
 Open access  Journal Article  DOI:10.1002/NME.5312

A nonparametric probabilistic approach for quantifying uncertainties in low-
dimensional and high-dimensional nonlinear models — Source link 

Christian Soize, Charbel Farhat

Institutions: University of Paris, Stanford University

Published on: 10 Feb 2017 - International Journal for Numerical Methods in Engineering (John Wiley & Sons, Ltd)

Topics: Uncertainty quantification, Probability distribution, Model order reduction, Probabilistic logic and
Probability measure

Related papers:

 
Stochastic modeling and identification of an uncertain computational dynamical model with random fields
properties and model uncertainties

 
Modeling and Quantification of Model-Form Uncertainties in Eigenvalue Computations Using a Stochastic
Reduced Model

 Stochastic modeling of uncertainties in computational structural dynamics—Recent theoretical advances

 
Bayesian posteriors of uncertainty quantification in computational structural dynamics for low-and medium-
frequency ranges

 Experimental identification of stochastic processes using an uncertain computational non-linear dynamical model

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-nonparametric-probabilistic-approach-for-quantifying-
odfan8ofc8

https://typeset.io/
https://www.doi.org/10.1002/NME.5312
https://typeset.io/papers/a-nonparametric-probabilistic-approach-for-quantifying-odfan8ofc8
https://typeset.io/authors/christian-soize-1bt3tjero6
https://typeset.io/authors/charbel-farhat-54lw37wtzh
https://typeset.io/institutions/university-of-paris-3fpqqchm
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/journals/international-journal-for-numerical-methods-in-engineering-1b3l0k2d
https://typeset.io/topics/uncertainty-quantification-2nf3m98b
https://typeset.io/topics/probability-distribution-29q9mden
https://typeset.io/topics/model-order-reduction-31odvu8k
https://typeset.io/topics/probabilistic-logic-r1sp2jpw
https://typeset.io/topics/probability-measure-2e9ujj6w
https://typeset.io/papers/stochastic-modeling-and-identification-of-an-uncertain-2v8syzryj5
https://typeset.io/papers/modeling-and-quantification-of-model-form-uncertainties-in-1dlyage6d9
https://typeset.io/papers/stochastic-modeling-of-uncertainties-in-computational-3xyqswujlq
https://typeset.io/papers/bayesian-posteriors-of-uncertainty-quantification-in-78wd8jyqjt
https://typeset.io/papers/experimental-identification-of-stochastic-processes-using-an-18bottd8sa
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-nonparametric-probabilistic-approach-for-quantifying-odfan8ofc8
https://twitter.com/intent/tweet?text=A%20nonparametric%20probabilistic%20approach%20for%20quantifying%20uncertainties%20in%20low-dimensional%20and%20high-dimensional%20nonlinear%20models&url=https://typeset.io/papers/a-nonparametric-probabilistic-approach-for-quantifying-odfan8ofc8
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-nonparametric-probabilistic-approach-for-quantifying-odfan8ofc8
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-nonparametric-probabilistic-approach-for-quantifying-odfan8ofc8
https://typeset.io/papers/a-nonparametric-probabilistic-approach-for-quantifying-odfan8ofc8


HAL Id: hal-01353194
https://hal-upec-upem.archives-ouvertes.fr/hal-01353194

Submitted on 10 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A nonparametric probabilistic approach for quantifying
uncertainties in low-dimensional and high-dimensional

nonlinear models
Christian Soize, Charbel Farhat

To cite this version:
Christian Soize, Charbel Farhat. A nonparametric probabilistic approach for quantifying uncertain-
ties in low-dimensional and high-dimensional nonlinear models. International Journal for Numerical
Methods in Engineering, Wiley, 2017, 109, pp.837-888. 10.1002/nme.5312. hal-01353194

https://hal-upec-upem.archives-ouvertes.fr/hal-01353194
https://hal.archives-ouvertes.fr


Preprint, International Journal for Numerical Methods in Engineering, May 2016

A nonparametric probabilistic approach for quantifying
uncertainties in low- and high-dimensional nonlinear models
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1 Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 bd
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2 Department of Aeronautics and Astronautics, Department of Mechanical Engineering, and Institute for
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SUMMARY

A nonparametric probabilistic approach for modeling uncertainties in projection-based, nonlinear, reduced-
order models is presented. When experimental data is available, this approach can also quantify uncertainties
in the associated high-dimensional models. The main underlying idea is two-fold. First, to substitute the
deterministic Reduced-Order Basis (ROB) with a stochastic counterpart. Second, to construct the probability
measure of the Stochastic Reduced-Order Basis (SROB) on a subset of a compact Stiefel manifold in
order to preserve some important properties of a ROB. The stochastic modeling is performed so that the
probability distribution of the constructed SROB depends on a small number of hyperparameters. These are
determined by solving a reduced-order statistical inverse problem. The mathematical properties of this novel
approach for quantifying model uncertainties are analyzed through theoretical developments and numerical
simulations. Its potential is demonstrated through several example problems from computational structural
dynamics. Accepted for publication in International Journal for Numerical Methods in Engineering, 30 May
2016

Received . . .

KEY WORDS: modeling errors; model uncertainties; nonparametric stochastic approach; reduced-order
model; model order reduction; uncertainty quantification

Notation

Throughout this paper:

A real, deterministic variable is denoted by a lower case letter such as y.

A real, deterministic vector is denoted by a boldface, lower case letter such as in y = (y1, . . . , yN).
A real, random variable is denoted by an upper case letter such as Y .

A real, random vector is denoted by a boldface, upper case letter such as in Y = (Y1, . . . , YN ).
A real, deterministic matrix is denoted by an upper (or lower) case letter between brackets such as

[A] (or [a]).
A real, random matrix is denoted by a boldface, upper case letter between brackets such as [A].

‖y‖ designates the Euclidean norm of vector y.

< y , z > designates the Euclidean inner product of y and z.

E designates the mathematical expectation.

MN,n denotes the set of N × n real matrices.

Mn denotes the set of square n× n real matrices.

∗Correspondence to: Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-
Est, 5 bd Descartes, 77454 Marne-la-Vallee, France. E-mail: christian.soize@univ-paris-est.fr
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2 C. SOIZE AND C. FARHAT

MS
n denotes the set of symmetric n× n real matrices.

MSS
n denotes the set of skew-symmetric n× n real matrices.

M+
N denotes the set of Symmetric Positive-Definite (SPD) N ×N real matrices.

M+0
N denotes the set of symmetric positive N ×N real matrices.

Mu
N denotes the set of upper triangular N ×N real matrices with strictly positive diagonal entries.

Ajk designates the entry [A]jk of matrix [A].
tr{[A]} designates the trace of matrix [A].
[A]T designates the transpose of matrix [A].
‖A‖F designates the Frobenius norm of matrix [A], with ‖A‖2F = tr{[A]T [A]}.

‖A‖M is defined by ‖A‖2M = tr{[A]T [M ] [A]}, where [M ] is a positive definite matrix.

[In] denotes the identity matrix in Mn.

[0N,n] denotes the zero matrix in MN,n.

δjk denotes Kronecker’s symbol and therefore verifies δjk = 0 if j 6= k and δjk = 1 if j = k.

1B(x) designates the indicator function of a set B defined by 1B(x) = 1 if x ∈ B and 1B(x) = 0 if

x 6∈ B.

i denotes the pure imaginary complex number satisfying i2 = −1.

1. INTRODUCTION

1.1. Background: high-dimensional and projection-based reduced-order models

Today, the potential of physics-based (or Partial Differential Equation (PDE)-based), High-

Dimensional computational Models (HDMs) for providing deeper understanding of complex

phenomena, enhancing system performance, and predicting the unknown is recognized in almost

every field of science and engineering [1]. However, in many computational mechanics applications,

nonlinear, time-dependent numerical simulations based on HDMs remain so computationally

intensive or cost-prohibitive that they cannot be used as often as needed, or are more often used

in special circumstances than routinely. For this reason, nonlinear, projection-based Model Order

Reduction (MOR) has recently emerged as a promising if not indispensable numerical tool for

parametric applications such as, to name only a few, design, design optimization, statistical analysis,

and simulation-based decision making [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

In general, a µ-parametric, high-fidelity, physics-based computational model is high-dimensional

because its underlying spatial discretization is performed a priori — that is, before any significant

knowledge about the response of the system to be analyzed is developed. On the other hand, the

projection of such a computational model of dimension N onto a subspace of low dimension

n << N represented by an associated (N × n) Reduced-Order Basis (ROB) [V ] leads to a Reduced-

Order Model (ROM) of much lower dimension n. When [V ] is carefully constructed a posteriori

— that is, after some knowledge about the response of the system has been developed — the

corresponding ROM can capture the dominant behavior of the underlying µ-parametric HDM and

therefore retain most of its fidelity. In general, knowledge about the system response is obtained

during a training procedure that is performed offline. During this procedure, the model parameters

represented here by the parameter vector µ = (µ1, . . . , µNp
) belonging to the parameter space

Cµ are sampled at a few points using a greedy but effective sampling strategy (for example, see

[12]), and a set of problems related to the main problem of interest are solved to obtain a set

of parametric solution snapshots. Then, these snapshots are compressed using, for example, the

Singular Value Decomposition (SVD) to construct a global ROB. In general, the sampling strategy

is designed so that the global ROB is reliable in a large region of the model parameter domain.

Unfortunately, despite its low dimension, the resulting global (or µ-parametric) ROM does not

necessarily guarantee computational feasibility. This is because the construction of this projection-

based ROM does not scale only with its size n, but also with that of the underlying HDM, N >> n.

In the deterministic setting, this issue is particularly problematic for nonlinear problems because

the ROM needs to be repeatedly reconstructed to address, for example, time-dependency or Newton

iterations for implicit solution strategies. This caveat is remedied by equipping an MOR method

Accepted for publication in International Journal for Numerical Methods in Engineering, 30 May 2016 (2016)
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NONPARAMETRIC PROBABILISTIC APPROACH TO UQ IN NONLINEAR MODELS 3

with a rigorous procedure for approximating the resulting reduced operators whose computational

complexity scales only with the small size n of the ROM [2, 4, 13, 14]. Such a procedure is also

known in the literature as hyper reduction [15]. It transforms the nonlinear ROM into a hyper

reduced ROM that guarantees feasibility, while maintaining as much as possible a desired level

of accuracy.

From the above discussion, it follows that a nonlinear ROM or hyper reduced ROM inherits

the modeling errors and associated uncertainties of its underlying HDM — including model form

uncertainties. It is also tainted by additional errors introduced by the reduction processes highlighted

above. Hence, if MOR is essential for enabling simulation-based decision making, Uncertainty

Quantification (UQ) for ROMs is critical for certifying the decisions they enable.

1.2. Output-predictive error method

For a given HDM, several methods are currently available for analyzing model uncertainties induced

by modeling errors, including model form uncertainties. The most popular one is the standard

output-predictive error method introduced in [16]. In the context of ROMs however, this method

has a major drawback. For example, it is not well-suited for design optimization problems where

ROMs are particularly needed, because it does not enable the µ-parametric HDM and its associated

ROM to learn from data.

1.3. Parametric probabilistic methods for modeling uncertainties

An alternative family of methods for analyzing model uncertainties is the familty of parametric

probabilistic methods for UQ. This approach is relatively well developed for modeling model

parameter uncertainty, at least for a reasonably small number of parameters. It consists in

constructing prior and posterior stochastic models of uncertain model parameters pertaining, for

example, to geometry, boundary conditions, material properties · · · [17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27]. This approach was shown to be computationally efficient for both a µ-parametric HDM

and its associated µ-parametric ROM (for example, see [28, 5, 29]), and for large-scale statistical

inverse problems [30, 31, 32, 33, 34, 35, 36, 37]. However, it does not take into account neither

the model uncertainties induced by modeling errors introduced during the construction of a µ-

parametric HDM (model form uncertainties), nor those due to model reduction [27, 29, 38].

1.4. Nonparametric probabilistic approach for modeling uncertainties

A nonparametric probabilistic approach for modeling uncertainties due to more general modeling

errors was introduced in [38, 39, 40, 41], in the context of linear structural dynamics. It is

organized in two steps. In the first one, a linear ROM of dimension n is constructed using a

linear HDM with N degrees of freedom (dofs) — that is, of dimension N — and a linear,

projection-based MOR. In the second step, a linear Stochastic ROM (SROM) is constructed

by substituting the deterministic matrices underlying the linear ROM with random matrices for

which the probability distributions are constructed using the Maximum Entropy (MaxEnt) principle

[42, 43, 44]. Specifically, the construction of the linear SROM is performed under constraints

generated from available information such as algebraic properties (positiveness, integrability of

the inverse, · · · ) and statistical information (for example, the equality between mean and nominal

values). This nonparametric probabilistic approach was extended for different ensembles of random

matrices [40, 45] and linear boundary value problems [46]. It was also experimentally validated and

applied for linear problems in composites [47], viscoelasticity [48, 49], dynamic substructuring

[50, 51, 52, 53, 54], vibroacoustics [48, 55, 56, 57], soil-structure interaction and earthquake

engineering [58, 59, 60], and robust design and optimization [61, 62]. More recently, it was further

extended to account for some nonlinear geometrical effects in structural analysis [63, 64]. However,

the latter extension is strongly related to the mathematical properties of the nonlinear elasticity

operator considered in [63, 64]. A priori, it does not hold for arbitrarily nonlinear systems.

Accepted for publication in International Journal for Numerical Methods in Engineering, 30 May 2016 (2016)
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4 C. SOIZE AND C. FARHAT

1.5. Main objective and organization of this paper

For all reasons outlined above, given a µ-parametric nonlinear ROM and corresponding

experimental data, the main objective of this paper is to present a nonparametric probabilistic

approach for modeling the uncertainties due to the following two types of modeling errors

responsible for discrepancies between predictions performed using this nonlinear ROM and

corresponding experimental data:

• The modeling errors associated with nonlinear MOR in general, independently of the type or

source of nonlinearities. In this regard, it is noted here that when the dimension n of the µ-

parametric nonlinear ROM approaches N , and the number mµ of parameter vectors µ that are

sampled in Cµ for constructing the global ROB [V ] approaches infinity, the modeling errors

of this type approach zero.

• Those introduced in the construction of the underlying µ-parametric nonlinear HDM,

including model form errors.

From the second bullet above, it follows that the nonparametric probabilistic approach presented

in this paper can also quantify uncertainties in any HDM for which a ROM can be constructed.

Furthermore, it is well-known that many applications such as robust design optimization call

for a µ-parametric computational model that is capable of reproducing the typical experimental

variability induced by a manufacturing process, and/or an imperfect if not noisy set of

measurements. Therefore, a related objective of this paper is to ensure that the proposed

nonparametric probabilistic approach can also account for experimental variability.

To this effect, the remainder of this paper is organized as follows. In Section 2, the proposed

nonparametric probabilistic approach for modeling uncertainties is described using a simple

example that introduces and highlights its key components. In Section 3, a method for constructing

the associated Stochastic ROB (SROB) is presented. Its underlying theory is given in a discrete

form that is readily applicable to computational models. A continuous interpretation of this theory

is provided in Appendix D. In Section 4, the potential of the SROB for taking into account

modeling errors is analyzed through the discussion of a simple numerical example. In particular, the

performance of the proposed approach for identifying the hyperparameters of the probability model

underlying the constructed SROB is assessed. Section 5 is devoted to a computational structural

dynamics application of the proposed approach to UQ in nonlinear MOR that is simple to reproduce

by the interested reader. Section 6 presents yet another example problem which focuses on the

assessment of the ability of the µ-parametric SROM to account for the errors induced by modeling a

system using a µ-parametric ROM instead of the underlying µ-parametric HDM. Finally, Section 7

concludes this paper.

2. NONPARAMETRIC PROBABILISTIC APPROACH FOR UNCERTAINTY ANALYSIS OF

NONLINEAR MODEL ORDER REDUCTION METHODS

To begin, the proposed approach for modeling the uncertainties due to both model form and

model reduction errors and its main underlying idea are outlined here, before their theoretical and

algorithmic underpinnings are presented in the remainder of this paper. For this purpose, the context

is set to that of a nonlinear Finite Element (FE) structural dynamics model. However, the overall

approach is equally applicable, at least in principle, to any µ-parametric, nonlinear, computational

model. Essentially, given such a model and a Quantity of Interest (QoI), a µ-parametric, nonlinear,

projection-based ROM is constructed using a standard procedure such as that outlined in Section 1.

Next, an SROB that verifies a specific set of mathematical properties is generated by randomizing

the deterministic ROB underlying the nonlinear ROM. This SROB depends on a vector-valued

hyperparameter that is identified by formulating an appropriate cost function and solving an

associated optimization problem. Finally, the µ-parametric SROM associated with the global SROB

is computed using the same projection approach chosen for constructing the deterministic nonlinear

ROM.

Accepted for publication in International Journal for Numerical Methods in Engineering, 30 May 2016 (2016)
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2.1. Parametric nonlinear high-dimensional computational model

Consider the µ-parametric, nonlinear, computational model

[M ] ÿ(t) + g(y(t), ẏ(t);µ) = f(t;µ) , t ∈ ]t0, T ] (2.1)

defined on RN , arising from the large-scale FE semi-discretization of the PDEs governing the

dynamic equilibrium of a given structure, equipped with the initial conditions

y(t0) = y0 , ẏ(t0) = y1 ,

and subject to NCD < N linear constraints of interest written in matrix form as follows

[B]T y(t) = 0NCD
, t ∈ [t0, T ] , (2.2)

where t0 and T are two given time-instances satisfying −∞ < t0 < T < +∞, and y0 and y1 are

two given vectors in RN satisfying the specified constraints.

In Eq. (2.1) above, µ is as before the vector parameter belonging to Cµ ⊂ Rmµ , t denotes

time, y(t) = (y1(t), . . . , yN (t)) is the RN vector of the N displacement dofs, ẏ(t) = dy(t)/dt and

ÿ(t) = d2y(t)/dt2 are the corresponding velocity and acceleration vectors, [M ] is the mass matrix

belonging to M+
N and is assumed to be independent of t and µ, g(y(t), ẏ(t);µ) is the RN vector

representing the internal forces at time t and depends on y(t), ẏ(t) and µ, and finally, f(t;µ) is the

RN vector of external forces at time t and depends on µ.

In Eq. (2.2), [B] is a given matrix in MN,NCD
. It defines the NCD constraints on y, is assumed to be

independent of t and µ and to satisfy [B]T [B] = [INCD
].

The RN -valued solution {y(t;µ), t ∈ [t0, T ]} of Eqs. (2.1) to (2.2) depends on µ. The QoI

(system observation) at time t is denoted by the vector o(t;µ) = (o1(t;µ), . . . , omo(t;µ)) with

values in Rmo . This vector depends on µ and is here written as

o(t;µ) = h(y(t;µ), ẏ(t;µ), f(t;µ), t;µ) , t ∈ [t0, T ] , (2.3)

where h is a given mapping.

2.2. Construction of a µ-parametric nonlinear reduced-order model

Let [V ] ∈ MN,n be a global ROB (independent of µ) of dimension n << N constructed for

approximating the solution {y(t;µ), t ∈ [t0, T ]} for all µ ∈ Cµ. From (2.2), it follows that [V ] must

satisfy the constraint equation

[B]T [V ] = [0NCD,n] . (2.4)

Typically, [V ] satisfies also by construction the orthonormality condition [13, 14]

[V ]T [M ] [V ] = [In] . (2.5)

The Galerkin projection of the HDM represented by (2.1) on such a ROB leads to the µ-parametric

nonlinear ROM

y(n)(t) = [V ]q(t) , t ∈ [t0, T ] , (2.6)

q̈(t) + [V ]T g([V ]q(t), [V ] q̇(t);µ) = [V ]T f(t;µ) , t ∈ ]t0, T ] , (2.7)

with the initial conditions

q(t0) = [V ]T [M ] y0 , q̇(t0) = [V ]T [M ] y1 , (2.8)

where the Rn-valued solution {q(t;µ), t ∈ [t0, T ]} of Eqs. (2.7) and (2.8) depends on µ — and

is often referred to as the vector of generalized coordinates — and {y(n)(t;µ), t ∈ [t0, T ]} is the

n-order approximation of {y(t;µ), t ∈ [t0, T ]}. The corresponding approximation o(n) of the QoI

o is given by

o(n)(t;µ) = h(y(n)(t;µ), ẏ(n)(t;µ), f(t;µ), t;µ) , t ∈ [t0, T ] , µ ∈ Cµ . (2.9)

Accepted for publication in International Journal for Numerical Methods in Engineering, 30 May 2016 (2016)
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6 C. SOIZE AND C. FARHAT

For a given n, the prediction error due to the use of the µ-parametric nonlinear ROM instead of

the µ-parametric nonlinear HDM could, a priori, be estimated (in the L2 sense) by

ε(n) =

∫

Cµ

∫ T

t0

‖o(t;µ)− o(n)(t;µ)‖2 dt dµ . (2.10)

However, such an estimation entails the computation of the high-dimensional solution of the

problem for a very large number of sampled values of the vector-valued parameter µ in Cµ and

therefore can be cost-prohibitive. For this reason, Eq. (2.10) is replaced in practice by

ε(n) =

mµ∑

i=1

∫ T

t0

‖o(t;µi)− o(n)(t;µi)‖2 dt ,

where µ1, . . . ,µmµ
are the sampling points used for constructing the ROB [V ].

2.3. Construction of a stochastic reduced-order model

As already stated in the abstract, the main idea contributed by this paper includes substituting the

deterministic ROB [V ] with a stochastic counterpart [W]. In view of the properties of [V ], including

the constraint (2.4) and orthonormality condition (2.5), this SROB must verify the following

properties:

• [W] is global and therefore independent of µ, because [V ] is global and independent of µ.

• [W] is a random matrix with values in MN,n.

• The support of its probability distribution (constructed using the Maximum Entropy principle

of Information Theory) is the subset of MN,n corresponding to the constraints

[B]T [W] = [0NCD,n] (2.11)

and

[W]T [M ] [W] = [In] (2.12)

almost surely.

• The probability distribution of [W] depends on a vector-valued hyperparameter α =
(α1, . . . , αmα

) belonging to a subset Cα of Rmα where the dimension mα is chosen

sufficiently small so that the statistical inverse problem for identifying the hyperparameter

vector α is computationally feasible.

The construction of such an SROB is described in Section 3.

Next, the µ-parametric, nonlinear, projection-based SROM associated with the µ-parametric,

nonlinear, projection-based ROM described above is deduced from Eqs. (2.6) to (2.9) by substituting

[V ] with the random matrix [W]. Consequently, y(n), q, and o(n) become the stochastic processes

Y(n), Q, and O(n), and the SROM can be written as

Y(n)(t) = [W]Q(t) , t ∈ [t0, T ] , (2.13)

Q̈(t) + [W]T g([W]Q(t), [W] Q̇(t);µ) = [W]T f(t;µ) , t ∈ ]t0, T ] , (2.14)

with the initial conditions

Q(t0) = [W]T [M ] y0 , Q̇(t0) = [W]T [M ] y1 . (2.15)

The Rn-valued stochastic solution {Q(t;µ,α), t ∈ [t0, T ]} of Eqs. (2.14) and (2.15) depends

on µ ∈ Cµ and α ∈ Cα. The stochastic process {Y(n)(t;µ,α), t ∈ [t0, T ]} is the n-order

approximation of the stochastic process {Y(t;µ), t ∈ [t0, T ]}. The corresponding approximation

{O(n)(t;µ,α), t ∈ [t0, T ]} of the random QoI {O(t;µ), t ∈ [t0, T ]} is given, for all t ∈ [t0, T ],
µ ∈ Cµ and α ∈ Cα, by

O(n)(t;µ,α) = h(Y(n)(t;µ,α), Ẏ
(n)

(t;µ,α), f(t;µ), t;µ) . (2.16)
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2.4. Identification of the hyperparameter vector of the probability distribution of the stochastic

reduced-order basis

The identification of the hyperparameter vector α ∈ Cα ⊂ Rmα can be performed using the

maximum likelihood method, or a nonlinear Least-Squares (LS) method for the QoI. For example,

a nonlinear LS method can be formulated as follows for both types of modeling errors highlighted

in Section 1.5.

Let J(α) be the cost function defined on Cα by

J(α) = wJ Jmean (α) + (1− wJ )Jstd (α) , (2.17)

where wJ is a weight satisfying 0 ≤ wJ ≤ 1, and Jmean (α) and Jstd (α) allow for controlling the

identification of α with respect to the mean value and statistical fluctuations, respectively. The latter

quantities are defined here as

Jmean (α) =
1

cmean(µ1, . . . ,µmµ
)

mµ∑

i=1

∫ T

t0

‖oref(t;µi)− E{O(n)(t;µi,α)}‖2 dt , (2.18)

Jstd (α) =
1

cstd(µ1, . . . ,µmµ
)

mµ∑

i=1

∫ T

t0

‖v(ref,n)(t;µi)− v(n)(t;µi,α)‖2 dt , (2.19)

where the positive constants cmean(µ1, . . . ,µmµ
) and cstd(µ1, . . . ,µmµ

) are given by

cmean(µ1, . . . ,µmµ
) =

mµ∑

i=1

∫ T

t0

‖oref(t;µi)‖2 dt , (2.20)

cstd(µ1, . . . ,µmµ
) =

mµ∑

i=1

∫ T

t0

‖v(ref,n)(t;µi)‖2 dt ,

and v(ref,n)(t;µi) = (v
(ref,n)
1 (t;µi), . . . , v

(ref,n)
mo (t;µi)) is such that,

v
(ref,n)
j (t;µi) = γ |oref

j (t;µi)− o
(n)
j (t;µi)| , j = 1, . . .mo , (2.21)

where γ > 0 allows to control the amplitude of the target related to the statistical fluctuations. In

Eq. (2.19), v(n)(t;µi,α) = (v
(n)
1 (t;µi,α), . . . , v

(n)
mo (t;µi,α)) is such that

v
(n)
j (t;µi,α) = {E{O(n)

j (t;µi,α)2} − (E{O(n)
j (t;µi,α)})2} }1/2 , j = 1, . . .mo .

In Eqs. (2.18), (2.20) and (2.21), oref is defined as a function of the type of the modeling errors

that are taken into account:

⋄ If only the errors due to model reduction are taken into account, then oref = o.

⋄ If the errors due to model reduction and those introduced in the construction of the underlying

µ-parametric nonlinear HDM are taken into account, then oref = oexp, where oexp is based on

experimental data.

It follows that in the cost function defined above:

⋄ oref appears as the target for the mean value with a weight wJ .

⋄ v(ref,n) appears as the target for the standard deviation with a weight 1− wJ .

Hence, the identification of the hyperparameter vector α consists in calculating αopt such that

αopt = min
α∈Cα

J(α) .
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2.5. Justification

At this point, the reader may ask why is a random basis of the admissible set useful? The answer to

this question has three parts:

• Any deterministic global ROB [V ] of dimension n = N constitutes a basis of the admissible

vector space for the solutions of the µ-parametric HDM, for all µ belonging to Cµ. On

the other hand, for a fixed dimension n < N and a given sampling µ1, . . . ,µmµ
in Cµ, the

solution of an instance of the µ-parametric HDM problem formulated using an unsampled

parameter vector µ⋆ cannot be necessarily approximated in the subspace spanned by [V ]
with a specified level of accuracy. Using the proposed nonparametric probabilistic approach

however, the variability of [V ] can be captured for the following reason. Every ROB sample

generated by the constructed SROB constitutes a family of algebraically independent vectors

that verifies the boundary conditions of the problem of interest, satisfies the regularity required

for solving the boundary value problem represented by the HDM, and represents a fluctuation

around [V ] whose magnitude is controlled by the hyperparameters of the SROB, but can be

large enough to capture any variability of [V ] while satisfying all of the required constraints.

Therefore, the proposed nonparametric probabilistic approach for taking into account model

form uncertainties can be interpreted as a stochastic-based method for extracting fundamental

information or knowledge from test or HDM data that is not captured by a deterministic HDM

or ROM. Using this approach, one essentially parameterizes the approximation basis in order

to capture the variabilities instead of (artificially) parameterizing the governing equations.

• In the deterministic setting, it is well known that a good approximation of order n, y(n), of the

solution y of a problem of interest delivered by an HDM of dimension N can be computed

using a Galerkin projection method — for example, a projection-based ROM of dimension

n — independently of the explicit choice of the admissible vector basis. For example, this

statement is trivial for n = N . Similarly, in the stochastic setting, a family of stochastic

approximations Y(n) that converges almost surely towards the deterministic solution y based

on an HDM can be constructed using an SROM. At convergence, Y(n) is independent of the

choice of the stochastic basis. However, for n << N , and taking into account the fact that the

deterministic ROB [V ] is constructed for µ1, . . . ,µmµ
in Cµ, for any unsampled value of µ

in Cµ, the approximation y(n) delivered by the associated ROM is tainted by both sampling-

and truncation (or reduction)-induced errors. In this case, for a fixed value of n for which

convergence is not reached, the value of the approximation error depends on the choice of

the admissible basis. Subsequently, when the ROB [V ] is substituted with the SROB [W], a

stochastic family of approximations Y(n) is generated using the SROM. Hence, the idea is

to adapt the statistical fluctuations of Y(n) for representing not only the sampling and model

reduction related errors, but also the modeling errors introduced during the construction of

the µ-parametric nonlinear HDM itself.

• The proposed nonparametric probabilistic approach underlying the usage of a random basis of

the admissible set can account for experimental variability in two different ways: qualitatively,

by the probabilistic nature of the SROM that generates the statistical fluctuations of the

QoI; and quantitatively, by choosing the experimental data as the target for the QoI in the

identification procedure of the hyperparameters of the SROB.

3. CONSTRUCTION OF A STOCHASTIC REDUCED-ORDER BASIS

From Eq. (2.12), it follows that the N × n SROB [W] must satisfy an orthonormality condition.

Hence, it must be constructed on a compact Stiefel manifold denoted here by SN,n. From Eq. (2.11),

it follows that this SROB must also satisfy an additional constraint equation. Therefore, more

specifically, it must be constructed on a subset of SN,n. For this reason, a brief summary of known

results concerning the parameterization of SN,n is given below. Then, the complete construction of

the SROB [W] and the analysis of its mathematical properties are presented in Sections 3.3 to 3.5.
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3.1. The compact Stiefel manifold: tangent vector space and parameterizations

Let n and N be two integers satisfying 1 < n << N , and let [M ] ∈ M+
N denote an (N ×N) real,

SPD matrix. The set MN,n of all (N × n) real matrices forms an Euclidean space equipped with the

inner product and associated norm defined by

≪ [V1] , [V2] ≫M = tr{[V1]
T [M ] [V2]} , ‖V ‖M = {tr{[V ]T [M ] [V ]}}1/2 .

The compact Stiefel manifold SN,n is defined as (for example, see [65])

SN,n = { [V ] ∈ MN,n , [V ]T [M ] [V ] = [In] } ⊂ MN,n . (3.1)

Its dimension is ν S = Nn− n(n+ 1)/2, which can also be written as ν S = n(n− 1)/2 + n(N −
n).

From [V ]T [M ] [V ] = [In], it follows that [V ]T [M ] [dV ] + [dV ]T [M ] [V ] = [0n,n], where [dV ]
denotes the 1-differential form of [V ]. Therefore, the tangent vector space to SN,n at the point

[V ] ∈ SN,n, TV SN,n, is defined by

TV SN,n = { [Z] ∈ MN,n : [V ]T [M ] [Z] + [Z]T [M ] [V ] = [0n,n] } . (3.2)

In the context of this work, the tangent vector space TV SN,n plays an important role for two

reasons:

• It provides a mean for parameterizing SN,n.

• An explicit mapping can be constructed between this tangent vector space and SN,n. Hence,

if for constructing the random matrix [W] the fluctuations around the deterministic ROB [V ]
are generated in this tangent vector space, two important facts become noteworthy: (1) the

resulting perturbed ROB remains in this vector space, and therefore (2) it can be mapped onto

SN,n to obtain a matrix [W] that satisfies the constraint equations (2.11) and (2.12).

From the definition (3.2), it follows that any element [Z] of TV SN,n can be written as

[Z] = [V ] [a] + [V⊥] [b] , (3.3)

where [V⊥] denotes an element of MN,N−n satisfying

[V ]T [M ] [V⊥] = [0n,N−n] ,

[a] is a skew-symmetric matrix in MSS
n ([a]T = −[a]), and [b] is any matrix in MN−n,n. Eq. (3.3)

constitutes a parameterization of the tangent vector space TV SN,n at a given point [V ] in SN,n.

Specifically, n(n− 1)/2 entries of [a] and n(N − n) entries of [b] parameterize TV SN,n at the

point [V ]. Therefore, the dimension of TV SN,n is νTV SN,n
= n(n− 1)/2 + n(N − n) — that is,

νTV SN,n
= ν S.

The parameterization (3.3) of TV SN,n requires the construction of a large-scale matrix [V⊥] that

belongs to MN,N−n. For large values of N , this is a major drawback. In this case, the following

alternative parameterization is preferred.

Let [A] denote an arbitrary matrix in MN,n. Its projection onto TV SN,n, ProjTV SN,n
([A]), can be

written as

[Z] = ProjTV SN,n
([A]) := [A]− [V ] [D] , [D] = ([V ]T [M ] [A] + [A]T [M ] [V ])/2 , (3.4)

where [D] ∈ MS
n is an (n× n) symmetric matrix. The above result can also be written as

[Z] = [V ] [a] + ([IN ]− [V ] [V ]T [M ])[A], where [a] = ([V ]T [M ] [A]− [A]T [M ] [V ])/2 belongs to

MSS
n . In this case, [V ]T [M ] [Z] = [a], and given that tr[a] = 0, ≪ [V ] , [Z] ≫= 0.

REMARK 1. For large values of N , the dimension of the parameterization (3.4) of TV SN,n, Nn,

is much smaller than that of its counterpart (3.3). Still, the dimension of this parameterization
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10 C. SOIZE AND C. FARHAT

is larger than the dimension of TV SN,n itself, ν S = Nn− n(n+ 1)/2. In particular, note that

Nn = ν S + n(n+ 1)/2, which reveals that there are n(n+ 1)/2 unnecessary parameters in the

representation (3.4) of TV SN,n. These unnecessary parameters are associated with the normal

space to SN,n at a given point [V ] in SN,n, NV SN,n. Indeed, from (3.4), it follows that NV SN,n

consists of the set of matrices of the form [AS ] = [V ] [S], where [S] is a symmetric matrix in MS
n

([Z] = ProjTV SN,n
([AS ]) = [0N,n]). The dimension of this vector space is n(n+ 1)/2. Nevertheless,

for large values of N , the parameterization of TV SN,n defined by (3.4) is computationally feasible

for constructing the random matrix [W] associated with the stochastic modeling of [V ] ∈ SN,n,

whereas that defined by (3.3) is not computationally feasible for this purpose.

Now, let [Z] 7→ Rs,V ([Z]) denote the smooth mapping from TV SN,n to SN,n,

[W ] = Rs,V ([Z]) ,

that verifies

[V ] = Rs,V ([0N,n]) .

Then, for any [Z] in TV SN,n, [W ] = Rs,V ([Z]) satisfies [W ]T [M ] [W ] = [In].
There are several possibilities for constructing the mapping Rs,V . For example, one can

note the construction procedure based on the economy-size QR decomposition [67], which is

computationally efficient for N very large and n << N . In this work, the following equally efficient

procedure based on the adaptation of the polar decomposition [66] to Eq. (3.1) is used

[W ] = Rs,V ([Z]) := ([V ] + s[Z]) [Hs(Z)] , [Z] ∈ TV SN,n . (3.5)

In (3.5) above, s ≥ 0 is a real number introduced for controlling the level of fluctuations of [Z] in

TV SN,n around [V ] in SN,n, and [Hs(Z)] is the SPD matrix in M+
n given by

[Hs(Z)] = ([In] + s2[Z]T [M ] [Z])−1/2 . (3.6)

The construction procedure defined by (3.5) and (3.6) verifies Rs,V ([0N,n]) = [V ]. This means

that when [Z] undergoes small fluctuations around [0N,n], [W ] = Rs,V ([Z]) undergoes fluctuations

around [V ] and their amplitude can be controlled by the parameter s for a given normalization of [Z].
Now, substituting the parameterization of [Z] given in (3.4) into the definition of [W ] = Rs,V ([Z])
given by Eqs. (3.5) and (3.6) leads to the mapping [A] 7→ Rs,V ([A]) from MN,n into SN,n defined

for all [A] in MN,n by

[W ] = Rs,V ([A]) := Rs,V ([A]− [V ] [D]) , [D] = ([V ]T [M ] [A] + [A]T [M ] [V ])/2 . (3.7)

In particular, using the above result, the reader can verify that

[W ]T [M ] [W ] = [In] , [V ] = Rs,V ([0N,n]) ∈ SN,n .

3.2. Parameterization of a subset of a compact Stiefel manifold associated with additional

constraints

Consider now the case where [V ] belongs to the subset SN,n of SN,n defined by

SN,n = { [V ] ∈ MN,n , [V ]T [M ] [V ] = [In] , [B]T [V ] = [0NCD,n] } ⊂ SN,n , (3.8)

where 0 < NCD < N is the number of constraint equations, [B] is a given matrix satisfying

[B] ∈ MN,NCD
, [B]T [B] = [INCD

] , (3.9)

and [B]T [V ] = [0NCD,n] represents a set of NCD linear constraints expressed here in orthonormal

form and associated, for example, with Dirichlet boundary conditions and/or kinematic constraints

between some dofs of the computational model for which the ROB [V ] is constructed. Then, the
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objective is to extend the parameterization [W ] = Rs,V ([A]) ∈ SN,n defined by Eqs. (3.7) and (3.1)

to a parameterization [W ] = Rs,V ([A]) ∈ SN,n ⊂ SN,n, so that the additional constraint equation

[B]T [W ] = [0NCD,n] is satisfied. Such a parameterization, which must verify

[W ]T [M ] [W ] = [In] , [B]T [W ] = [0NCD,n] , [V ] = Rs,V ([0N,n]) , (3.10)

is given by Eq. (3.7), where [A] belongs in this case to the subset MB
N,n of MN,n defined by

MB
N,n = { [A] ∈ MN,n , [A] = ([IN ]− [B] [B]T ) [U ] , [U ] ∈ MN,n ,} . (3.11)

Indeed, using (3.9), the reader can verify that for all [A] in MB
N,n, [B]T [A] = [0NCD,n]. Using the

polar representation of Rs,V (see Eqs. (3.5) and (3.6)) with the parameterization of [Z] defined by

Eq. (3.4), and [B]T [V ] = [0NCD,n] (see Eq. (3.8)), the user can also verify that [B]T [W ] = [0NCD,n].
It is important to note that from a numerical point of view, the parameterization of the matrix

[A] introduced in (3.11) can be rewritten as [A] = [U ]− [B] {[B]T [U ]}, where [B]T [U ] ∈ MNCD,n.

Therefore, the (N ×N) matrix [B] [B]T does not need to be assembled in practice. Furthermore, if

the constraint [B]T [W ] = [0NCD,n] does not apply, Eq. (3.11) is simply replaced by [A] = [U ], where

[U ] ∈ MN,n.

Next, given a global ROB [V ], the associated SROB [W] is constructed on SN,n with the additional

constraint equation [B]T [W ] = [0NCD,n]. Using the notation introduced above, this means that the

matrix [A] in MB
N,n is given by (3.11). If no additional constraint equation of the form [B]T [W ] =

[0NCD,n] is specified, [A] = [U ]. Hence, the stochastic modeling of the matrix [U ] described next will

be the same for both cases of a ROB [V ] with or without additional constraint equation.

3.3. Construction of a stochastic reduced-order basis

As anticipated in Section 2.3, given a ROB [V ] in SN,n ⊂ SN,n (and therefore satisfying [B]T [V ] =
[0NCD,n]), the corresponding SROB is constructed here as a random matrix [W] defined on a

probability space (Θ, T ,P) with values in SN,n — that is, verifying the conditions (2.12) and (2.11)

— and possibly additional constraints that are defined later. The construction of the probability

measure P[W] of [W] on MN,n, for which the support is the manifold SN,n,

suppP[W] = SN,n ⊂ SN,n ⊂ MN,n ,

requires the introduction of an adapted parameterization of SN,n that addresses the difficulties

induced by the support of the measure. To this effect, a three-step construction procedure for [W],
in which the available information is gradually introduced, is presented below.

3.3.1. Step 1: parameterization The SROB is constructed using the parameterization of [W ] given

in (3.7) and (3.11). The corresponding random matrix [W] can then be written as

[W] = Rs,V ([A]) = Rs,V ([A]− [V ] [D]) , [D] = ([V ]T [M ] [A] + [A]T [M ] [V ])/2 , (3.12)

where [A] is a random matrix defined on (Θ, T ,P), with values in the subset MB
N,n of MN,n. Hence,

[A] can be written as

[A] = ([IN ]− [B] [B]T ) [U] = [U]− [B] {[B]T [U]} , (3.13)

where the random matrix [U] = [U1 . . .Un] is defined on (Θ, T ,P), with values in MN,n. The

columns of [U] are n random vectors U1, . . . ,Un with values in RN . The deterministic mapping

Rs,V (from the tangent vector space TV SN,n of SN,n at point [V ] to SN,n) is defined by Eqs. (3.5)

and (3.6). Note that [D] is a random matrix with values in MS
n.

3.3.2. Step 2: defining the available information Taking into account Eqs. (3.12) and (3.13), the

stochastic model of the random matrix [W] and its generator are completely defined by their

counterparts for the random matrix [U].
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A main requirement for the construction of the SROB is that the statistical fluctuations of the

random matrix [W] be around the deterministic matrix [V ]. Taking into account that [W] = [V ] for

[A] = [0N,n] (due to the third of Eqs. (3.10)), the random matrix [A] must be a centered random

variable, which is satisfied if [U] is also a centered random matrix (due to Eq. (3.13)). Hence, one

must have

E{[U]} = [0N,n] . (3.14)

Furthermore, in order to minimize the number of hyperparameters in the stochastic model of

the centered random matrix [U], the Nn(Nn+ 1)/2 components of the fourth-order symmetric

covariance tensor {cjkj′k′}jkj′k′ of the MN,n-valued random matrix [U] are not kept, because

N can be very large. Therefore, the following reduced parameterization with 1 + n(n+ 1)/2
hyperparameters is chosen for tensor c. Specifically, for all j and j′ in {1, . . . , N}, and for all k
and k′ in {1, . . . , n},

cjkj′k′ = E{UjkUj′k′} = [CN (β)]jj′ [cn]kk′ , (3.15)

where:

• [CN (β)] ∈ M+
N is a type-covariance matrix depending on a hyperparameter β such that

0 < βd ≤ β ≤ βu < +∞, and is constructed in Appendix D (see Eq. (D.57)). This covariance

matrix allows the introduction of a correlation between the components Uk
1 , . . . , U

k
N of each

random vector Uk so that Uk
j = [U]jk.

• [cn] ∈ M+
n is a type-covariance matrix: therefore, there exists an upper triangular matrix [σ]

belonging to Mu
n so that (Cholesky’s factorization)

[cn] = [σ]T [σ] . (3.16)

Specifically, the matrix [cn] allows to describe the correlation between the random vectors

U1, . . . ,Un.

Using Eqs. (3.14), (3.15), and (3.16), the second-order MN,n-valued random matrix [U] can be

rewritten as [U] = [G] [σ], where [G] is a second-order centered MN,n-valued random matrix defined

on the probability space (Θ, T ,P), such that for all j and j′ in {1, . . . , N}, and for all k and k′ in

{1, . . . , n},

E{Gjk} = 0 , E{GjkGj′k′} = [CN (β)]jj′ δkk′ . (3.17)

It follows that

E{[G] [G]T } = n [CN (β)] , E{[G]T [G]} = (tr[CN (β)]) [In] .

Therefore, the random matrix [U] is parameterized as

[U] = [G] [σ] , (3.18)

and is such that

E{[U] [U]T } = (tr[cn]) [CN (β)] , E{[U]T [U]} = (tr[CN (β)]) [cn] .

3.3.3. Step 3: stochastic model for [W ] In this step, the stochastic model and generator of

independent realizations of the SROB [W] are constructed.

To this effect, it is first noted that the stochastic model of the second-order, centered, random

matrix [G] with values in MN,n is defined by Eq. (D.55) in Appendix D, and its generator of

independent realizations is described in Section D.5 of this Appendix. The stochastic model is

constructed so that it exhibits only a scalar hyperparameter β, and does not require the explicit

construction of the large matrix [CN (β)] with N(N + 1)/2 entries.

On the other hand, the stochastic representation of the second-order, uncentered, random matrix

[W] with values in the manifold SN,n ⊂ SN,n ⊂ MN,n is defined by Eqs. (3.12), (3.13), and (3.18),
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which can be rewritten (using Eqs. (3.5) and (3.6)) as follows

[W] = Rs,V ([Z]) = ([V ] + s [Z]) [Hs(Z)] , (3.19)

[Hs(Z)] = ([In] + s2 [Z]T [M ] [Z])−1/2 , (3.20)

[Z] = [A]− [V ] [D] , (3.21)

[D] = ([V ]T [M ] [A] + [A]T [M ] [V ])/2 , (3.22)

[A] = [U]− [B] {[B]T [U]} , (3.23)

[U] = [G(β)] [σ] , (3.24)

where:

• [G(β)] is the second-order, centered, random matrix with values in MN,n defined by

Eq. (D.55) in Appendix D, and for which the covariance tensor is defined by Eq. (3.17).

• [σ] is a given upper triangular matrix in Mu
n (positive diagonal entries).

• [B] is a given matrix in MN,NCD
verifying [B]T [B] = [INCD

].
• [V ] is a given matrix in SN,n.

For [V ] fixed in SN,n, the 2 + n(n+ 1)/2 hyperparameters of the stochastic model of the random

matrix [W] with values in SN,n are:

• The deterministic real parameter s, which is such that ε0 ≤ s ≤ 1, where ε0 is such that

0 ≤ ε0 < 1 and is given (if s = 0, then [W] = [V ] is deterministic and there are no statistical

fluctuations).

• The deterministic real parameter β, which is such that 0 < βd ≤ β ≤ βu < +∞, where βd

and βu are given.

• The upper triangular matrix [σ] in Mu
n (positive diagonal entries), which is parameterized

by n(n+ 1)/2 parameters, and such that its diagonal entries satisfy the constraints ε0 ≤
[σ]11, . . . , [σ]nn ≤ σu < +∞, where σu is given.

Thus, the hyperparameter vector is α = (s, β, {[σ]kk′ , 1 ≤ k ≤ k′ ≤ n}) with length mα = 2 +
n(n+ 1)/2. It belongs to the admissible set Cα defined by

Cα = {s ∈ [ε0 , 1] , β ∈ [βd, βu] , ε0 ≤ [σ]11, . . . , [σ]nn ≤ σu , [σ]kk′ ∈ R , k < k′} . (3.25)

For the sake of simplicity, the notation (s, β, σ) is used for α in the remainder of this paper.

REMARK 2. A good choice for the number of hyperparameters mα is problem dependent. For

this reason, setting mα requires practical experience. To this effect, Section 3.3.2 provides some

guidelines. For all practical purposes however, mα should be chosen as large as the computational

model can afford from the computational complexity viewpoint. It should also take into account

the number of nonzero elements in the matrix [σ] whose sparsity can be controlled. Its smallest

possible value corresponds to the smallest possible value of n — that is, n = 1 — and therefore is

mα = 3; in this case, [σ] is the identity matrix multiplied by a scalar hyperparameter.

The generator of independent realizations of the random matrix [W] with values in SN,n is directly

given by Eqs. (3.19) to (3.24) and Eq. (D.55). For a fixed value of the hyperparameters s, β, and [σ],
and for θ ∈ Θ, the realization [W(θ)] of [W] is computed as follows:

• Compute [G(θ;β)] the generator described in Section D.5 of Appendix D.
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• Then compute

[U(θ)] = [G(θ;β)] [σ] ,

[A(θ)] = [U(θ)]− [B] {[B]T [U(θ)]} ,
[D(θ)] = ([V ]T [M ] [A(θ)] + [A(θ)]T [M ] [V ])/2 ,

[Z(θ)] = [A(θ)]− [V ] [D(θ)] ,

[Hs(Z(θ))] = ([In] + s2[Z(θ)]T [M ] [Z(θ)])−1/2 ,

[W(θ)] = ([V ] + s [Z(θ)]) [Hs(Z(θ))] .

3.4. Analysis of some mathematical properties of the stochastic reduced-order basis

From Eqs. (3.19) to (3.24), it follows that the random matrix [W] is a nonlinear function of G that

can be expected in general to be a non-Gaussian second-order random matrix. Since it depends on

the hyperparameter vector α = (s, β, σ) ∈ Cα, its second-order moments depend on s, β, and [σ].
The mean value of this SROB is written here as

[W (α)] = E{[W]} .

Its variance, varM
W
(α) (a positive-valued quantity), is defined by

varM
W
(α) = E{‖W −W (α)‖2M} . (3.26)

For all j and j′ in {1, . . . , N} and for all k and k′ in {1, . . . , n}, the components rjkj′k′ (α) of the

fourth-order correlation tensor r(α) of [W] are defined by

rjkj′k′(α) =
E{[W −W (α)]jk[W −W (α)]j′k′}√
E{[W −W (α)]2jk}E{[W −W (α)]2j′k′}

.

Next, some important properties of the mean value of the SROB [W], its variance, and its correlation

tensor are highlighted.

Let [Z] be the random matrix defined by Eqs. (3.21)–(3.24). In Appendix A, it is proved that the

mean value [W (s, β, σ)] of [W] (defined by Eqs. (3.19)–(3.24)) is such that

[W (s, β, σ)] = [V ]E{[Hs(Z)]} , [B]T [W (s, β, σ)] = [0NCD,n] . (3.27)

In general, for all s > 0, β > 0, and [σ] in Mu
n, E{[Hs(Z)]} 6= [In]. This means that for all s > 0,

β > 0, and [σ] ∈ Mu
n,

[W (s, β, σ)] 6= [V ] , [W (s, β, σ)]T [M ] [W (s, β, σ)] 6= [In] ,

and for s = 0,

[W (0, β, σ)] = [V ] , [W (0, β, σ)]T [M ] [W (0, β, σ)] = [In] , ∀ [σ] ∈ Mu
n .

In Appendix B, it is proved that

‖W (s, β, σ)‖2M ≤ n , lim
s→+∞

‖W (s, β, σ)‖2M = 0 , ∀β > 0 , ∀ [σ] ∈ Mu
n . (3.28)

In the same Appendix B, it is also proved that

varM
W
(0, β, σ) = 0 , lim

s→+∞
varM

W
(s, β, σ) = n , ∀β > 0 , ∀ [σ] ∈ Mu

n , (3.29)

and the mapping s 7→ varW(s, β, σ) is an increasing function that is asymptotic to n. These results

show that the statistical fluctuations of the SROB are bounded and cannot grow indefinitely. This is

also due to the constraint [W]T [M ] [W] = [In] almost surely.
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Furthermore, it can be easily proved that for all s > 0, β > 0, and [σ] ∈ Mu
n, the correlation tensor

{rjkj′k′(s, β, σ)}jkj′k′ can be neither written as ajj′δkk′ , neither as δjj′bkk′ , nor as δjj′δkk′ . This

implies that all components of the tensor r(s, β, σ) are not equal to zero — specifically, there are

N2n2 non zero components.

Finally, it is proved in Appendix C that for all β > 0 and [σ] in Mu
n,

lim
s→+∞

≪ [W] , [V ] ≫M = 0 almost surely. (3.30)

3.5. Continuous interpretation of the stochastic reduced-order basis

A continuous interpretation of the SROB [W] constructed in Section 3.3 is given in Appendix D. The

generator of the random matrix [G(β)] is also described in details in Section D.5 of Appendix D.

For all numerical applications presented in this paper, the parameter νp introduced in Eq. (D.41) of

Appendix D for the generation of the random matrix [G(β)] is set to 20.

4. PERFORMANCE ANALYSIS FOR A SIMPLE EXAMPLE

Here, various performance aspects of the SROB concept and proposed approach for constructing

it, including the ability of this SROB to control the statistical fluctuations of the QoI, are assessed

through a first, simple, numerical example. Because the explored issues do not necessarily depend on

any parametric variation, nonlinear behavior, or dynamic aspect of the modeled system of interest,

a generic linear static system is considered for this purpose.

4.1. Generic linear static problem

The considered linear static problem has N = 1 000 dofs. For this problem, Eq. (2.1) is rewritten as

[K] y = f , (4.1)

where y = (y1, . . . , yN) is the dimensionless displacement vector belonging to RN , [K] belongs

to M+
N , and f = (f1, . . . , fN) is the dimensionless force vector belonging to RN and satisfying

f1 = fN = 0. The generation of all of these quantities is described in Appendix E so that the

interested reader can reproduce this example. Equation (4.1) has a unique solution that satisfies

y1 = yN = 0 (Dirichlet boundary conditions) and

[B]T y = 0NCD
, where [B]T [B] = [IN ] . (4.2)

The matrix [B] belongs to MN,NCD
, where NCD = 2. Its construction is also described in Appendix E.

For this simple example, the QoI (see Eq. (2.3)) is defined as

oD = y ,

where y is the unique solution of Eq. (4.1). Hence, oD = (oD1 , . . . , oDN ) belongs to Rmo with

mo = N , and the superscript “D” stands for “Displacement”.

Given that the problem described above is a generic, contrived problem, Appendix E also

describes the perturbation approach followed to generate a surrogate set of “experimental” data.

4.2. Reduced-order model

Let n = 20, and let {ϕ1, . . . ,ϕn} denote the first n eigenvectors associated with the first n
eigenvalues 0 < λ1 < . . . < λn of the matrix [K]. Hence,

[K]ϕk = λk ϕ
k , < ϕk ,ϕk′

>= δkk′ . (4.3)

Setting [M ] = [IN ], the ROB [V ] in MN,n is constructed as [V ] = [ϕ1 . . .ϕn]. From Eqs. (4.1) and

(4.2) (or the construction of [K] given in Appendix E), it follows that

[B]T [V ] = [0NCD,n] .
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For problem (4.1), the projection-based ROM associated with the ROB [V ] can be written as (see

Eqs. (2.6) and (2.7))

y(n) = [V ]q , (4.4)

[V ]T [K] [V ]q = [V ]T f .

The corresponding approximation of the QoI, o(D,n) = (o
(D,n)
1 , . . . , o

(D,n)
N ), is (see Eq. (2.9))

o(D,n) = y(n) . (4.5)

At this point, it is noted that n is set here to n = 20 so that a modeling error (truncation error)

is generated by using the chosen ROM instead of the HDM for solving problem (4.1). Indeed, for

n = 20, f does not belong to the subspace spanned by {ϕ1, . . . ,ϕn} (see Appendix E).

A second QoI is introduced in the framework of this simple numerical example, namely, the

vector o(E,n) = (o
(E,n)
1 , . . . , o

(E,n)
n ) in Rn defined as

o(E,n) = λ(n) , (4.6)

where λ(n) = (λ1, . . . , λn) is the vector of the first n eigenvalues 0 < λ1 ≤ . . . ≤ λn of [K]. To this

effect, it is also noted that the ROM approximation of the eigenvalue problem (4.3) can be rewritten,

for k = 1, . . . , n, as ϕk = [V ]qk, where

[V ]T [K] [V ]qk = λk qk .

For this simple example, the family {q1, . . . ,qn} constitutes the canonical basis of Rn. This

observation is introduced here in order to analyze the capability of the nonparametric probabilistic

approach proposed in this paper to generate statistical fluctuations for the random eigenvalues.

4.3. Predictions performed using the high-dimensional and reduced-order models

Figure 1 (left) contrasts, for the dimensionless displacements, the graph of j 7→ oDj computed using

the HDM and that of j 7→ o
(D,n)
j computed using the ROM. The effect of the truncation error

is noticeable. Figure 1 (right) contrasts, for the first n eigenvalues of [K], the graph of k 7→ oEk
computed using the HDM and its counterpart computed using the ROM. For this problem, due to

the construction of the matrix [K] described in Appendix E and that of the ROB, the eigenvalues λk

for k = 1, . . . , n are the same for the HDM and its ROM — that is, oE = o(E,n).

4.4. Stochastic reduced-order model

From Eqs. (2.13) to (2.16), it follows that the SROM associated with Eqs. (4.4) to (4.5) is obtained

by substituting [V ] with the random matrix [W]. The corresponding quantities y(n), q, and o(n) are

the random vectors Y(n), Q, and O(D,n). Specifically, the SROM is given by

Y(n) = [W]Q ,

[W]T [K] [W]Q = [W]T f ,

O(D,n)(α) = Y(n) .

For the eigenvalue problem, the vector λ(n) becomes the random vector Λ(n) = (Λ1, . . .Λn), the

SROM for the eigenvalue problem is

[W]T [K] [W]Qk = ΛkQk ,

and the QoI o(E,n) defined in Eq. (4.6) becomes the random vector

O(E,n)(α) = Λ
(n) .
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Figure 1. Left figure: Dimensionless displacements, graph of j 7→ oDj computed using the HDM (thick line)

and counterpart j 7→ o
(D,n)
j computed using the ROM (dashed line) — Right figure: First n eigenvalues,

graph of k 7→ oEk computed using the HDM (dashed line) and counterpart k 7→ o
(E,n)
k computed using the

ROM (dashed line).

4.5. Identification of the hyperparameter vector

For this problem, the hyperparameter vector α = (s, β, σ) defined in Section 3.3.3 has the length

mα = 2 + n(n+ 1)/2 = 212. It is identified using the adaptation to mµ = 1 of the nonlinear LS

method presented in Section 2.4. Specifically, Jmean (α) and Jstd (α) are defined in this case as

Jmean (α) = ‖oref − E{O(n)(α)}‖2 / ‖oref‖2 , (4.7)

Jstd (α) = ‖v(ref,n) − v(n)(α)‖2 / ‖v(ref,n)‖2 , (4.8)

where v(ref,n) = (v
(ref,n)
1 , . . . , v

(ref,n)
mo ) is such that,

v
(ref,n)
j = γ |oref

j − o
(n)
j | , j = 1, . . .mo , (4.9)

and γ > 0 is varied in the computations reported in the following sections. In Eq. (4.8), v(n)(α) =

(v
(n)
1 (α), . . . , v

(n)
mo (α)) is such that

v
(n)
j (α) = {E{O(n)

j (α)2} − (E{O(n)
j (α)})2} }1/2 , j = 1, . . .mo .

The reader is reminded that in Eqs. (4.7) and (4.8), oref is the target for the mean value with a weight

wJ and v(ref,n) is the target for the standard deviation with a weight 1− wJ (see Eq. (2.17)).

Throughout the remainder of the discussion of the academic problem examined here, the

following cases will be considered for the vector-valued QoI oref:

⋄ oref = oD = y, with mo = N , which is the deterministic displacement vector computed using

the HDM and does not coincide with the deterministic approximation y(n) computed using the

ROM. The random vector O(n)(α) is then chosen as O(D,n)(α). For this choice, the constructed

stochastic model of uncertainties takes into account the truncation error induced by the ROM.

⋄ oref = oD,exp = yexp, with mo = N , which is the experimentally measured (surrogate)

displacement vector (see Appendix E) and does not coincide with the prediction y performed using

the HDM. For this choice, the constructed stochastic model of uncertainties takes into account both

the truncation error induced by the ROM and the modeling errors (with respect to the surrogate real

system) introduced during the construction of the underlying HDM. The random vector O(n)(α) is

chosen as O(D,n)(α).
⋄ oref = oE,exp = λexp, with mo = n, which is the experimentally measured set of the first n

eigenvalues and does not coincide with the deterministic counterpart λ(n) computed using the
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18 C. SOIZE AND C. FARHAT

ROM (or in this case, the HDM), and the random vector O(n)(α) is chosen as O(E,n)(α). This

choice allows the evaluation of the potential of the proposed nonparametric probabilistic approach

for simulating different types of errors induced by the ROM and/or underlying HDM.

It is noted here that the optimization problem

αopt = (sopt, βopt, [σopt]) = min
α∈Cα

J(α) (4.10)

is not a convex problem. Therefore, only an approximation of αopt can be computed in general

(recall that mα = 212). Many numerical tests were performed to analyze the roles played by the

components s, β, and [σ] of α. These tests have led to shaping the final optimization algorithm

presented in Appendix F. Nevertheless, this algorithm can be replaced by any other preferred

solution algorithm for problem (4.10).

4.6. Sensitivity analysis of the stochastic model with respect to model reduction errors

For the purpose of performing a numerical sensitivity analysis of the stochastic model with

respect to the modeling error induced by model reduction, the QoI is set here to oref = oD = y
with mo = N . The weight wJ is set to wJ = 0.9, so that the target oref for the mean value is

preponderant for the standard deviation (see Eq. (4.9)). The optimization problem (4.10) is solved

using the interior-point algorithm described in Appendix F with ε0 = 0.01, βd = 0.01, βu = 0.3,

and σu = 20, and the initialization s0 = 0.05, β0 = 0.2, and [σ0] = [In]. Furthermore, the solution

αopt = (sopt, βopt, [σopt]) is computed for γ = 0.2, 0.5, 0.8, and 1.0. The Monte Carlo method is used

as the stochastic solver with 1 000 independent realizations, and the mean-square convergence is

reached with a reasonable accuracy.

Figure 2 (left) displays the graphs of four arbitrary trajectories (realizations) of the discrete

random field j 7→ O
(D,n)
j computed using the SROM for γ = 0.8. The reader can observe that the

Dirichlet boundary conditions are preserved, and that the computed trajectories are as regular as

predicted by the theory (see Appendix D).

Figure 2 (right) reports the graph of the function k 7→ [copt
n ]kk (diagonal entries), where [copt

n ] =
[σopt]T [σopt] corresponds to the optimal value [σopt] of [σ] (see Eq. (3.16)). For γ = 0.2, 0.5, 0.8, and

1.0, the optimal values of s and β are sopt = 0.0111, 0.0158, 0.0120, and 0.0173, and βopt = 0.071,

0.036, 0.207, and 0.111.
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Figure 2. Left figure: Four sample realizations of the discrete random field j 7→ O
(D,n)
j for γ = 0.8 (four

colored thin lines) — Right figure: Graph of k 7→ [copt]kk (in log10 scale) for γ = 0.2 (dash-dotted line), 0.5
(dashed line), 0.8 (thin solid line), and 1.0 (thick solid line).

Figure 3 (left) displays the graph of j 7→ oDj corresponding to the HDM target, that of j 7→ o
(D,n)
j

computed using the ROM and γ = 0.2, 0.5, 0.8, and 1.0, and the mean value of the discrete random
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Figure 3. Left figure: Graph of j 7→ oDj of the HDM target (black line), graph of j 7→ o
(D,n)
j computed using

the ROM for γ = 0.2, 0.5, 0.8, and 1.0, and mean value of the random field j 7→ O
(D,n)
j computed using the

SROM (blue thick lines superimposed on the black line) — Right figure: Standard deviation of j 7→ O
(D,n)
j

computed using the SROM for γ = 0.2 (dashed-dotted line), 0.5 (dashed line), 0.8 (thin solid line), and 1.0
(thick solid line).

field j 7→ O
(D,n)
j constructed with the SROM. The ROM and mean value of the SROM are almost

coinciding for all considered values of γ. Figure refFIG3 (right) displays, for the different considered

values of γ, the standard deviation of j 7→ O
(D,n)
j computed using the SROM. As it can be expected,

the standard deviation increases with the amplitude γ of its target value.

In Figure 4, the four displayed figures summarize the results obtained for the numerical sensitivity

analysis of the stochastic model with respect to the error induced by using the ROM instead of

the HDM for solving problem (4.1). Each figure pertains to a different value of γ (0.2, 0.5, 0.8,

and 1.0) and displays, for the dimensionless displacements, the graph of j 7→ oDj corresponding

to the HDM target, the graph of j 7→ o
(D,n)
j computed using the ROM, and the confidence region

with a probability pc = 0.98 of the discrete random field j 7→ O
(D,n)
j constructed using the SROM.

The upper envelope of the confidence region corresponds to the quantile for the probability pc,
and the lower envelope to the quantile for the probability 1− pc. These figures show that the

statistical fluctuations increase as the amplitude γ of the target for the standard deviation increases

(as expected). They also show that the confidence region is relatively well-centered around the

response computed using the ROM, which is close to the average value of the HDM target (see

Figure 3) and was chosen as the target for the mean value. Finally, the reader can observe that the

prediction performed for γ = 0.8 is simply excellent.

4.7. Performance in the presence of modeling errors in both of the high-dimensional and

reduced-order models

For the purpose of assessing the ability of the proposed nonparametric stochastic model to account

for modeling errors introduced at both HDM and ROM levels, the QoI is set to the displacement

oD = y with mo = N , the target of the mean value is set to oref = oD,exp = yexp — which corresponds

to the surrogate experimental data and is denoted as ”EXP target” in the figures to follow. The graph

of j 7→ oD,exp

j is displayed in Figure 6 (top left). The target v(ref,n) of the standard deviation is defined

in Eq. (4.9), where the amplitude is controlled by the parameter γ. (It is noted here that the task

of generating an SROM for which the mean value of the stochastic response will be close to the

average of the EXP target and the confidence region of the statistical fluctuations will contain this

EXP target is a difficult one). The weight wJ = 0.9 is chosen so that the target oref of the mean value

is preponderant during the identification of the hyperparameterα. This identification is performed in
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Figure 4. For the dimensionless displacements, graph of j 7→ oDj of the HDM target (black thick solid line),

graph of j 7→ o
(D,n)
j computed using the ROM (black dashed line), and confidence region for pc = 0.98

(yellow region with red upper and lower envelopes) computed for j 7→ O
(D,n)
j using the SROM and γ = 0.2

(top left), γ = 0.5 (top right), γ = 0.8 (bottom left), and γ = 1.0 (bottom right).

this case for 3 different values of γ, namely, γ = 0.1, 0.2, and 0.3. The optimization problem (4.10)

is solved using the interior-point algorithm described in Appendix F with ε0 = 0.01, βd = 0.0005,

βu = 0.01, and σu = 20, and the initialization s0 = 0.011, β0 = 0.001, and [σ0] = [In]. As in the

previous analysis, the Monte Carlo method is used as the stochastic solver with 1 000 independent

realizations (and the mean-square convergence is reached with a reasonable accuracy).

Figure 5 (left) displays the graphs of four arbitrary trajectories (realizations) of the discrete

random field j 7→ O
(D,n)
j computed using the SROM and γ = 0.3. As in Section 4.6, the Dirichlet

boundary conditions are preserved and the trajectories are regular.

Figure 5 (right) displays the graph of the function k 7→ [copt
n ]kk (diagonal entries), where [copt

n ] =
[σopt]T [σopt] corresponds to the optimal value [σopt] of [σ] (see Eq. (3.16)). For γ = 0.1, 0.2, and 0.3,

the optimal values of s and β are sopt = 0.0138, 0.0142, and 0.0275, and βopt = 0.0005, 0.0074, and

0.0077.

Figure 6 (top left) displays the graphs of j 7→ oD,exp

j of the EXP target, j 7→ oDj computed using

the HDM, j 7→ o
(D,n)
j computed using the ROM and γ = 0.1, 0.2, and 0.3, and the mean value of

the discrete random field j 7→ O
(D,n)
j constructed using the SROM. The reader can observe that

the solution computed using the HDM is different from the EXP target, which simulates model

uncertainties in the HDM, and that the ROM yields an averaging of the solution predicted by the

HDM. The reader can also observe that the mean values are close to the EXP target, which is
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Figure 5. Left figure: For γ = 0.3, sample realizations of the discrete random field j 7→ O
(D,n)
j (four colored

thin lines) — Right figure: Graph of k 7→ [copt]kk (in log10 scale) for γ = 0.1 (dashed line), 0.2 (thin line),
and 0.3 (thick line).
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Figure 6. Graphs of j 7→ oD,exp

j (thick solid lines), j 7→ oDj computed using the HDM (dash-dotted lines),

and j 7→ o
(D,n)
j computed using the ROM (dashed lines) — For the discrete random field j 7→ O

(D,n)
j

computed using the SROM and γ = 0.1, 0.2, and 0.3: mean value (three superimposed blue thin lines, top
left) — For the confidence region for pc = 0.98 (yellow region with red upper and lower envelopes): γ = 0.1

(top right), γ = 0.2 (bottom left), γ = 0.3 (bottom right).
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coherent with the fact that the EXP target is given as the target for the mean value with a weight

wJ = 0.9. For γ = 0.1, 0.2, and 0.3, the 3 other figures shown in Figure 6 (top right, bottom left,

and bottom right) display the graph of j 7→ oD,exp

j of the EXP target, that of j 7→ o
(D,n)
j computed

using the ROM, and the confidence region (with a probability pc = 0.98) of the discrete random

field j 7→ O
(D,n)
j constructed using the SROM. These figures show that, as expected, the statistical

fluctuations increase as the amplitude γ of the target for the standard deviation increases, the domain

defined by the confidence region contains the EXP target, and the prediction performed for γ = 0.2
is excellent.

4.8. Random eigenvalue analysis

Next, the ability of the proposed nonparametric stochastic model to control the mean values and

statistical fluctuations of the vector Λ(n) of the first n random eigenvalues (Λ1, . . . ,Λn) (see (4.4))

associated with the QoI o(E,n) = λ(n) with mo = n (see (4.6)) is assessed. To this effect, the target

of the mean value is set to oref = oE, exp = λexp, which corresponds to the surrogate experimental

data. The target v(ref,n) of the standard deviation is defined in Eq. (4.9); its amplitude is controlled

by the parameter γ. The weight wJ = 0.9996 is chosen so that the target oref of the mean value is

preponderant during the identification of the hyperparameterα. This identification is performed here

for γ = 0.14 and γ = 0.043. These two values of γ are arbitrarily chosen except for the interesting

fact that for one value (γ = 0.14), the error happens to increase with the rank of the eigenvalues

while for the other (γ = 0.043), the error happens to decrease with the rank of the eigenvalues.

The optimization problem is solved using only Stages 1 and 4 of the interior-point algorithm

described in Appendix F. For γ = 0.14, the parameters of this algorithm are set to ε0 = 0.01,

βd = 0.0001, βu = 0.2, and σu = 20, and the initialization is set to s0 = 0.011, β0 = 0.01, and

[σ0]kk′ = δkk′ 14 ∗ k/20 + 1. For γ = 0.043, they are set to ε0 = 0.01, σu = 20, βd = 0.001 and

βu = 0.003, and s0 = 0.011, β0 = 0.002, and [σ0]kk′ = δkk′ − 14 ∗ k/20 + 15.

Two targets cases are considered:

⋄ The mean-value target (EXP-target+) and standard-deviation target (10× Std-target+)

generated for γ = 0.14, displayed in Figure 7 (left), and corresponding to an increasing of the

statistical fluctuations of the random eigenvalues with their index. This choice of targets simulates a

modeling error in the HDM that increases the statistical fluctuations of the random eigenvalues with

their index (smaller statistical fluctuations for Λ1 and larger statistical fluctuations for Λn).

⋄ The mean-value target (EXP-target−) and standard-deviation target (10× Std-target−)

generated for γ = 0.043, displayed in Figure 7 (right), and corresponding to a decreasing of the

statistical fluctuations of the random eigenvalues with their index. This choice of targets simulates

a modeling error in the HDM that decreases the statistical fluctuations of the random eigenvalues

with their index (larger statistical fluctuations for Λ1 and smaller statistical fluctuations for Λn).

In Figure 7, one observes that the two mean-value targets are significatively different from the

eigenvalues computed using the HDM (which, as explained earlier, are identical for this specific

problem to their counterparts computed using the ROM).

Figure 8 (left) displays the graph of the function k 7→ [copt
n ]kk (diagonal entries) where [copt

n ] =
[σopt]T [σopt] corresponds to the optimal value [σopt] of [σ] (see Eq. (3.16)). For γ = 0.14 and 0.043,

the optimal values of s and β are sopt = 0.0213 and 0.0109, and βopt = 0.0242 and 0.00298.

For γ = 0.14 (0.043), which corresponds to an increasing (decreasing) of the statistical

fluctuations of the random eigenvalues with their index , the two figures in Figure 9 display the

graph of k 7→ oE, exp

k of the mean-value target, that of k 7→ oEk = o
(E,n)
k computed using the HDM,

and the confidence region of the random eigenvalues k 7→ O
(E,n)
k constructed by using the SROM

for the probability level of pc = 0.98. The reader can observe that whereas the eigenvalues predicted

by the HDM are different from the target values, the mean values of the random eigenvalues are close

to these target values.

For γ = 0.14, the statistical fluctuations of the random eigenvalues increase with their index while

for γ = 0.043, they decrease with their index. This is coherent with the imposed standard-deviation

targets.
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All reported results demonstrate the capability of the proposed nonparametric probabilistic

approach for quantifying model uncertainties to modify the statistical properties of the spectrum

of a linear operator and reproduce (in this case surrogate) experimental data.

5. APPLICATION TO A NONLINEAR COMPUTATIONAL STRUCTURAL DYNAMICS

PROBLEM

Here, a three-dimensional (3D) dynamic problem associated with a slender, damped, linearly

elastic structure with nonlinear barriers is considered. The setup of this problem is designed to

be sufficiently simple to enable the reproduction of the associated results by the interested reader.

On the other hand, constructing an efficient ROM for this application is a difficult task. In the

frequency domain, the energy of the considered excitation is concentrated in a narrow frequency

band, within an otherwise broader frequency analysis interval. For this reason, the discrepancies

between the HDM and ROM predictions are very small in the frequency band of excitation where the

uncertainties are small, but larger outside this frequency band where, because of the energy transfer

outside the frequency band of excitation due to nonlinearities, the model uncertainties are larger.
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Consequently, such uncertainties are associated with second-order contributions to the solution,

and the main purpose of this problem is to demonstrate the ability of the proposed nonparametric

probabilistic approach to predict them.

5.1. Description of a mechanical system

The mechanical system considered here is a 3D linear elastic structure with two elastic barriers that

induce impact nonlinearities. It is defined in a cartesian coordinate system Ox1x2x3 (see Figure 10).

Its cylindrical geometry has a length L1 = 1.2m, and a rectangular section with height L2 = 0.12m
and width L3 = 0.24 m. The two end sections are located at x1 = 0 and x1 = L1. The origin O is

in the corner of the first end section, and Ox1 is parallel to the main axis of the cylinder. The

axis Ox2 is the transversal axis along the side of length L2, and Ox3 is the axis along the side of

length L3 (see Figure 10). The elastic medium is made of a homogeneous and isotropic elastic

material for which the Young modulus is E = 1010 N/m2, the Poisson ratio is ν = 0.15, and

the mass density is ρ = 1500 Kg/m3. Damping is represented using the global damping rate of

ξd = 0.01 for each elastic mode of this structure in the absence of elastic barriers, and is introduced

directly at the ROM level. As for the boundary conditions, all displacements are constrained

(“locked”) along the two lines defined by {(x1, x2, x3) : x1 = 0 ;x2 = L2/2 ; 0 ≤ x3 ≤ L3} and by

{(x1, x2, x3) : x1 = L1 ;x2 = L2/2 ; 0 ≤ x3 ≤ L3} (see Figure 10).

The elastic barriers induce two nonlinear point forces on the structure: one in the direction of

x2 and applied at the point (x1 = 0.66, x2 = 0, x3 = L3/2), and another in the direction of x3 and

applied to the point (x1 = 0.66, x2 = L2/2, x3 = L3) (see Figures 10 and 12), of intensities −fNL,2

and −fNL,3, respectively. These intensities, which are assumed to be independent of the velocity, are

given by

fNL,2(η) = kb,2 (η + εb,2)1R+(−η − εb,2) , η ∈ R , (5.1)

fNL,3(η) = kb,3 (ζ − εb,3)1R+(ζ − εb,3) , ζ ∈ R , (5.2)

where kb,2 = kb,3 = 2× 109N/m is the elasticity constant of the barriers and εb,2 = εb,3 = 2×
10−4 m are the two positive valued gaps.

A time-dependent point force is also applied at the boundary of this slender structure, specifically,

at (x1 = 0.46, x2 = 0, x3 = 0.2) (see Figures 10, 12). The x1 component of this force is zero, and

its x2- and x3-components are equal to the square integrable real-valued function fe defined by

fe(t) =
f0
π t

{sin(t(ωc +∆ωc/2))− sin(t(ωc −∆ωc/2)} , t ∈ [t0, T ] , (5.3)
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where f0 = 100 N , ωc = 2 π × 470 rad/s is the central circular frequency, and ∆ωc = 2 π ×
300 rad/s is the circular frequency bandwidth. The graph of ω 7→ |f̂e(ω)| defined on 2 π ×

[0 , 1550] rad/s, where f̂e(ω) =

∫ T

t0

e−iωtfe(t) dt, is plotted in Figure 11. The signal energy of

the excitation is mainly concentrated in the frequency band [320 , 620]Hz.
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Figure 11. Time-variation of the external point force t 7→ fe(t) defined on [−0.0403 , 0.3790] s and

represented on [−0.04 , 0.1] s (left) — Graph of ω 7→ |f̂e(ω)| in log10-scale defined on the frequency band
of observation [0 , 1550] Hz (right).

The line defined by {0 ≤ x1 ≤ L1 ; x2 = 0 ; x3 = L3} is adopted as an observation line for

t ∈ [t0, T ]. In order to limit the number of figures, only the x2- and x3-displacements of 2
observation points on this line are considered and denoted here by Obs34 and Obs51. Their x1-

coordinates are 0.66 and 1.00, respectively (see their locations in Figure 12). Consequently, only

4 displacement dofs are observed for the purpose of reporting numerical results. The initial time

t0 < 0 is written as t0 = −m0 π/ωe = −0.0403 s, where m0 is a positive integer set to m0 = 50.

At t0, the system is assumed to be at rest (displacement and velocity fields are zero). The final

time T > 0 is a positive integer chosen so that the system is returned to the zero equilibrium

with a relative error of εd = 0.1. Its value is estimated using the equation exp(−ξd ω1 T ) = εd,

where ω1 = 2 π × 96.69 rad/s is the fundamental eigenfrequency of the associated linear undamped

dynamical system, which yields T = 0.3790 s. The frequency band of observation is chosen as

Bo = [0 , ωo], with ωo = 2 π × 1550 rad/s. The chosen time-interval is sampled at the frequency
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ωmax = 2 π × 12, 400 rad/s. This leads to 10, 400 time-instances and the time-step ∆t = π/ωmax =
4.032× 10−5 s. Similarly, there are 10, 400 frequency steps in the frequency band [−ωmax, ωmax] and

the sampling frequency step is ∆ω = 2 π × 2.38 rad/s.

5.2. Predictions performed using the high-dimensional model

A 3D finite element model is constructed for the problem described above using a 60× 6× 12 =
4 320 8-noded solid elements. Hence, this model contains 5 551 nodes and N = 16 653 dofs.

NCD = 78 Dirichlet boundary conditions are applied at 2× 13 nodes (see Figure 12). For this HDM,
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Figure 12. Finite element model: applied force (diamond), two elastic barriers (circles), observation points
Obs34 and Obs51(pentagrams).

the governing equations (2.1) to (2.3) are rewritten as follows

[M ] ÿ(t) + g(y(t), ẏ(t)) = f(t) , t ∈ ]t0, T ] , (5.4)

g(y(t), ẏ(t)) = [D] ẏ(t) + [K] y(t) + fNL(y(t)) , (5.5)

and equipped with zero initial conditions

y(t0) = 0N , ẏ(t0) = 0N . (5.6)

The NCD < N constraint equations arising from the Dirichlet boundary conditions are written in

matrix form as

[B]T y(t) = 0NCD
, t ∈ [t0, T ] , (5.7)

where [B] is a matrix in MN,NCD
verifying [B]T [B] = [INCD

] and constructed using the NCD zero

Dirichlet conditions. In Eq. (5.4), the time-dependent applied force f(t) is directly constructed

using Eq. (5.3). In Eq. (5.5), the nonlinear force fNL(y(t)) induced by the elastic barriers is directly

constructed using Eqs. (5.1) and (5.2). Note that the mass matrix [M ] belongs to M+
N , but the

stiffness matrix [K] is in M+0
N and has a null space of dimension 6.

In general, the damping matrix [D] should also be in M+0
N with the same null space as [K].

However, [D] is carefully constructed so that the modal damping rate obtained by projection of [D]
onto the subspace spanned by the ROB constructed for this problem is effectively ξd. In addition,

an adapted representation of [D] is carried out in order to avoid that [D] be a full matrix and that

the computational complexity of a corresponding matrix-vector product grows with N2. For the

application considered here, a construction of [D] in M+
N ⊂ M+0

N is described in Appendix G.

In the frequency band of observation Bo = [0 , ωo], the QoI (observation of the system) is the

vector ô(ω) = (ô1(ω), . . . , ômo(ω)) ∈ Cmo defined as follows:
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• For plotting and analyzing the responses of the SROM, mo = 2× 2 = 4 dofs in the x2 and

x3 directions of the 2 observation nodes Obs34 and Obs51 belonging to the aforementioned

observation line (see Figure 12).

• For the identification of the hyperparameter α of the SROB, mo = 2× 61 = 122 dofs in the

x2 and x3 directions of all 61 nodes belonging to the observation line (see Figures 11 and 12).

For all ω in Bo, the complex vector vector ô(ω) is written as

ô(ω) = h(−ω2 ŷ(ω)) , ω ∈ Bo , (5.8)

where h is a linear mapping from CN into Cmo which extracts the dofs from the vector −ω2 ŷ(ω) ∈
CN , and

ŷ(ω) =
∫ T

t0

e−iω ty(t) dt , ω ∈ Bo . (5.9)

Note that −ω2 ŷ(ω) would be the Fourier transform of {ÿ(t) t ∈ [t0 , T ]} if y(t0) = ẏ(t0) = 0N

(which is the case, see Eq. (5.6)) and if y(T ) = ẏ(T ) = 0N (which is not exactly the case, because,

as explained in Section 5.1, T corresponds to the time for which the dynamical system returns to

the zero equilibrium with the relative error εd). Nevertheless, ô(ω) can be considered as a good

approximation of the accelerations of the observations nodes in the x2- and x3 directions.

Also, Eqs. (5.4) and (5.5) are rewritten as [M ] ÿ(t) + [Dd] ẏ(t) + [K] y(t) = f(t)− fNL(y(t))−
[De] ẏ(t), where the full (N ×N) damping matrix is written as [D] = [Dd] + [De], [Dd] is the

positive definite diagonal part of [D], and [De] = [D]− [Dd] is a full (N ×N) damping matrix.

The purpose of the latter matrix decomposition is to promote sparse computations (see Eq. (G.3)

in Appendix G). The midpoint rule is applied to the time-integration of this equation using a fixed

point method at each sampling time with the relative precision of 10−6. In order to guarantee the

convergence of the fixed point method, a local adaptive time-step is used.

The four subfigures of Figure 13 compare the graphs ν 7→ log10(|ôj(2πν)|) predicted for this

problem using the HDM described above and a linear variant obtained by supressing the nonlinear

elastic barriers, for the x2- and x3-accelerations at Obs51 and Obs34. Hence, these figures highlight

the effects of the nonlinear elastic barriers on the response. In particular, they reveal an important

energy transfer in the frequency band outside the main frequency band [320 , 620] Hz of the

excitation.

5.3. Reduced-order model and performance

Let {ϕ1, . . . ,ϕn} be the first n elastic modes associated with the first n eigenfrequencies 0 < ω1 <
. . . < ωn of the linear undamped countpart model of the nonlinear damped dynamical system. These

modes satisfy

[K]ϕk = λk [M ]ϕk , (5.10)

where λ1 = ω2
1 , . . . , λn = ω2

n, and the constraint equation

[B]Tϕk = 0NCD
, k = 1, . . . , n . (5.11)

Furthermore, the elastic modes satisfy the usual orthogonality properties

< [M ]ϕk ,ϕk′

>= δkk′ , < [K]ϕk ,ϕk′

>= λk δkk′ . (5.12)

For the nonlinear dynamical HDM, the ROB is chosen as [V ] = [ϕ1 . . .ϕn] ∈ MN,n. This ROB

satisfies the orthonormality property (2.5) and the constraint equation (2.4). Using this ROB and

Eq. (5.12), the ROM associated with the HDM defined by Eqs. (5.4) to (5.7) can be written as

y(n)(t) = [V ]q(t) , t ∈ [t0, T ] , (5.13)

q̈(t) + [V ]T [D][V ] q̇(t) + [V ]T [K][V ]q(t) + [V ]T fNL([V ]q(t)) = [V ]T f(t) , t ∈ ]t0, T ] , (5.14)
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Figure 13. Graphs of ν 7→ log10(|ôj(2πν)|) computed using the HDM (thick lines) and a linear counterpart
(thin lines) for the x2- and x3-accelerations at Obs51 (top left and top right) and at Obs34 (bottom left and

bottom right).

with the initial conditions

q(0) = 0n , q̇(0) = 0n .

The approximation ô(n)
(ω) of the QoI ô(ω) defined by Eqs. (5.8) and (5.9) can be written as

ô(n)
(ω) = h(−ω2 ŷ(n)

(ω)) , ω ∈ Bo , (5.15)

ŷ(n)
(ω) =

∫ T

t0

e−iω ty(n)(t) dt , ω ∈ Bo . (5.16)

To solve the above reduced governing equations, the algorithm described in Section 5.2 is used

after it is adapted to Eq. (5.14), and this equation is rewritten, using Eqs. (G.2) and (5.12), as

q̈(t) + 2 ξd [λ
(n)]1/2 q̇(t) + [λ(n)]q(t) = [V ]T f(t)− [V ]T fNL([V ]q(t)), where [λ(n)] is the positive

definite diagonal matrix whose diagonal entries are λ1, . . . , λn.

Taking into account the fact that a significative difference between the responses delivered by

the HDM and ROM must be generated in order to demonstrate the capability of the proposed

nonparametric stochastic method to account for this type of modeling errors, a good compromise

between computational cost and ROM accuracy leads to choosing n = 20 as the dimension of the

ROM. In this case, ω1 = 2 π × 96.69 rad/s, ω4 = 2 π × 472 rad/s, ω5 = 2 π × 720 rad/s, ω11 =
2 π × 1474 rad/s, ω12 = 2 π × 1754 rad/s, and ω20 = 2 π × 2936 rad/s. Consequently, there are 4
elastic modes in the frequency band [0 , 620]Hz containing the main part of the excitation, 11 elastic
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modes in the frequency band of observation [0 , 1550] Hz, and 9 elastic modes in the frequency

band [1550 , 3100]Hz. In Figure 14, the four subfigures compare the graphs ν 7→ log10(|ôj(2πν)|)
computed using the HDM with the graphs ν 7→ log10(|ô(n)j (2πν)|) computed using the chosen ROM,

for the x2- and x3-accelerations at Obs51 and Obs34. They show that the differences between the

HDM and ROM predictions are very small in the frequency band [320 , 620] Hz of the excitation,

but significant outside this frequency band (by design, such differences can be reduced by increasing

the dimension n of the ROM).
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Figure 14. Graphs of ν 7→ log10(|ôj(2πν)|) computed using the HDM (thick lines) and ROM (thin lines) for
the x2- and x3-accelerations at Obs51 (top left and top right) and Obs34 (bottom left and bottom right).

5.4. Stochastic reduced-order model and performance

From Eqs. (2.13) to (2.16), it follows that the SROM associated with Eqs. (5.13) to (5.16) is obtained

by substituting [V ] with the random matrix [W]. Consequently, y(n), q, and o(n) become the random

vectors Y(n), Q, and Ô
n

, and the SROM becomes

Y(n)(t) = [W]Q(t) , t ∈ [t0, T ] ,

Q̈(t)+[W]T [D][W] Q̇(t)+[W]T [K][W]Q(t)+[W]T fNL([W]Q(t))=[W]T f(t) , t ∈ ]t0, T ] , (5.17)

with the initial conditions

Q(0) = 0n , Q̇(0) = 0n , a.s .
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Let Ô
(n)

(ω;α) be the random QoI with values in Cmo and with mo = 122. This random QoI

depends on the hyperparameter α and is such that

Ô
(n)

(ω;α) = h(−ω2 Ŷ
(n)

(ω;α)) , ω ∈ Bo , (5.18)

Ŷ
(n)

(ω;α) =

∫ T

t0

e−iω tY(n)(t;α) dt , ω ∈ Bo .

In Eq. (5.17), the M+
n -valued random matrix [W]T [D][W] is constructed using Eq. (G.4), which

shows that the (N ×N) full matrix [D] is not assembled.

To identify the hyperparameter α = (s, β, σ) defined in Section 3.3.3, of length mα = 2 + n(n+
1)/2 = 212, and belonging to the admissible set Cα = R+ × [0.01 , 0.1]×Mu

n, the cost function

J(α) defined by Eq. (H.3) of Appendix H, where wJ = 0.9 and γ = 0.3, is minimized. Specifically,

the optimization problem

αopt = (sopt, βopt, [σopt]) = min
α∈Cα

J(α) , (5.19)

is solved using the algorithm described in Appendix F. The Monte Carlo solver is used with 1 000
independent realizations (mean-square convergence reached).

Figure 15 (left) displays the graph of the function β 7→ J(α(β)), where α(β) = (s(1), β, [σ(2)])
(used in Stage 3 of the optimization algorithm described in Appendix F) and Figure 2 (right)

displays the graph of the diagonal entries of the function k 7→ [c
opt
n ]kk , where [c

opt
n ] = [σopt]T [σopt]

corresponds to the optimal value [σopt] of [σ] (see Eq. (3.16)). For the sake of limiting the number

of figures, the extra diagonal entries of [copt
n ] are not displayed. The optimal values of s and β are

found to be sopt = 0.0103 and βopt = 0.0181.
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Figure 15. Graph of β 7→ J(α(β)), where α(β) = (s(1), β, [σ(2)]) (left), and of k 7→ [copt]kk (right, using
the log10 scale) for γ = 0.3 (solid line).

The four subfigures of Figure 16 summarize the results obtained using the SROM. These

subfigures pertain to the x2- and x3-accelerations at Obs51 and Obs34. Each of them displays

the graph of ν 7→ log10(|ôj(2πν)|) computed using the HDM (the target for the mean), that

of ν 7→ log10(|ô(n)j (2πν)|) computed using the nonlinear ROM, and the confidence region, with

a probability pc = 0.98, of the frequency sampled stochastic process ν 7→ log10(|Ô(n)
j (2πν)|)

constructed using the SROM. The upper envelope of the confidence region corresponds to the

quantile for the probability pc, and the lower envelope to the quantile for the probability 1− pc.
The reader can observe that the obtained results are very good, except for the x3-accelerations in

the small part [270 , 438] Hz of the frequency band [0 , 1550] Hz of the analysis. This prediction

can be improved by using a more sophisticated optimization algorithm than that used here for
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the identification of the hyperparameters. Nevertheless, it can be seen that the SROM allows the

generation of a confidence region which is not centered around the responses computed using the

ROM, but is approximatively well centered around the responses computed using the HDM. This

demonstrates the capability of the proposed method for accounting for second-order contributions.
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Figure 16. Graphs of ν 7→ log10(|ôj(2πν)|) computed using the HDM (thick lines) and ROM (thin lines),
and confidence region for pc = 0.98 (yellow region with red upper and red lower envelopes) of ν 7→

log10(|Ô
(n)
j (2πν)|) computed using the SROM, for the x2- and x3-accelerations at Obs51 (top left and

top right) and Obs34 (bottom left and bottom right).

6. APPLICATION TO A PARAMETERIZED NONLINEAR COMPUTATIONAL

STRUCTURAL DYNAMICS PROBLEM

Whereas Sections 4 and 5 have focused on two nonparametric problems, this section illustrates the

capabilities of the proposed nonparametric probabilistic method in the case of a µ-parametric HDM.

In particular, the objective of this section is to analyze the performance of a µ-parametric SROM

constructed as proposed in this paper at predicting a confidence region that contains the solution of

the µ-parametric HDM, for a quality-assessment value µqa of µ which does not belong to the subset

of training points {µ1, . . . ,µmµ
} of Cµ. To this effect, the reader is reminded that the training points

are used for constructing the ROB [V ], identifying αopt, and therefore, constructing the SROB W.

For this purpose, the simple example presented in Sections 4.1 to 4.6 is reused as described next.
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6.1. Description of the µ-parametric HDM

Consider again the linear static problem described in Section 4 with N = 1 000, and such that

Eq. (2.1) is rewritten as

[K] y(µ) = f(µ) . (6.1)

The vector y(µ) = (y1(µ), . . . , yN(µ)) belonging to RN represents the dimensionless displacement.

The matrix [K] belonging to M+
N is the stiffness matrix of the problem. The vector f(µ) =

(f1(µ), . . . , fN(µ)) belonging to RN is the dimensionless force with f1(µ) = fN (µ) = 0; it depends

on the real-valued parameter µ belonging to Cµ = [µmin , µmax ] ⊂ R, with with µmin = 0.5 and

µmax = 1.1. The matrix [K] and vector f(µ) are defined/constructed as described in Appendix I.

Eq. (6.1) has a unique solution which satisfies y1(µ) = yN(µ) = 0 (Dirichlet conditions), and

consequently, y(µ) satisfies the following equation

[B]T y(µ) = 0NCD
, [B]T [B] = [IN ] , (6.2)

where [B] belongs to MN,NCD
with NCD = 2 and is explicitly constructed as described in Appendix I.

For this example, the QoI (see Eq. (2.3)) is defined as oD(µ) = (oD1 (µ), . . . , oDN (µ)) — that is, the

vector in Rmo , with mo = N , which satisfies

oD(µ) = y(µ) ,

where y(µ) is the unique solution of Eq. (6.1).

6.2. Construction of the µ-parametric ROM

To construct the ROM, the parameter space Cµ is sampled at the following mµ = 3 points

µ1 = 0.5 , µ2 = 0.7 , µ3 = 1.1 .

For each sampled value µi, i = 1, 2, 3, the solution of Eq. (6.1) under the constraint (6.2) is

denoted by y(µi). The singular values of the resulting matrix [y(µ1) y(µ2) y(µ3)] ∈ MN,3 are

s1 = 5.9× 10−2, s2 = 6.1× 10−3, and s3 = 1.2× 10−15. In view of this, and in order to construct

a ROM with modeling errors, a ROB [V ] ∈ MN,1 (n = 1) is constructed using the right singular

vector associated with the largest singular value. Hence, this ROB satisfies

[V ]T [V ] = [I1] , [B]T [V ] = [02,1] ,

which is consistent with the choice [M ] = [IN ] for static problems. Then, the µ-parametric ROM

defined by Eqs. (2.6) and (2.7) is rewritten as

y(n)(µ) = [V ]q(µ) , (6.3)

[V ]T [K] [V ]q(µ) = [V ]T f(µ) . (6.4)

The corresponding approximation o(D,n)(µ) of the QoI o(D,n)(µ) = (o
(D,n)
1 (µ), . . . , o

(D,n)
N (µ)) is

written (see Eq. (2.9)) as

o(D,n)(µ) = y(n)(µ) . (6.5)

6.3. Performance of the µ-parametric ROM

To assess its accuracy for parametric computations, the constructed ROM is applied to predict the

solution of problem (6.1) at the unsampled parameter value µqa = 0.6. Figure 17 displays the graph

of j 7→ o
(D,n)
j (µ) computed using the constructed ROM, which reveals some expected inaccuracies

of the µ-parametric ROM.
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Figure 17. Graph of j 7→ oDj (µqa) computed using the HDM (solid line) and counterpart graph of j 7→

o
(D,n)
j (µqa) computed using the ROM (dashed line).

6.4. Construction of the µ-parametric SROM

From Eqs. (2.13) to (2.16), it follows that the µ-parametric SROM associated with Eqs. (6.3) to

(6.5) is obtained by substituting [V ] with the random matrix [W]. Consequently, y(n)(µ), q(µ), and

o(n)(µ), become the random vectors Y(n)(µ,α), Q(µ,α), and O(D,n)(µ,α), all of which depend

on the parameter µ and the hyperparameter α. Hence, the µ-parametric SROM can be written for

this problem as

Y(n)(µ,α) = [W]Q(µ,α) , (6.6)

[W]T [K] [W]Q(µ,α) = [W]T f(µ) , (6.7)

O(D,n)(µ,α) = Y(n)(µ,α) . (6.8)

6.5. Identification of the hyperparameter of the SROB

The hyperparameter α defined in Section 3.3.3 is written as α = (s, β, σ). In this case (n = 1), its

length is mα = 2 + n(n+ 1)/2 = 3. It is identified using the nonlinear LS method presented in

Section 2, after adaptation to the present example as described below.

Specifically, the cost function (2.17) is considered with

Jmean (α) =

∑mµ

i=1 ‖oD(µi)− E{O(D,n)(α, µi)}‖2∑mµ

i=1 ‖oD(µi)‖2
,

Jstd (α) =

∑mµ

i=1 ‖vD(µi)− v(D,n)(µi,α)‖2∑mµ

i=1 ‖vD(µi)‖2
, (6.9)

where vD(µi) = (vD1 (µi), . . . , v
D
mo

(µi)) is such that

vDj (µi) = γ |oDj (µi)− o
(D,n)
j (µi)| , j = 1, . . .mo ,

and γ > 0. In Eq. (6.9), the vector v(D,n)(µi,α) whose components are

(v
(D,n)
1 (µi,α), . . . , v

(D,n)
mo (µi,α)) is such that

v
(D,n)
j (µi,α) = {E{O(D,n)

j (µi,α)2} − (E{O(D,n)
j (µi,α)})2} }1/2 , j = 1, . . .mo . (6.10)
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The optimization problem is

αopt = (sopt, βopt, σopt) = min
α∈Cα

J(α) . (6.11)

The parameters γ and wJ introduced in Section 6.5 are fixed to γ = 0.8 and wJ = 0.5. The above

optimization problem is solved by using only stage 1 of the algorithm presented in Appendix F

(for n = 1, the matrix [σ] becomes a scalar σ and consequently, the hyperparameter α has only 3
components, namely, are s, β, and σ). The admissible set Cα is defined by Eq. (3.25) with ε0 = 0.01,

βd = 0.15, βu = 0.30, and σu = 20. For the interior-point algorithm, the initial values are selected

as follows: s0 = 0.017, β0 = 0.2, and σ0 = 1. The optimal value of s, β, and σ are found to be

sopt = 0.0869, βopt = 0.21, and σopt = 0.74.

6.6. Performance of the µ-parametric SROM at an unsampled parameter value

The stochastic solution of Eqs. (6.6) to (6.8), where α = αopt, is computed using the Monte Carlo

method with 1 000 independent realizations (for which the mean-square convergence is reached with

a reasonable accuracy).

For the unsampled parameter value µ = µqa = 0.6, Figure 18 (left) displays the graph

of j 7→ o
(D,n)
j (µqa) of the displacement field computed with the ROM, and that of j 7→

E{O(D,n)
j (µqa,α

opt)} of the mean function of the random displacement field computed using the

SROM. The reader can observe that the mean function computed using the SROM is relatively close

to that computed using the ROM. Figure 18 (right) displays the graph of j 7→ v
(D,n)
j (µqa,α

opt) of

the standard deviation (see Eq. (6.10)) of the random displacement field computed using the SROM.

Index j of the displacement

0 200 400 600 800 1000

D
is

p
la

c
e
m

e
n
t

×10-3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

ROM (dashed lines) and mean values computed 

with the SROM (solid lines)                 

Index j of the displacement

0 200 400 600 800 1000

D
is

p
la

c
e
m

e
n
t

×10-4

0

0.2

0.4

0.6

0.8

1

Standard deviation computed with the SROM     

Figure 18. Left figure: graph of j 7→ o
(D,n)
j (µ) computed using the ROM (dashed line) and that of j 7→

E{O
(D,n)
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opt)} of the mean function computed using the SROM (solid line) — Right figure: Graph

of j 7→ v
(D,n)
j (µ,qa α

opt) of the standard deviation computed using the SROM (solid line).

Finally, Figure 19 displays the graph of j 7→ oDj (µqa) computed using the HDM, that of

j 7→ o
(D,n)
j (µqa) computed using the ROM, and the confidence region for pc = 0.98 of j 7→

O
(D,n)
j (µqa,α

opt) computed using the SROM. It demonstrates a good quality of the µ-parametric

SROM

7. CONCLUSIONS

A nonparametric probabilistic approach for quantifying uncertainties in a given linear or nonlinear

High-Dimensional Model (HDM) for which a projection-based Reduced-Order Model (ROM) can
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Figure 19. Graph of j 7→ oDj (µqa) computed using the HDM (black solid line), that of j 7→ o
(D,n)
j (µqa)

computed using the ROM (black dashed line), and for pc = 0.98, confidence region (yellow region with red

upper and lower envelopes) of j 7→ O
(D,n)
j (µqa,α

opt) computed using the SROM.

be constructed is presented. The underlying probabilistic model is implemented directly in the

ROM. The associated stochastic model is characterized by a small number of hyperparameters

whose identification via the solution of a statistical inverse problem is computationally feasible. The

cost function describing this inverse problem is formulated with respect to a given target related

to given observations, which allows for specifying the level of uncertainties induced by various

model form uncertainties introduced during the construction of both the HDM and ROM. While this

approach for modeling uncertainties is developed for large-scale nonlinear computational models, it

is demonstrated in this paper using simple academic examples. These are nevertheless representative

of realistic problems, and have the advantage of being easy to reproduce by the interested reader. All

obtained numerical results highlight the potential of the proposed nonparametric stochastic model

of model uncertainties to control the statistical fluctuations of the random eigenvalues of a linear

operator, the statistical mean values and fluctuations of the random solution of a linear elliptic

problem, and those of a nonlinear dynamical problem.
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APPENDIX A: PROOF OF EQ. (3.27)

(i) The proof of equation [W (s, β, σ)] = [V ]E{[Hs(Z)]} is the following. Equation (3.19) yields

[W (s, β, σ)] = [V ]E{[Hs(Z)]}+ sE{[Z] [Hs(Z)]}. We then have to prove that E{[Z] [Hs(Z)]} =
[0n,n]. From Eqs. (3.21) to (3.24), random matrix [Z] can be written as [Z] = [z(G)] in which the

mapping [G] 7→ [z(G)] is defined on MN,n. We have

E{[Z] [Hs(Z)]} =

∫

MN,n

[z(G)] [Hs(z(G))] p[G]([G]) d[G] . (A.1)

Changing [G] in −[G] in the right-hand side of Eq. (A.1), and since p[G](−[G]) = p[G]([G]) (see

Eq. (D.59)), [z(−G)] = −[z(G)], [Hs(z(−G))] = [Hs(−z(G))] = [Hs(z(G))], Eq. (A.1) yields

E{[Z] [Hs(Z)]} = −
∫

MN,n

[z(G)] [Hs(z(G))] p[G]([G]) d[G] . (A.2)

Adding Eq. (A.1) with Eq. (A.2) yields E{[Z] [Hs(Z)]} = [0n,n].

(ii) The proof of equation [B]T [W (s, β, σ)] = [0NCD,n] is the following. Since [B]T [W] = [0NCD,n]
almost surely, and since E{[W]} exists, it can be concluded that E{[B]T [W]} = [0NCD,n], and

consequently, [B]T E{[W]} = [0NCD,n].

APPENDIX B: PROOFS OF EQ. (3.28) AND EQ. (3.29)

Since E{‖W −W (s, β, σ)‖2M} = E{tr{[W]T [M ] [W]}} − tr{[W (s, β, σ)]T [M ] [W (s, β, σ)]},

from Eq. (2.12), Eq. (2.11) and (3.26), it can be deduced that

varM
W
(s, β, σ) = n− ‖W (s, β, σ)‖2M , ∀ s ≥ 0 , β > 0 , [σ] ∈ Mu

n . (B.1)

Since varM
W
(s, β, σ) ≥ 0, Eq. (B.1) yields ‖W (s, β, σ)‖2M ≤ n, which proves the first equation

in Eq. (3.28). For s = 0, Eq. (B.1) yields varM
W
(0, β, σ) = n− ‖W (0, β, σ)‖2M and since

[W (0, β, σ)]T [M ] [W (0, β, σ)] = [In], it can be deduced that varM
W
(0, β, σ) = 0, which proves the

first equation in Eq. (3.29). From Eqs. (3.27) and (3.1), we can write

‖W (s, β, σ)‖2M = ‖E{Hs(Z)}‖2F . (B.2)

It can be seen that,

s → +∞ , E{[Hs(Z)]} ∼ 1

s
[J(β, σ)] , ∀β > 0 , [σ] ∈ Mu

n , (B.3)

in which [J(β, σ)] = E{([Z]T [M ] [Z])−1/2} is a matrix in M+
n depending on β and [σ] (but

independent of s) such that ‖J(β, σ)‖F < +∞. Using Eqs. (B.2) and (B.3) yields

s → +∞ , ‖W (s, β, σ)‖2M ∼ 1

s2
‖J(β, σ)}‖2F , ∀β > 0 , [σ] ∈ Mu

n . (B.4)

Eqs. (B.1) and (B.4) yield

s → +∞ , varM
W
(s, β, σ) ∼ n− 1

s2
‖J(β, σ)}‖2F , ∀β > 0 , [σ] ∈ Mu

n . (B.5)

From Eq. (B.5), it can be deduced the second equation in Eq. (3.29) and that the mapping

s 7→ varM
W
(s, β, σ) is an increasing function that is asymptotic to n.
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APPENDIX C: PROOF OF EQ. (3.30)

For all β > 0 and for all [σ] in Mu
n, Eqs. (3.19) and (3.20) yield

lim
s→+∞

[W(s, β, σ)] = [Z]([Z]T [M ] [Z])−1/2 a.s. (C.1)

We have ≪ [W(s, β, σ)] , [V ] ≫M= tr{[W(s, β, σ)]T [M ] [V ]} = tr{[V ]T [M ] [W(s, β, σ)]} and

consequently, from Eq. (C.1), it can be deduced that lims→+∞ ≪ [W(s, β, σ)] , [V ] ≫M=
tr{[a] [S]}, in which [a] = [V ]T [M ] [Z] is a random skew-symmetric matrix (see Section 3.1)

and where [S] = ([Z]T [M ] [Z])−1/2 is a random symmetric matrix. Since the trace of the

product of a skew-symmetric matrix with a symmetric one is zero, we obtain lims→+∞ ≪
[W(s, β, σ)] , [V ] ≫M= 0.

APPENDIX D: CONTINUOUS INTERPRETATION OF THE SROB AND CONSTRUCTION

OF THE RANDOM GENERATOR OF RANDOM MATRIX [G(β)]

In this appendix, we present a continuous interpretation of the SROB constructed in Section 3.3 and,

in Section D.5, we detail the generator of independent realizations for random matrix [G(β)].

D.1. Computational SROB to be deduced from a continuous SROB

The problem is to give the continuous version of the following computational SROB [W] that is

defined by the following equations,

[W] = Rs,V ([Z]) = ([V ] + s [Z]) [Hs(Z)] , (D.1)

[Hs(Z)] = ([In] + s2[Z]T [M ] [Z])−1/2 , (D.2)

[Z] = [A]− [V ] [D] , (D.3)

[D] = ([V ]T [M ] [A] + [A]T [M ] [V ])/2 , (D.4)

[A] = [U]− [B] {[B]T [U]} , (D.5)

[U] = [G(β)] [σ] . (D.6)

in which the random matrix [G(β)] is constructed by using the stochastic model presented in this

Appendix.

D.2. Introduction of a continuous ROB

In this section, we introduce a continuous ROB corresponding to the computational ROB

[V ] ∈ SN,n ⊂ SN,n such that [V ]T [M ] [V ] = [In] and [B]T [V ] = [0NCD,n], in which n ≥ 1 is the

dimension of the ROB, [M ] is a given matrix in M+
N , and [B] is a given matrix in MN,NCD

such that

[B]T [B] = [INCD
]. In order to simplify the presentation, we consider a continuous ROB made up of

Rm-valued fields and constraint equations defined by zero Dirichlet conditions. The extension to

general constraint equations is straightforward.

(i) Notations. Let d ≥ 1 be an integer. Let x = (x1, . . . , xd) be the generating point of an open

bounded domain Ω ⊂ Rd and let dx = dx1 . . . dxd be the Lebesgue measure. Let x 7→ ρ(x) be

a given bounded function on Ω with valued in ]0 ,+∞[. Let m ≥ 1 be an integer and let L2 :=
L2
ρ dx(Ω,R

m) be the space of all the Rm-valued functions x 7→ v(x) = (v1(x), . . . , vm(x)) that are

square integrable on Ω with respect to the measure ρ(x) dx, equipped with the usual inner product

and the associated norm,

< u , v >L2=

∫

Ω

u(x) · v(x) ρ(x) dx , ‖v‖L2 = {< v , v >L2}1/2 , (D.7)
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in which u(x) · v(x) =
∑m

ℓ=1 uℓ(x) vℓ(x).

(ii) Continuous ROB. The continuous ROB is represented by the field x 7→ [V(x)] = [v1(x) . . . vn(x)]
defined on Ω with values in Mm,n (for fixed x, the n columns of [V(x)] are the n vectors

v1(x), . . . , vn(x)). It is assumed that, for all k in {1, . . . , n}, function vk belongs to a subset Cad ⊂ L2,

which is such that the trace of vk on the boundary ∂Ω of Ω exits (often, Cad is a Sobolev space such

as Hp
ρ dx(Ω,R

m) with p ≥ 1) . Let [Cad] be the corresponding subset of functions x 7→ [V(x)] defined

on Ω with values in Mm,n, such that vk belongs to Cad for all k,

[Cad] = {x 7→ [V(x)] = [v1(x) . . . vn(x)] : Ω → Mm,n , vk ∈ Cad ⊂ L2 , ∀k = 1, . . . , n} . (D.8)

Therefore, if [V ] belongs to [Cad], then the trace [V ]|∂Ω exists. In addition, it is assumed that

{v1, . . . , vn} constitutes an orthonormal family of functions in L2, that is to say, < vk , vk′

>L2 =
δkk′ . Consequently, we have

∫

Ω

[V(x)]T [V(x)] ρ(x) dx = [In] . (D.9)

The manifold S∞
m,n is defined as the set of all the functions x 7→ [V(x)] belonging to [Cad] and

verifying Eq. (D.9), that is to say,

S∞
m,n = { [V ] ∈ [Cad] ,

∫

Ω

[V(x)]T [V(x)] ρ(x) dx = [In] } . (D.10)

(iii) Constraint equations. As explained before, we consider the simple case for which a zero

Dirichlet condition is given on a part Γ0 of the boundary ∂Ω of Ω, that is to say, vk(x) = 0 for

all x in Γ0 and for all k = 1, . . . , n. The constraint equations can then be rewritten, for [V ] ∈ [Cad],
as

[V(x)] = [0m,n] , ∀ x ∈ Γ0 . (D.11)

(iv) Definition of the manifold S∞
m,n ⊂ S∞

m,n for the continuous ROB. The manifold S∞
m,n is defined

as the subset of S∞
m,n such that Eq. (D.11) holds:

S∞
m,n = { [V ] ∈ S∞

m,n , [V(x)] = [0m,n] , ∀ x ∈ Γ0 } ⊂ S∞
m,n . (D.12)

(v) Tangent vector space TVS
∞
m,n to S∞

m,n at the point [V ] in S∞
m,n. Such a tangent vector space is

defined as the set of all the functions [Z] = {x 7→ [Z(x)]} belonging to [Cad] such that

∫

Ω

([V(x)]T [Z(x)] + [Z(x)]T [V(x)]) ρ(x) dx = [0n,n] . (D.13)

D.3. Construction of the stochastic model of a continuous SROB

(i) Continuous SROB. For a given continuous ROB that is represented by the deterministic field

[V ] = {x 7→ [V(x)]} belonging to manifold S∞
m,n, the associated continuous SROB consists in

introducing a random field [W ] = {[W(x)], x ∈ Ω} that is a random variable defined on probability

space (Θ, T ,P) with values in S∞
m,n. Consequently, [W ] is a random field belonging to [Cad] almost

surely (a.s), which admits a trace on Γ0 a.s, and which is such that

∫

Ω

[W(x)]T [W(x)] ρ(x) dx = [In] a.s , [W(x)] = [01,n] , ∀ x ∈ Γ0 a.s . (D.14)

The stochastic representation of random field [W ] is then defined by

[W(x)] = ([V(x)] + s [Z(x)]) [Hs(Z)] , ∀ x ∈ Ω , (D.15)

[Hs(Z)] = ([In] + s2
∫

Ω

[Z(x)]T [Z(x)] ρ(x) dx)−1/2 , (D.16)
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in which [Z ] = {[Z(x)], x ∈ Ω} is a random field defined on probability space (Θ, T ,P), with

values in Mm,n, which belongs to tangent vector space TVS
∞
m,n a.s, and which is such that

[Z(x)] = [0m,n] , ∀ x ∈ Γ0 a.s . (D.17)

The random matrix [Hs(Z)] is with values in M+
n . Using Eq. (D.15) with Eqs. (D.9), (D.13), and

(D.16) yield the first equation in Eq. (D.14). Taking into account Eqs. (D.11) and (D.17), Eq. (D.15)

yields the second equation in Eq. (D.14). Random field {[Z(x)], x ∈ Ω} can be written as

[Z(x)] = [A(x)]− [V(x)] [D(A)] , ∀ x ∈ Ω , (D.18)

[D(A)] =

∫

Ω

1

2
([V(x)]T [A(x)] + [A(x)]T [V(x)]) ρ(x) dx , (D.19)

in which [D(A)] is a random matrix with values in MS
n and where [A] = {[A(x)], x ∈ Ω} is a

random field defined on probability space (Θ, T ,P), whose trajectories belong to [Cad] a.s, and are

such that

[A(x)] = [0m,n] , ∀ x ∈ Γ0 a.s . (D.20)

It should be noted that random field [A] does not belong to tangent vector space TVS
∞
m,n.

Substituting Eq. (D.18) with (D.19) into the left-hand side of Eq. (D.13) yields that Eq. (D.13) is

satisfied and consequently, [Z] belongs to tangent vector space TVS
∞
m,n a.s.

(ii) Construction of random field [A] for obtaining the required regularity of the trajectories and

the Dirichlet conditions. The regularity of the trajectories of random field [A] is defined by the

regularity of functions in [Cad]. In addition, the trajectories must verify the zero Dirichlet condition

given by Eq. (D.20). In order to construct a general theory, we propose the following approach. Let

Ω = Ω ∪ ∂Ω be the closure of open bounded domain Ω for which its boundary ∂Ω = Γ0 ∪ Γ1 with

Γ0 ∩ Γ1 = ∅ is assumed to be smooth. Let be Ω0 = Ω\Γ0. Let x 7→ 1Ω0
(x) be the function defined

on Ω = Ω0 ∪ Γ0 such that 1Ω0
(x) = 1 for all x in Ω0 and 1Ω0

(x) = 0 for all x in Γ0. Note that

function 1Ω0
is not continuous in Ω. We propose to construct the random field [A ] as

[A(x)] = 1
εr
Ω0

(x) [U(x)] , ∀ x ∈ Ω , (D.21)

in which

• x 7→ 1
εr
Ω0

(x) is a real-valued function defined on Ω, which corresponds to a regularization

of function x 7→ 1Ω0
(x), and where εr > 0 is a small parameter that allows for driving the

regularization. Let V0
εr be a neighborhood of Γ0, controlled by εr, which is defined as a

subset of Ω, such that Γ0 ⊂ V0
εr , and detailed in the Remark given after. The regularization is

constructed in order that 1
εr
Ω0

(x) is equal (in the meaning of the regularization) to 0 if x ∈ Γ0,

is equal to 1 if x ∈ Ω\V0
εr , is such that function 1

εr
Ω0

is indefinitely continuously differentiable

on Ω, and is such that, if εr → 0, then 1
εr
Ω0

→ 1Ω0
in L1.

• [U ] = {[U(x)], x ∈ Rd} is a random field defined on probability space (Θ, T ,P), indexed

by Rd, with values in Mm,n, which will be constructed after in order that its trajectories

are indefinitely continuously differentiable functions on Rd a.s. The random field

{1Ω0
(x) [U(x)], x ∈ Ω} belongs to [Cad] but the trajectories are discontinuous on Γ0. This

is the reason why the regularization 1
εr
Ω0

of 1Ω0
has been introduced (due to the presence

of a the zero Dirichlet condition on Γ0). For εr sufficiently small, the trajectories of

{1εr
Ω0

(x) [U(x)], x ∈ Ω} are indefinitely continuously differentiable on Ω and are such that

[A(x)] ≃ [0m,n] for all x ∈ Γ0. Consequently, for a sufficiently small value of εr > 0, random

field [A] defined by Eq. (D.21), verifies the zero Dirichlet condition on Γ0 (defined by

Eq. (D.20)) and its trajectories (that are indefinitely continuous differentiable on Ω) thus

belongs to [Cad].

Accepted for publication in International Journal for Numerical Methods in Engineering, 30 May 2016 (2016)
nmeauth.cls



40 C. SOIZE AND C. FARHAT

Remark about the construction of the regularization. This problem is relatively difficult and there

are several possible methods. Hereinafter, we propose an approach for which the numerical cost is

low.

• Let x 7→ 1
±
Ω(x) be the function defined almost everywhere on Rd such that 1

±
Ω(x) = 1 for

all x in Ω and 1
±
Ω(x) = −1 for all x in Rd\Ω. The first step consists in introducing a usual

regularization 1
εr
Ω of function 1

±
Ω , which can be constructed, for all x in Rd, as

1
εr
Ω (x) = (pεr ⋆ 1

±
Ω)(x) =

∫

Rd

pεr(y)1
±
Ω(x − y) dy = E{1±

Ω(x − Yεr )} , (D.22)

in which Yεr = (Y εr
1 , . . . , Y εr

d ) is the Gaussian Rd-valued random variable whose probability

density function with respect to dy is written as

pεr (y) =
1

εdr(2π)
d/2

exp(−‖y‖2
2εr2

) . (D.23)

Therefore, the real-valued random variables Y εr
1 , . . . , Y εr

d are independent, Gaussian,

centered, and with variance ε2r. Taking into account Eq. (D.22), it should be noted that, for all

fixed x in Rd, 1
εr
Ω (x) can be estimated by the Monte Carlo method.

• For εr sufficiently small, let V±
εr be the open neighborhood of ∂Ω in Rd associated with

the regularization such that (1) 1
εr
Ω (x) ∼ 0 if x ∈ ∂Ω, (2) 1

εr
Ω (x) ∼ 1 if x ∈ Ω\V+

εr in which

V+
εr = Ω ∩ V±

εr , and (3) x 7→ 1
εr
Ω (x) is indefinitely continuously differentiable on Ω. Note

that ∂Ω ⊂ V+
εr . Let V0

εr be the subset of V+
εr such that Γ0 ⊂ V0

εr and which is defined as a

neighborhood of Γ0.

• The regularization function x 7→ 1
εr
Ω0

(x) on Ω of function x 7→ 1Ω0
(x) on Ω is constructed as

follows,

1
εr
Ω0

(x) ∼ 1 , ∀ x ∈ Ω\V0
εr , 1

εr
Ω0

(x) = 1
εr
Ω (x) , ∀ x ∈ V0

εr . (D.24)

Consequently, 1
εr
Ω0

(x) ∼ 0 if x ∈ Γ0.

(iii) Construction of random field [U ]. Random field [U ] = [U1 . . .Un] indexed by Rd values in

Mm,n is constructed as a second-order, centered, mean-square homogeneous (stationary), and mean-

square continuous random field for which the fourth-order tensor-valued autocorrelation function

(x, x′) 7→ {RU(x, x′)}ℓkℓ′k′ = E{[U(x)]ℓk[U(x′)]ℓ′k′} that is defined on Rd ×Rd, is written, for ℓ
and ℓ′ in {1, . . . ,m} and for k and k′ in {1, . . . , n}, as

{RU (x, x′)}ℓkℓ′k′ = R(x − x′;β) δℓℓ′ [cn]kk′ , (x, x′) ∈ Rd ×Rd , (D.25)

in which [cn] = [σ]T [σ] ∈ M+
n with [σ] ∈ Mu

n the upper triangular matrix with positive diagonal

entries (see Eq. (3.16)). The real function η 7→ R(η;β) is an autocorrelation-type function which is

constructed to be indefinitely continuously differentiable on Rd and to go to zero as ‖η‖ goes to +∞.

Such a condition will be fulfilled thanks to the construction of the stochastic model of the random

field {Q(x)], x ∈ Rd} presented hereinafter (see Paragraph (iv)).The choice defined by Eq. (D.25)

for the autocorrelation function of random field [U ] has voluntary been chosen as simple in order

to be in capability to use the SROM for very large values of N . This algebraic representation for

RU (x, x′) implies the following properties:

• Matrix [cn] allows for controlling the correlation between the n random fields U1, . . .Un with

values in Rm, using n(n+ 1)/2 hyperparameters (upper triangular matrix [σ]).
• The m components {Uk

1 (x), x ∈ Rd}, . . . , {Uk
m(x), x ∈ Rd} of Rm-valued random field

{Uk(x), x ∈ Rd} are not correlated. Such a choice is mainly done in order to not increase

the number of hyperparameters in the stochastic modeling.
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• The real-valued function η 7→ R(η;β) allows for controlling the real-valued autocorrelation

function of each Rm-valued random field {Uk(x), x ∈ Rd}, using only one real-valued

hyperparameter β that will be related to the spatial correlation length of the field. With the

proposed construction, this autocorrelation function is the same for each k.

• There is a version of random field [U ] whose trajectories are indefinitely continuously

differentiable functions on Rd a.s. Consequently, there is a version {[W(x)], x ∈ Ω} of the

SROB for which its trajectories belong to [Cad] and verify the zero Dirichlet condition on Γ0,

and therefore, belong to manifold S∞
m,n.

(iv) Normalization of random field [U ]. Taking into account Eq. (D.25), random field [U ] can be

rewritten as

[U(x)] = [G(x)] [σ] , ∀ x ∈ Rd , (D.26)

in which {[G(x)], x ∈ Rd} is a random field defined on probability space (Θ, T ,P), indexed by Rd,

with values in Mm,n, which is a second-order, centered, and mean-square homogeneous random

field such that its fourth-order tensor-valued autocorrelation function (x, x′) 7→ {RG(x, x′)}ℓkℓ′k′ =
E{[G(x)]ℓk[G(x′)]ℓ′k′} defined on Rd ×Rd, is written, for ℓ and ℓ′ in {1, . . . ,m} and for k and k′

in {1, . . . , n}, as

{RG(x, x′)}ℓkℓ′k′ = R(x − x′;β) δℓℓ′ δkk′ , (x, x′) ∈ Rd ×Rd . (D.27)

The stochastic model of random field {[G(x)], x ∈ Rd} is constructed in order that:

• For all ℓ in {1, . . . ,m} and for all k in {1, . . . , n}, the random fields {[G(x)]ℓk, x ∈ Rd} are

independent copies of a random field {Q(x), x ∈ Rd} defined on probability space (Θ, T ,P),
indexed by Rd, with values in R.

• The random field {Q(x), x ∈ Rd} (that is defined hereinafter in Paragraph (v)) is second-order,

centered, mean-square homogeneous, mean-square continuous, and there there is a version of

random field Q whose trajectories are indefinitely continuously differentiable functions on Rd

a.s.

Taking into account Eq. (D.27), it can be deduced that the real-valued autocorrelation function

(x, x′) 7→ RQ(x, x′) = E{Q(x)Q(x′)} defined on Rd ×Rd, is written,

[RQ(x, x′)] = R(x − x′;β) , (x, x′) ∈ Rd ×Rd . (D.28)

(v) Stochastic modeling of random field Q. It is recalled that the objective is a construction of a

SROB in the context of the nonparametric probabilistic approach of modeling errors and not the

construction of a parametric probabilistic model of uncertain physical parameters of the HDM.

This means that we have the freedom to choose an adapted stochastic model.

(v-1) Explicit construction of autocorrelation function R(η;β) of field Q. For all i in {1, . . . , d}, let

Li > 0 be the maximum length of domain Ω in direction i, defined by

Li = max
(x,x′)∈Ω×Ω

|xi − x′
i| . (D.29)

The algebraic model of autocorrelation function η 7→ R(η;β) defined on Rd, with values in R, and

depending on hyperparameter β, is chosen as

R(η;β) = ζ × r1(η1;β)× . . .× rd(ηd;β) , η = (η1, . . . , ηd) , (D.30)

in which ζ > 0 is a constant of normalization (that will be defined after), where for all i = 1, . . . , d,

ri(0;β) = 1 ; ri(ηi;β) =
4L2

i

π2η2i
sin2

(
πηi
2Li

)
for ηi 6= 0 , (D.31)

and where L1, . . . ,Ld are positive real numbers depending on η, which are defined by

Li = β Li , i = 1, . . . , d , β > 0 . (D.32)
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Therefore, there exists a power spectral density function k = (k1, . . . , kd) 7→ S(k;β), integrable

from Rd into R+, which is written as

S(k;β) = s1(k1;β)× . . .× sd(kd;β) , (D.33)

in which, for all i = 1, . . . , d, the function ki 7→ si(ki;β) from R into R+ is written as

si(ki;β) =
Li

π
χ(ki

Li

π
) . (D.34)

In Eq. (D.34), the function κ 7→ χ(κ) is continuous from R into R+, has a compact support [−1 , 1],
and is such that

χ(0) = 1 ; χ(−κ) = χ(κ) ; χ(κ) = 1− κ for κ ∈ [0 , 1] . (D.35)

Consequently, k 7→ S(k;β) is a function with a compact support

suppS(. ;β) = [−K1,K1]× . . .× [−Kd,Kd] , Ki =
π

Li
=

π

β Li
. (D.36)

The spatial correlation length LQ
i of random field Q, relative to the coordinate xi, is written as

LQ
i =

∫ +∞

0

ri(ηi) dηi =
2π

2
si(0;β) = Li = β Li . (D.37)

Consequently, the parameters L1, . . . ,Ld represent the spatial correlation lengths of random field

Q. Since Li = β Li, hyperparameter β allows for controlling these spatial correlation lengths.

(v-2) Regularity of the trajectories of random field Q. Using the Kolmogorov lemma, it can be

deduced that the random field Q admits a version whose trajectories are indefinitely continuously

differentiable functions on Rd a.s.

(v-3) Choice of a representation of random field Q adapted to the numerical simulation for large

values of No. The first question that has to be analyzed is the choice of a representation for Q, which

is adapted to the problem that we have to solve under the specificities given hereinafter.

• A major constraint is related to the fact that we have to construct numerical simulations of

random field Q for a set of points x1, . . . , xNo belonging to Ω ⊂ Rd for which No can be very

large, that is to say, we have to construct a generator of independent realizations of a random

vector Q = (Q(x1), . . . ,Q(xNo) with values in RNo .

• The construction of a generator of independent realizations of random field Q requires the

construction of it probability law (which can be defined, for instance, by introducing the

system of marginal probability distributions of Q). The choice of the probability law for Q
is not crucial, because we are interested in generating randomness for which only the spatial

correlation length (represented by hyperparameter β) has to be controlled. Consequently, we

are interested in constructing a representation of random field Q, which is very efficient for

the numerical simulations in high dimension (large value of No), without imposing a given

probability law for random field Q. Nevertheless, Q must be a second-order, mean-square

homogeneous (mean-square stationary), centered random field for which its autocorrelation

function is defined by Eqs. (D.30) to (D.32).

• In this framework for which there is no specification concerning the probability law, it could

be assumed that Q is a Gaussian random field in order to construct a representation of Q
(or more precisely, a representation for its discretized form Q). A possible candidate for

such a representation of Q would be Q = [LQ]G in which the lower triangular (No ×No)
real matrix [LQ] would come from the Cholesky factorization, [CQ] = [LQ] [LQ]

T , of the
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covariance matrix [CQ] ∈ M+
No

of the centered random vector Q. Matrix [CQ] is such that

[CQ]joj′o = R(xjo − xj′o), and G would be the second-order centered Gaussian vector with

values in RNo , for which the covariance matrix is [INo
). For a large value of No, such a

representation of Q could not be used because [CQ] is a full big matrix. It should be noted

that, from a numerical point of view, the construction of a Karhunen-Loeve expansion of

random field Q, would be equivalent to the principal component analysis of random vector

Q, which would consist in effectively constructing the big matrix [CQ] and then, in extracting

the dominant eigensubspace of [CQ] using for instance the subspace iteration method or the

Krylov iteration method. For large value of N0, such a method could be very numerically

expansive and would require a very large core memory.

• Always assuming that Q could be a Gaussian random field, another representation could be

deduced from the use of the Shinozuka representation [68, 69] of random field Q, which

is a particular case of integral representations involving the stochastic spectral measure of

random field Q, and for which a detailed development with additional mathematical properties

related to convergence of the representation can be found in [70]. Nevertheless, for d ≥ 2 (in

particular, for d = 3) such a representation would be very efficient if the multidimensional Fast

Fourier Transform (FFT) could be used. In our case, since the set x1, . . . , xNo of given points

in Ω does not constitute a structured mesh corresponding to a constant spatial sampling step

in each direction, the multidimensional FFT cannot be used. However, as the autocorrelation

function of Q is assumed to be separated (see Eq. (D.30)) and as the probability law of random

field Q can be arbitrary (and consequently, can be non-Gaussian), we propose to generate Q
in writing it as

Q(x) =
√

ζ ×Q1(x1)× . . .×Qd(xd) , ∀ x = (x1, . . . , xd) ∈ Rd , (D.38)

in which Q1, . . . ,Qd are d independent Gaussian real-valued stochastic processes indexed

by R. This stochastic model allows for decreasing the numerical cost for the generation of

independent realizations of random field Q at points x1, . . . , xNo for very large large values of

No. For i fixed in {1, . . . , d}, Qi is a Gaussian, second-order, mean-square stationary, centered

stochastic process for which its autocorrelation function is

ri(ηi;β) = E{Qi(xi + ηi)Qi(xi)} , ∀xi ∈ R , ∀ ηi ∈ R , (D.39)

which is defined by Eqs. (D.31) and (D.32), and for which the correlation length is Li = β Li.

The power spectral density function of stochastic process Qi is the function ki 7→ si(ki;β)
defined by Eqs. (D.34), with compact support [−Ki,Ki] with Ki = π/Li = π/(β Li), which

is such that

ri(ηi;β) =

∫

R

ei kiηi si(ki;β) dki , ∀ ηi ∈ R . (D.40)

There exists a version of Gaussian stochastic process Qi for which the trajectories are

indefinitely continuously differentiable functions on R a.s. We can then use the Shinozuka

representation for each Gaussian stochastic process Qi indexed by R. For the unstructured

mesh that is considered, the algorithm complexity that was in Nd
o is now in No. For the

numerical calculation, the series of the Shinozuka representation is truncated to a finite

number νp of terms.

(v-4) Representation of random field Qi. Let p ≥ 1 be an integer and let νp = 2 p. Let κ1, . . . , κνp

be the sampling points of the interval [−1 , 1] with the constant step ∆ = 2/νp such that

κν = −1 +

(
ν − 1

2

)
2

νp
, ν = 1, . . . , νp . (D.41)

Let Σ1, . . . ,Σνp be the positive real numbers defined by

Σν =
2

νp
χ(κν) , ν = 1, . . . , νp , (D.42)
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in which κ 7→ χ(κ) is defined by Eq. (D.35). We then have the following νp-order representation

Qνp
i of Qi,

Qνp
i (xi) =

νp∑

ν=1

√
2Σν

√
− logΨi

ν cos{Φi
ν +

π

Li
κν xi} , ∀xi ∈ R , (D.43)

in which {Ψi
1, . . . ,Ψ

i
νp} is a set of independent uniform random variables on [0 , 1], where

{Φi
1, . . . ,Φ

i
νp} is a set of independent uniform random variables on [0 , 2π], and where the

2 d νp random variables {Ψ1
1, . . . ,Ψ

1
νp}, . . . , {Ψd

1, . . . ,Ψ
d
νp}, {Φ1

1, . . . ,Φ
1
νp}, . . . , {Φd

1, . . . ,Φ
d
νp} are

independent. For any value of νp = 2 p fixed, and for all i in {1, . . . , d}, the stochastic process

{Qνp
i (xi), xi ∈ R} is Gaussian and if νp goes to +∞, then the sequence {RQ

νp

i
}νp of autocorrelation

functions goes to autocorrelation function ri(. ;β) of stochastic process {Qi(xi), xi ∈ R}.

D.4. Finite element discretization

(i) Notations for the finite element discretization. Let x1, . . . , xNo be the No nodes of the finite

element mesh of domain Ω. The numbering of the nodes is assumed to be such that the first

NCD < No nodes, x1, . . . , xNCD , correspond to all the nodes that belong to Γ0 ⊂ ∂Ω on which the zero

Dirichlet condition is written. Let [N (x)] be the row matrix in Mm,N of the assembled interpolation

functions of all the finite elements. Let N = m×No be the number of degrees of freedom (before

applying the zeros Dirichlet conditions). The finite element discretization of any continuous function

x 7→ u(x) = (u1(x), . . . , um(x)) from Ω into Rm (which does not verify the Dirichlet condition on

Γ0), is the function x 7→ u(N)(x) such that

u(N)(x) = [N (x)]U , ∀ x ∈ Ω , (D.44)

in which U = (u1, . . . , uN ) is the vector in RN of the N DOFs uj such that

uj = uℓ(xjo) , j ∈ {1, . . . , N} , (D.45)

in which the DOF j = (ℓ, jo) is associated with the component ℓ of node jo. Let us consider another

continuous function x 7→ a(x) = (a1(x), . . . , am(x)) from Ω into Rm , which verifies the Dirichlet

condition a(x) = 0 for all x in Γ0. Let a(N)(x) = [N (x)]A be its finite element discretization in

which A = (a1, . . . , aN) ∈ RN with aj = aℓ(xjo). Consequently, we have

aj = 0 , ∀ j ∈ {1, . . . , NCD} . (D.46)

The parameterization of A ∈ RN that satisfies the Dirichlet conditions defined by Eq. (D.46),

expressed as a function of any vector U in RN can then be written as

A = U− [B] [B]TU , ∀U ∈ RN , (D.47)

in which [B] is the matrix in MN,NCD
such that [B]ji = δji for all j ∈ {1, . . . , N} and i ∈

{1, . . . , NCD}. It can be seen that

[B]T [B] = [INCD
] . (D.48)

(ii) Finite element discretization of the continuous ROB. Introducing the matrix [V ] = [v1...vn] ∈
MN,n with vk = (vk1 , . . . , v

k
N ) ∈ RN , the finite element approximation, x 7→ [V(N)(x)], of

continuous ROB x 7→ [V(x)] is written as

[V(N)(x)] = [N (x)] [V ] , [V ] ∈ MN,n , ∀ x ∈ Ω . (D.49)

We have now to verify that, if [V ] belongs to S∞
m,n, then [V ] belongs to SN,n. Substituting Eq. (D.49)

into Eq. (D.9) yields

[V ]T [M ] [V ] = [In] , [M ] =

∫

Ω

[N (x)]T [N (x)] ρ(x) dx ∈ M+
n . (D.50)
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Equation (D.11) yields [V(x1)] = . . . = [V(xNCD)] = [0m,n]. Since vk
j = vkℓ (x

jo) with j = (ℓ, jo) and

as [B]ji = δji for all j ∈ {1, . . . , N} and i ∈ {1, . . . , NCD}, it can be deduced that

[B]T [V ] = [0NCD,n] . (D.51)

Equations (D.50) and (D.51) show that the computational ROB belongs to SN,n (see Eq. (3.8)). The

finite element approximation of a field x 7→ [Z(x)] continuous from Ω into Mm,n, which belongs to

tangent vector space TVS
∞
m,n, is written as

[Z(N)(x)] = [N (x)] [Z] , [Z] ∈ MN,n , ∀ x ∈ Ω . (D.52)

We have to verify that [Z] belongs to tangent vector space TV SN,n to SN,n at the point [V ] in SN,n.

Substituting Eqs. (D.49) and (D.52) into Eq. (D.13) yields

[V ]T [M ] [Z] + [Z]T [M ] [V ] = [0n,n] . (D.53)

Equation (D.53) shows that [Z] belongs to TV SN,n (see (3.2)).

(iii) Finite element discretization of the continuous SROB. Let {[F(x)], x ∈ Ω} be a random field

representing one of the random fields [W ], [Z ], [A], [U ], or [G] defined in Section D.3. The finite

element approximation of random field [F ] is written as

[F (N)(x)] = [N (x)] [F] , [F] ∈ MN,n , ∀ x ∈ Ω , (D.54)

in which [F] is the random matrix corresponding to the random matrices [W], [Z], [A], [U], or [G(β)]
that are in Eqs. (D.1) to (D.6). The finite element method is such that, for all j = 1, . . . , N and for

all k = 1, . . . , n, we have [F]jk = [F(xjo)]ℓk with j = (ℓ, jo). Substituting [Z(N)(x)] = [N (x)] [Z]

into Eq. (D.16) yields [Hs(Z
(N))] = [Hs(Z)] in which [Hs(Z)] is defined by Eq. (D.2).

Similarly, substituting [A(N)(x)] = [N (x)] [A] and [V(N)(x)] = [N (x)] [V ] into Eq. (D.19) yields

[D(A(N))] = [D] in which [D] is defined by Eq. (D.4). Taking x = xjo for jo = 1, . . . , No into

Eqs. (D.15), (D.18), and (D.26) yields Eqs. (D.1), (D.3), and (D.6). We have then proved that

the finite element discretization of the continuous SROB introduced above correspond to the

computational SROB constructed in Section 3.3. Nevertheless, we have to precise the construction

of the stochastic model of random matrix [G(β)].

(iv) Construction of random matrix [G(β)]. Random matrix [G(β)] with values in MN,n is such that,

for all ℓ = 1, . . . ,m, for all jo = 1, . . . , No, and for all k = 1, . . . , n,

[G(β)]jk = [G(xj0)]ℓk , j = (ℓ, jo) ∈ {1, . . . , N} , (D.55)

in which, for all ℓ in {1, . . . ,m} and for all k in {1, . . . , n}, the random fields {[G(x)]ℓk, x ∈ Rd} are

independent copies of a random field {Q(x), x ∈ Rd} defined by Eq. (D.38) in which the constant

of normalization is chosen such that

ζ =
1

N
. (D.56)

From Eqs. (D.27) and (D.55), it can be deduced that the covariance-type matrix [CN (β)] ∈ M+
N

introduced in Eq. (3.17) is written, for all ℓ and ℓ′ in {1, . . . ,m}, for all jo and j′o in {1, . . . , No},

and for j = (ℓ, jo) and j′ = (ℓ′, j′o) in {1, . . . , N}, as

[CN (β)]jj′ = R(xjo − xj′o ;β) δℓℓ′ , (D.57)

and consequently, [CN (β)]jj = R(0, β) that yields (taking into account Eqs. (D.30), (D.31), and

(D.56)):

tr[CN (β)] = 1 . (D.58)

Let d[G] = ΠN
j=1Π

n
k=1dGjk be the volume element on set MN,n in which dGjk is the Lebesgue

measure on R. Taking into account Eqs. (D.38), (D.55), and (D.43), it can easily be proved
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that the probability distribution of random matrix [G(β)] admits a probability density function

[G] 7→ p[G(β)]([G]) with respect to d[G], which is a mapping from MN,n into R+, which is not

Gaussian but which is such (using the property of independent copies introduced before and the fact

that Q1, . . . ,Qd are independent Gaussian random processes) that

p[G(β)](−[G]) = p[G(β)]([G]) , ∀ [G] ∈ MN,n . (D.59)

D.5. Algorithm for the generation of independent realizations of random matrix [G(β)]

Hereinafter, we detail the algorithm for the generation of independent realizations

[G(θ1;β)], . . . , [G(θνs ;β)] of random matrix [G(β)] following the theory presented in Sections D.2

to D.4.

Data:

d: dimension of bounded domain Ω.

m: dimension of the field discretized by the FEM.

N0: total number of nodes of the FE mesh of domain Ω.

N = mNo: total number of DOFs before applying the zero Dirichlet conditions.

x1, . . . , xNCD : NCD nodes of the FE mesh belonging to Γ0 ⊂ ∂Ω.

xNCD+1, . . . , xNo : No −NCD nodes of the FE mesh in domain Ω ∪ {∂Ω\Γ0}.

n: reduced-order dimension.

s: real-valued hyperparameter such as s > 0.

β: real-valued hyperparameter such as β > 0.

[σ]: matrix-valued hyperparameter such that [σ] ∈ Mu
n.

νp: sampling points of interval [−1 1] with νp = 2 p.

εr: regularization parameter such that εr > 0.

νs: number of independent realizations [G(θ1;β)], . . . , [G(θνs ;β)].

Pre-computation:

for i = 1 : d
Li = max(jo,j′o) |x

jo
i − x

j′o
i |.

Li = β Li.

end

for ν = 1 : νp
κν = −1 +

(
ν − 1

2

)
(2/νp).

Σν = 2
νp

χ(κν) with χ defined by Eq. (D.35).

end

for jo = 1 : No

1
εr
Ω (xjo) using Eq. (D.22).

end

Generator:

Initialization of the random generator for uniform random variables.

for ℓs = 1 : νs
for k = 1 : n

for ℓ = 1 : m
Independent realizations of Ψi,ℓk

ν (θℓs) on [0, 1] and Φi,ℓk
ν (θℓs) on [0, 2π] for i = 1, . . . , d
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and for ν = 1, . . . , νp.

for jo = 1 : No

Q1,ℓk
jo

(θℓs) =
∑νp

ν=1

√
2Σν

√
− logΨ1,ℓk

ν (θℓs) cos{Φ1,ℓk
ν (θℓs) +

π
L1

κν x
jo
1 }.

. . .

Qd,ℓk
jo

(θℓs) =
∑νp

ν=1

√
2Σν

√
− logΨd,ℓk

ν (θℓs) cos{Φd,ℓk
ν (θℓs) +

π
Ld

κν x
jo
d }.

Gℓk
jo
(θℓs) = (1/

√
N)×Qℓk

jo1
(θℓs)× . . .×Qℓk

jod
(θℓs).

Gεr ,ℓk
jo

(θℓs) = 1
εr
Ω (xjo)Gℓk

jo
(θℓs).

[G(θℓs ;β)]jk = Gεr ,ℓk
jo

(θℓs) with j = (ℓ, jo) ∈ {1, . . . , N}.

end

end

end

end

Remarks.

• Eq. (D.6) is kept in order to exactly impose the zero Dirichlet condition at the nodes located

in Γ0. Consequently, in the generator given hereinbefore, random field [U ] has been replaced

(and it is perfectly licit) by the regularization [Gεr ] of [G].
• The realizations [G(θℓs ;β)] for ℓs = 1, . . . , νs are not stored in order to avoid core memory

problems. The loop in ℓs has been introduced for clarifying the sequence related to the

initialization of the generator for uniform random variables, but, in practice, this loop is the

most external in the code that solves the SROM.

APPENDIX E: DESCRIPTION OF THE LINEAR STATIC SYSTEM USED AS HDM FOR THE

EXAMPLE OF SECTION 4

In this appendix, we describe the linear static computational model defined by Eqs. (4.1) and (4.2)

for N = 1 000 and NCD = 2. Let x1, . . . , xN be the points in [0 , 1] such that xj = (j − 1)/(N − 1).
Let λ1, . . . , λN be the positive real numbers such that λk = 4π2k2, and let [λ] be the diagonal matrix

in M+
N such that [λ]kk′ = λkδkk′ . Let [e] be the square matrix in MN such that [e]jk = sin(kπxj).

Let [Φ] = [ϕ1 . . .ϕN ] be the orthogonal matrix in MN obtained by the QR decomposition of matrix

[e] (we thus have [e] = [Φ] [R] with [Φ] [Φ]T = [Φ]T [Φ] = [IN ] and therefore, < ϕk ,ϕk′

>= δkk′ )

In addition, for k = 1, . . . , N , we have ϕk
1 = [Φ]1k = 0 and ϕk

N = [Φ]Nk = 0. The computational

HDM is then generated as follows:

• Matrix [K] in M+
N is written as [K] = [Φ] [λ] [Φ]T . Consequently, Eq. (4.1) has a unique

solution such that y1 = yN = 0.

• Vector f in RN is written as f = 1
0.27702 (0.1ϕ

2 + 0.4ϕ5 + 0.6ϕ8 + 2.5(ϕ29 +ϕ30 +ϕ31))
and consequently, f1 = fN = 0.

• Let [b] = [0N,NCD
] be the zero matrix in MN,NCD

except [b]11 = [b]N,NCD
= 1 with NCD = 2.

Matrix [B] in MN,NCD
such that [B]T [B] = [INCD

] is written as the orthonormal basis for the

range of [b] (for instance, using Matlab, [B] = orth [b]).

The experimentally measured (surrogate) displacement vector yexp that is introduced in Section 4.5

is generated as the solution of [K] yexp = f exp
in which the vector f exp

in RN is written as f exp =
1

0.261466 (0.1ϕ
2 + 0.4ϕ5 + 0.6ϕ8 + 2.5(ϕ31 +ϕ32)− 0.015ϕ1)).
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APPENDIX F: ALGORITHM FOR SOLVING THE OPTIMIZATION PROBLEM

The algorithm used for solving the non-convex optimization problem with constraints, defined by

Eqs. (4.10) and (5.19), is detailed below. Let 0 < ε0, 0 < βd < βu, and ε0 < σu (in the applications

presented, ε0 = 10−2, βd = 0.0005 to 0.15, βu = 0.01 to 0.3, and σu = 20).

• Stage 1. Solving the optimization problem in α = (s, β, [σdiag]) in which [σdiag] is a

diagonal matrix in M+
n . The number of variables is then 2 + n. An optimal value α(1) =

(s(1), β(1), [σ
(1)
diag]) of α = (s, β, [σdiag]) is estimated by solving the optimization problem

with the interior-point algorithm with the constraints ε0 ≤ s ≤ 1, βd ≤ β ≤ βu, and ε0 ≤
[σdiag]11, . . . , [σdiag]nn ≤ σu. The initial values, which satisfy the constraints, are defined by

α(0) = (s0, β0, [In]).

• Stage 2. Solving the optimization problem in [σextra] with α = (s(1), β(1), [σ
(1)
diag ] + [σextra]) in

which [σextra] is an extra-diagonal upper triangular matrix in Mn. The number of variables

is then n(n− 1)/2. An optimal value α(2) = (s(1), β(1), [σ(2)]) of α = (s, β, [σ]), in which

[σ(2)] = [σ
(1)
diag ] + [σ

(2)
extra] is estimated using an optimal value [σ

(2)
extra] of [σextra], which is estimated

by solving the optimization problem using the interior-point algorithm without constraint

(only [σextra] is the variable considered by the optimizer). For [σextra], the initial condition is

[0n,n].
• Stage 3. Let β 7→ α(β) = (s(1), β, [σ(2)]). Stage 3 consists in computing the optimal value

βopt ∈ [βd , βu] of β such that βopt = minβ∈[βd ,βu] J(α(β)) by using the trial method.

• Stage 4. Solving the optimization problem in s and [σ] with α = (s, βopt, [σ]) in which

[σ] is an upper triangular matrix in Mu
n. The number of variables is then 1 + n(n+ 1)/2.

An optimal value αopt = (sopt, βopt, [σopt]) of α = (s, βopt, [σ]) is estimated by solving the

optimization problem with the interior-point algorithm with the constraints ε0 ≤ s ≤ 1 and

ε0 ≤ [σ]11, . . . , [σ]nn ≤ σu (only s and [σ] are the variables considered by the optimizer). The

initial condition is α(0) = (s(1), βopt, [σ(2)]).

APPENDIX G: CONSTRUCTION OF THE DAMPING MATRIX [D]

The construction proposed for [D] corresponds to an adaptation of the representation presented in

[71] (Eq. (45) of Chapter VI). Let {ϕ1, . . . ,ϕn} be the first n elastic modes associated with the first

n eigenvalues 0 < λ1 < . . . < λn of the linear undamped structure associated with the nonlinear

damped dynamical system and computed in solving Eqs. (5.10) and (5.11). Matrix [D] belonging to

M+
N is written as

[D] =

n∑

k=1

2 ξd (
√

λk −
√

λn) [M ]ϕk ([M ]ϕk)T + 2 ξd
√

λn [M ] . (G.1)

Using Eq. (5.12), it can be seen that

[V ]T [D] [V ] = [D(n)] , (G.2)

in which the reduced damping matrix [D(n)] ∈ M+
n is diagonal and for which the diagonal entries

are [D(n)]kk = 2 ξd
√
λk. For {k > n , k′ > n}, we have < [D]ϕk ,ϕk′

>= 2 ξd
√
λnδkk′ . For

{k ≤ n , k′ > n} or for {k > n , k′ ≤ n}, we have < [D]ϕk ,ϕk′

>= 0. The model defined by

Eq. (G.1) allows for obtaining the constant damping rate ξd for the first n elastic modes and for

obtaining the damping rates {ξd
√
λn/

√
λn+1, . . . , ξd

√
λn/

√
λN} for the N − n elastic modes

{ϕn+1, . . . ,ϕN} (that are not computed).

The assemblage of the full matrix [D] defined by Eq. (G.1) is never done.

• Let z be a vector in RN . We then have

[D] z =

n∑

k=1

2 ξd (
√

λk −
√

λn) [M ]ϕk < [M ]ϕk , z > +2 ξd
√

λn [M ] z . (G.3)
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This equation shows that the complexity of the product of matrix [D] by vector z is induced by

the products [M ]ϕ1, . . . , [M ]ϕn, [M ] z, that is to say by n+ 1 products of the sparse matrix

[M ] by a vector.

• Let [W] be the SROB with values in MN,n and verifying Eq. (2.12) and Eq. (2.11). We then

have

[W]T [D] [W] =

n∑

k=1

2 ξd (
√

λk −
√

λn)Ψ
k(Ψk)T + 2 ξd

√
λn [In] , (G.4)

in which Ψ
k = [W]T [M ]ϕk is a random vector with values in Rn.

APPENDIX H: CONSTRUCTION OF THE COST FUNCTION FOR THE IDENTIFICATION

OF THE HYPERPARAMETER IN THE APPLICATION PRESENTED IN SECTION 4

For constructing the cost function, we introduce the random function ω 7→ dB(n)(ω;α) =

(dB
(n)
1 (ω;α), . . . , dB(n)

mo
(ω;α)) defined on Bo with valued in Rmo such that, for all j = 1, . . . ,mo

(with mo = 122),

dB
(n)
j (ω;α) = log10(|Ô(n)

j (ω;α)|) , (H.1)

in which Ô
(n)

(ω;α) = (Ô
(n)
1 (ω;α), . . . , Ô

(n)
mo (ω;α)) is defined by Eq. (5.18).

In order to define the target functions for constructing the cost function, we introduce the

functions ω 7→ dbref(ω) = (dbref

1 (ω), . . . , dbref

mo
(ω)) and ω 7→ db(n)(ω) = (db

(n)
1 (ω), . . . , db(n)

mo
(ω)),

defined on Bo with values in Rmo such that, for all j = 1, . . . ,mo,

dbref

j (ω) = log10(|ôj(ω)|) , db
(n)
j (ω) = log10(|ô(n)j (ω)|) , (H.2)

in which ô(ω) = (ô1(ω), . . . , ômo
(ω)) is defined by Eq. (5.8) and where ô(n)

(ω) = (ô
(n)
1 (ω), . . . ,

ô
(n)
mo(ω)) is defined by Eq. (5.15). The cost function, defined by Eq. (2.17), is rewritten here as

J(α) = wJ Jmean (α) + (1− wJ )Jstd (α) , (H.3)

in which

Jmean (α) =
1

cmean

mo∑

j=1

∫

Bo

|dbref

j (ω)− E{dB
(n)
j (ω;α)}|2 wj(ω) dω , (H.4)

Jstd (α) =
1

cstd

mo∑

j=1

∫

Bo

|v(ref,n)
j (ω)− v

(n)
j (ω;α)|2 wj(ω) dω , (H.5)

in which the positive constants cmean and cstd are defined by

cmean =

mo∑

j=1

∫

Bo

|dbref

j (ω)}|2 wj(ω) dω , cstd =

mo∑

j=1

∫

Bo

|v(ref,n)
j (ω)|2 wj(ω) dω . (H.6)

In these equations, v(ref,n)(ω) = (v
(ref,n)
1 (ω), . . . , v

(ref,n)
mo (ω)) and v(n)(ω;α) =

(v
(n)
1 (ω;α), . . . , v

(n)
mo (ω;α)) are defined, for j = 1, . . .mo, by

v
(ref,n)
j (ω) = γ |dbref

j (ω)− db
(n)
j (ω)| , (H.7)

in which γ > 0 is an amplitude factor and where

v
(n)
j (ω;α) = {E{dB(n)

j (ω;α)2} − (E{dB(n)
j (ω;α)})2} }1/2 . (H.8)

In Eqs. (H.4) to (H.6), for j = 1, . . .mo, the function ω 7→ wj(ω) are bounded on Bo with values

in R+. In the application presented in Section 4, these functions are chosen such that wj(ω) =

|dbref

j (ω)− db
(n)
j (ω)| for all ω in Bo.
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APPENDIX I: DESCRIPTION OF THE µ-PARAMETRIC HDM FOR THE NUMERICAL

EXAMPLE OF SECTION 6

In this appendix, we describe the µ-parametric HDM, which is the linear static computational

model defined by Eqs. (6.1) and (6.2) for N = 1 000 and NCD = 2. The common part of the model

described in Appendix E is rewritten below in order to facilitate the readability of the paper.

Let x1, . . . , xN be the points in [0 , 1] such that xj = (j − 1)/(N − 1). Let λ1, . . . , λN be the

positive real numbers such that λk = 4π2k2, and let [λ] be the diagonal matrix in M+
N such

that [λ]kk′ = λkδkk′ . Let [e] be the square matrix in MN such that [e]jk = sin(kπxj). Let [Φ] =
[ϕ1 . . .ϕN ] be the orthogonal matrix in MN obtained by the QR decomposition of matrix [e]
(we thus have [e] = [Φ] [R] with [Φ] [Φ]T = [Φ]T [Φ] = [IN ] and therefore, < ϕk ,ϕk′

>= δkk′ )

In addition, for k = 1, . . . , N , we have ϕk
1 = [Φ]1k = 0 and ϕk

N = [Φ]Nk = 0. The computational

HDM is then generated as follows:

• Matrix [K] in M+
N is written as [K] = [Φ] [λ] [Φ]T . Consequently, Eq. (6.1) has a unique

solution such that y1 = yN = 0.

• For µ in Cµ = [µmin , µmax ] ⊂ R, the vector f(µ) = (f1(µ), . . . , fN (µ)) in RN is written

as f(µ) = gmax(µ)
−1 g(µ) in which the vector g(µ) = (g1(µ), . . . , gN(µ)) in RN is

written as g(µ) = 0.1ϕ2 + µϕ3 + 0.4ϕ5 + 0.6ϕ8 and where gmax(µ) = maxj=1,...,N gj(µ).
Consequently, we have f1(µ) = fN(µ) = 0.

• Let [b] = [0N,NCD
] be the zero matrix in MN,NCD

except [b]11 = [b]N,NCD
= 1 with NCD = 2.

Matrix [B] in MN,NCD
such that [B]T [B] = [INCD

] is written as the orthonormal basis for the

range of [b] (for instance, using Matlab, [B] = orth [b]).
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