 1993.
- 5. A.J. Baddeley, M.N.M. van Lieshout and J. Møller. Markov properties of cluster processes. Manuscript in preparation.
- 6. A.J. Baddeley and J. Møller. Nearest-neighbour Markov point processes and random sets. International Statistical Review, 57:89-121, 1989.
- 7. A.J. Baddeley, R.A. Moyeed, C.V. Howard and A. Boyde. Analysis of a three-dimensional point pattern with replication. *Applied Statistics*, 42(4):641-668, 1993.
- 8. L.G. Barendregt and M.J. Rottschäfer. A statistical analysis of spatial point patterns. A case study. *Statistica Neerlandica*, 45:345-363, 1991.
- 9. M.S. Bartlett. The spectral analysis of two-dimensional point processes. *Biometrika*, 51:299-311, 1964.
- 10. M.S. Bartlett. The statistical analysis of spatial pattern. Chapman and Hall, London, 1975.
- 11. N.A.C. Cressie. Statistics for spatial data. John Wiley and Sons, New York, 1991.
- 12. D.J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Springer Verlag, New York, 1988.
- 13. P.J. Diggle. On parameter estimation and goodness-of-fit testing for spatial point patterns. *Biometrika*, 35:87-101, 1979.
- 14. P.J. Diggle. Statistical analysis of spatial point patterns. Academic Press, London, 1983.
- 15. P.J. Diggle, T. Fiksel, Y. Ogata, D. Stoyan and M. Tanemura. On parameter estimation for pairwise interaction processes. *International Statistical Review*, 1993. to appear.
- S.I. Doguwa. A comparative study of the edge-corrected kernel-based nearest neighbour density estimators for point processes. Journal of Statistical Computation and Simulation; 33:83-100, 1989.
- 17. S.I. Doguwa. On edge-corrected kernel-based pair correlation function estimators for point processes. *Biometrical Journal*, 32:95-106, 1990.
- 18. S.I. Doguwa. On the estimation of the point-object nearest neighbour distribution F(y) for point processes. Journal of Statistical Computation and Simulation, 41:95–107, 1992.
- 19. S.I. Doguwa and D.N. Choji. On edge-corrected probability density function estimators

for point processes. Biometrical Journal, 33:623-637, 1991.

- 20. S.I. Doguwa and G.J.G. Upton. Edge-corrected estimators for the reduced second moment measure of point processes. *Biometrical Journal*, 31:563-675, 1989.
- 21. S.I. Doguwa and G.J.G. Upton. On the estimation of the nearest neighbour distribution, G(t), for point processes. *Biometrical Journal*, 32:863-876, 1990.
- 22. T. Fiksel. Estimation of parametrized pair potentials of marked and non-marked Gibbsian point processes. *Elektronische Informationsverarbeitung und Kybernetika*, 20:270–278, 1984.
- 23. T. Fiksel. Edge-corrected density estimators for point processes. *Statistics*, 19:67-75, 1988.
- 24. T. Fiksel. Estimation of interaction potentials of Gibbsian point processes. Statistics, 19:77-86, 1988.
- 25. R.D. Gill. Lectures on survival analysis. In P. Bernard, editor, 22e Ecole d'Eté de Probabilités de Saint-Flour 1992, Lecture Notes in Statistics. Springer, 1993. to appear.
- 26. K.-H. Hanisch. Some remarks on estimators of the distribution function of nearest neighbour distance in stationary spatial point patterns. Mathematische Operationsforschung und Statistik, series Statistics, 15:409-412, 1984.
- L. Heinrich. Asymptotic Gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes. *Statistics*, 19:87-106, 1988.
- 28. E. Jolivet. Central limit theorem and convergence of empirical processes for stationary point processes. In P. Bastfai and J. Tomko, editors, *Point processes and queueing problems*, pages 117-161. North-Holland, Amsterdam, 1980.
- 29. O. Kallenberg. Random measures. Akademie Verlag/Academic Press, Berlin/New York, third edition, 1983.
- 30. O. Kallenberg. An informal guide to the theory of conditioning in point processes. International Statistical Review, 52:151-164, 1984.
- 31. J.E. Paloheimo. Discussion contribution to the paper by Matérn. In G.P. Patil, E.C. Pielou, and W. E. Waters, editors, *Statistical ecology, Volume 1: Spatial patterns and statistical distributions*, pages 210-212. Pennsylvania State University Press, University Park, 1971.
- 32. J.E. Paloheimo. On a theory of search. Biometrika, 58:61-75, 1971.
- 33. C.J. Preston. Random fields. Springer Verlag, Berlin-Heidelberg-New York, 1976.
- 34. B.D. Ripley. Spatial statistics. John Wiley and Sons, New York, 1981.
- 35. B.D. Ripley. Statistical inference for spatial processes. Cambridge University Press, 1988.
- 36. B.D. Ripley and F.P. Kelly. Markov point processes. Journal of the London Mathematical Society, 15:188-192, 1977.
- 37. A. Särkkä. On parameter estimation of Gibbs point processes through the pseudolikelihood estimation method. Research report 4, Department of Statistics, University of

Jyväskylä, Finland, 1989.

- A. Särkkä. Applications of Gibbs point processes: pseudo-likelihood method with comparisons. Research report 10, Department of Statistics, University of Jyväskylä, Finland, 1990.
- 39. M.L. Stein. A new class of estimators for the reduced second moment measure of point processes. Technical Report 278, Department of Statistics, University of Chicago, Chicago, Illinois, USA, July 1990.
- 40. M.L. Stein. Asymptotically optimal estimation for the reduced second moment measure of point processes. Technical Report 300, Department of Statistics, University of Chicago, Chicago, Illinois, USA, April 1991.
- 41. D. Stoyan, W. S. Kendall and J. Mecke. Stochastic Geometry and its Applications. John Wiley and Sons, Chichester, 1987.
- 42. R. Takacs. Estimator for the pair-potential of a Gibbsian point process. Institutsbericht 238, Institut für Mathematik, Johannes Kepler Universität Linz, Austria, 1983.
- 43. R. Takacs. Estimator for the pair potential of a Gibbsian point process. Statistics, 17:429-433, 1986.