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Abstract

A nonparametric method assessing the error and variability margins in solutions

depicted in a separated form using experimental results is illustrated in this work. The

method assess the total variability of the solution including the modeling error and the

truncation error when experimental results are available. The illustrated method is

based on the use of the PGD separated form solutions, enriched by transforming a part

of the PGD basis vectors into probabilistic one. The constructed probabilistic vectors are

restricted to the physical solution’s Stiefel manifold. The result is a real-time parametric

PGD solution enhanced with the solution variability and the confidence intervals.

Keywords: Proper Generalized Decomposition, Model reduction, Automated tape

placement, hybrid modeling, Nonparametric probabilistic method, Machine learning

Introduction

Nowadays, simulation-based decision making in engineering and sciences is widely

accepted and used in predicting material and parts behavior. Many partial differential

equation (PDE) models are widely accepted and used in the industry, while constantly

being improved to increase their fidelity. On the other hand, many advanced methods for

solving PDEs are being designed to improve solution speed, aiming for real-time appli-

cations [4,11,13,30,37]. These techniques are commonly known by model order reduc-

tion techniques (or simply model reduction techniques), mainly aiming at constructing a

reduced basis for the solution of PDEs [22,40].

Regarding model order reduction techniques, the methods are divided into two large

categories: (i) “a priori”model reduction techniques, which aims at constructing a solution

in a reduced basis separated form, before having any knowledge of the full order model or

also the high definition model (HDM) solution [21,27]. (ii) “a posteriori” model reduction

techniques, where the reduced order basis of projection is constructed from previous

HDM solutions computed using efficient greedy algorithms to construct as accurate as
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possible reduced order basis [5,6,34,39]. The PGD method appears to be the only “a

priori” model reduction technique which is widely used nowadays to compute solutions

in a fairly separable domain [10,25,26]. Using model reduction techniques or reduced

order basis methods lead in general to a good approximation, which tends to the finite

element approximationwhen increasing the size of the projection basis [2,3,41]. However,

it is known that model reduction techniques in general involve a truncation error (either

being an “a priori” or “a posteriori” techniques) as well as modeling errors, inherited from

their full-order models counterparts, also known as high definition models (HDM) [18].

Therefore, a margin of improvement of the solution do exist.

On the other hand, with the current development of machine learning and data-driven

techniques, fitting data using surrogate models based on regressions, neural network is

becoming widely available and increasingly popular [14,24,32,47]. However, these surro-

gate models do not impose naturally physical conditions like the conservation of mass or

energy. Therefore, some other PDE fitting techniques are being developed, based on satis-

fying thermodynamic constraints, using methods like the GENERIC formalism [20,29] or

the General Equilibrium for Non-Equilibrium Reversible-Irreversible Coupling [31,38].

However, often engineering applications data is scarce and expensive to generate in suffi-

cient quantities to solely rely on data models. Therefore, to leverage recent developments

of artificial intelligence and machine learning algorithms, combinations of model reduc-

tion techniques with machine learning are built to address the modeling and truncation

errors, either by error correction [1] or by improvement of modal selection using the

quantities of interest [33].

Another appealing approach for creating data-driven surrogatemodels while leveraging

previously well-established models is the “Digital Twins” approach [1,9]. Digital twins are

built based on the correction of previously established PDEs using surrogate models,

to learn new physics or establish new models quantifying the error [19,28], but also to

incorporate the variability of the experimental results in the HDM or reduced order

models solutions [15,45,46]. Multiple other works aimed to quantify the errors induced

by modeling, either for the HDM solutions [16,17,36,42], or for using model reduction

techniques relying on reduced order basis (ROB) [8,44,45]. Moreover, a non-parametric

probabilistic method (NPM) for error quantification was introduced in [43] and extended

toμ-parametric ROBmethods in [45]. TheNPMmethod has the advantage of quantifying

uncertainties independently of their sources, either modeling errors, nonlinear modeling,

truncation errors... This is performed by replacing the deterministic reduced basis by

a stochastic counterpart [45]. However, to the best knowledge of the authors, non of

these techniques where adapted to be used for the Proper Generalized Decomposition

(PGD) framework, but are rather used for the Finite elements HDM approach, or for a

μ-parametric ROB solution [45].

In thiswork,we aim to extend theNPMmethodpresented in [45] to thePGDframework.

The extension results in a stochastic solution based on a stochastic reduced basis, who’s

variations are restricted to the Stiefelmanifold of the original PGDsolution. The variations

are controlled by several hyper parameters identified through solving an optimization

problem on the fly, as the method do not require any direct solution of the PDEmodeling

the problem during optimization.

First of all, we will revisit NPMapproach in “NPMmethod for PGD solutions” section of

this work. Later on, we introduce the PGD simulation and experimental measurements of
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the automated tape placement, the application selected for this work, in “The automated

tape placement process, simulation andmeasurements” section. In “NPMmethod applied

for the PGD simulation of the automated tape placement process” sectionwe illustrate the

NPM results applied on the PGD solution obtained in “The automated tape placement

process, simulation and measurements” section. Finally the article is wrapped up with

discussions and conclusions in “Conclusion” section.

NPMmethod for PGD solutions

Short review of NPM for reduced order basis

Let’s consider for illustration purpose a PDE having the following semi-discrete formula-

tion:

[M][ÿ(t)] + [C][ẏ(t)] + [K ][y(t)] + [F (t)] = 0, (1)

with t being the time domain, and the solution [y] can be projected on a reduced basis [V ]

such as:

[y(t)] = [V ][q(t)] (2)

The variable [q(t)] is the solution of the PDE equation depicted in Eq. (1) in the reduced

coordinate system, after projection on the reduced order basis, and solving as a function

of the time. The NPM method consists of replacing a reduced order basis [V ] ∈ R(N,n)

by a stochastic counterpart [V] ∈ R(N,n), where N is the number of degrees of freedom

in the HDM model, and n is the dimension of the built reduced basis. Considering a set

of constraints or Dirichlet boundary conditions defined by a matrix [B] ∈ R(N,NBC ), the

reduced basis [V ] should satisfy the following orthogonality and boundary conditions

constraints:

{

[V ]T [M][V ] = [In]

[B]T [V ] = [0]
(3)

where [In] being the identitymatrix in a domain having the dimension of the reduced basis

n, and [M] ∈ [N,N ] the mass matrix of the problem in question. Therefore, the stochastic

reduced basis should satisfy the same constraints as the initial reduced basis:

{

[V]T [M][V] = [In]

[B]T [V] = [0]
(4)

Using NPM, the stochastic basis [V] is constructed using the maximum entropy princi-

ple, while variation of [V ] to construct [V] should be performed on the tangent vector Tv

space defined by [45]:

Tv =

{

[Z] ∈ R(N,n) : [V]
T [M][Z] + [Z]T [M][V] = [0]

}

(5)

with [Z] being therefore thefirst derivative of [V ] using the innerproduct<< V1, V2 >>=

tr
{

[V1]
T [M][V2]

}

. Therefore, [Z] can be built in the following form:

[Z] = [V][a] + [V⊥][b] (6)
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Defining [a], [b] and [V⊥] leads to the following construction algorithm [45]:

⎧
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⎪

⎪

⎪

⎪

⎪

⎪

⎩

[U] = [G(β)][σ ]

[A] = [U] − [B]([B]T [U])

[D] =
(

[V ]T [M][A] + [A]T [M][V ]
)

/2

[Z] = [A] − [V ][D]

[H] =
(

[In] + s2[Z]T [M][Z]
)−1/2

[V] = ([V ] + s[Z]) [H]

(7)

with [σ ] being an n × n upper diagonal matrix of hyper-parameters ∈ R to be identified,

[G(β)] is a second order centered randommatrix ∈ R(N,n) built from two uniform random

distributions as well as the hyper-parameter β ∈ [0; 1], as described in the appendix D

in [45]. s ∈ [0; 1] is also a hyper-parameter to define. The problem hyper-parameters are

found using the following minimization problem:

([σ ],β , s) = argmin
{

w
∫

�
E (O([V], t)) − Eexpd�+

(1 − w)
∫

�

√

Var (O([V], t)) −
√

Varexpd�

} (8)

We define w ∈ [0; 1] as a weight to insure as much as possible a convexity in the cost

function. E(·) defines the mean of a distribution, Var(·) define the standard deviation of

a given distribution. Eexp and Varexp are the experimental values of the target values of

the quantities of interest O([V], t), t being the time domain. The quantities of interest are

defined as a function of the solution of the PDE equations of the modeled problem:

O([V]) = H([V][p(t)], t), (9)

with [p(t)] ∈ R[n,m] the solution of the PDE in the reduced order basis coordinate system,

m being the length of the mesh in the time domain. Computing [p(t)] would require a

direct solution of the PDE (1) in the reduced coordinate system, for every variation of the

reduced basis [V]. This gets even more time consuming when the derivatives are to be

computed numerically during the optimization process. Interested readers are referred to

the [15,45,46] and their references therein.

To evaluate stochastic quantities of interests of the generated stochastic solution y,

derived from the expression of NPM, one may need to repeat the algorithm (7) m times,

to construct several solutions for different selection values of [G(β)]. In fact, [G(β)] is the

only randomdistribution, generated out of twouniform randomdistributions as explained

in the appendix of [45]. Therefore, one evaluation of the cost function depicted in (8)

requiresm solutions of the problem depicted in the reduced basis [V]. Such approach can

lead to prohibitive calculation times when solving complex PDEs in a large computation

domain expressing multiple number of reduced coordinates.

NPMmethod for PGD solutions

The PGD solutions are computed in a separated form such as [11]:

y(q1; q2; · · · ; qD) =

i=N
∑

i=1

j=D
∏

j=1

Qij(qj), (10)
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with qj the separated coordinates of the problem, and Qij(qj) the recurrent solutions in

the domain qj . In a discrete form, Qij becomes a matrix [Q]j ∈ R[Nj ,N ], with Nj the

number of degrees of freedom in qj domain, and N the number of products of functions

required to converge the PGD solution of the problem. Using NPM, we choose to enrich

some (or all) of the PGD reduced coordinates solution using the same algorithm depicted

in Eq. (7). The results for a reduced basis of a domain [qj] results in the following:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[U] = [G(β)][σ ]

[A] = [U] − [B]([B]T [U])

[D] =

(

[Q]Tj [M][A] + [A]T [M][Q]j

)

/2

[Z] = [A] − [Q]j[D]

[H] =
(

[In] + s2[Z]T [M][Z]
)−1/2

[Qj] =
(

[Q]j + s[Z]
)

[H]

(11)

The algorithm illustrated in Eq. (11) represents an enrichment of one dimension in the

PGD solution domain. The same algorithm can be designed to enrich asmuch dimensions

as required, by generating the random basis [G(β)] as a higher dimensionality array. The

number of hyper-parameters of the problem with increase accordingly.

In the optimization process, evaluating the quantities of interests O([Q], t) do not

require any solution of the PDE problem, as the PGD defines a surrogate model replac-

ing the PDE with a product of functions defined in every dimension of the domain. For

instance, the evaluation of the quantities of interest for any solution requires only the

knowledge of the solution y defined by:

y(q1; q2; · · · ; qD) =

i=N
∑

i=1

∏

j∈Dd

Qij(qj)
∏

j∈Dp

Qij(qj), (12)

where Dd are the deterministic, non-enriched basis, while Dp are the probabilistic basis,

enriched using NPM. Therefore, one solution and thus one evaluation of the quantities of

interests, is computed only by using the product and sum of matrices.

The automated tape placement process, simulation andmeasurements

The automated tape placement process (ATP) is a one step, out-of-autoclave, composite

manufacturing process [12,35]. It aims a continuous deposit of prepreg tapes, while heat-

ing the deposit region and compressing the incoming tape to achieve a certain degree of

consolidation, from low cohesion of the tapes to consolidated panels. The process has the

potential to achieve in a unique step the manufacturing of composite parts in the final

shape.

Experimental process

The studied process is the deposition of prepregs on a heated cylindrical shape substrate,

while heatingwith three external radiative heat source, the RHS0 controls the temperature

Tin and will not be modeled in the rest of this work. The process is illustrated in Fig. 1.

The system is also equipped with two infrared camera to measure the temperature fields

during deposition. Themeasurement is performed on 6 selected points asmarked in Fig. 2.

Figure 2 also illustrates the position of selected probing points. Figure 2a illustrates the top
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Fig. 1 The ATP winding process with the three radiative heat sources marked as RHS1 and RHS2 , the

incoming tape temperature is Tin , the cylindrical deposition base has a radius Rc = 54mm and a controlled

temperature Tb

(a) Thermal camera placed above the in-
coming tape, point 3 is an input for the
simulation

(b) Thermal camera placed below the in-
coming tape, point 5 is an input for the
simulation

Fig. 2 The thermal camera with the control points 1 and 2 from a and 1 to 4 from b

view of the currently deposited prepreg, referred as layer l later on, with 3 selected points

1, 2, and 3. Point 3 is considered as an input to the simulation, the temperature of the

incoming prepreg Tin. Figure 2b shows a bottom view of the deposited prepreg with point

5 considered as the temperature of the drum unrolling the prepreg, not represented in the

simulated region. Points 1, 2, 3 and 4 in Fig. 2b illustrate the top region of the previously

deposited layer, referred as layer l−1 later in thismanuscript. The usedmaterial is prepreg

tapes made of unidirectional carbon fibers impregnated with a thermoplastic matrix.

The measurements are performed at a constant time step �t = 0.5 s. After measure-

ments, the data is formatted and filtered using a moving least squares approach [7,23].

The experiment will deposit 4 times each of the first ply, then 4 times the second ply and

so on, until depositing 6 plies in each experiment. We dispose of experiments with 2 sets

of parameters used. The parameters are illustrated in Table 1. The final filtered results

from camera 1, for test one, one of the four measurements, are illustrated in Fig. 3. In Fig.

3, we use the deposition velocity and the perimeter to find the deposition time of each of

the 6 overlapping layers. The means and standard deviations of the selected points for the

parameters set 1 is illustrated in Figs. 6 and 7, while the ones for the set 2 appears in Figs.

8 and 9.
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Table 1 Used experimental parameters

Parameter Values for set 1 (SI units) Values for set 2 (SI units)

w 0.1852 rad/s 0.5556 rad/s

Q1 9250 W/m2 9250 W/m2

Q2 4500 W/m2 4500 W/m2

1 2 3 4 5 6 7

Time (min)

100

150

200

250

300

350

400

T
e

m
p

e
ra

tu
re

 (
C

)
Selected point 1

Selected point 2

Fig. 3 The measurement data performed by thermal camera 1 at control points 1 and 2

PGD simulation

In this part we explain the modeling and simulation performed in the context of the

ATP process. The modeling is performed in the cylindrical (r, θ , z) coordinate system.

When considering the reference as the RHS1 for example, one can work in a steady state

formulation considering the convection-diffusion equation. In cylindrical coordinates, the

governing equation becomes:

−
ρCP

r
w

∂U

∂θ
+ Kr

1

r

∂

∂r

(

r
∂U

∂r

)

+ Kθ

1

r2
∂2U

∂θ2
+ Kz

∂2U

∂z2
= 0 (13)

with U being the temperature, ρ being the density, Cp the thermal capacity at constant

pressure,w the angular velocity, (Kr , Kθ , Kz) the diagonal components of the conductivity

tensor. One may note that the deposition in the studied process orients the fibers in the

tangential direction only, therefore the out-of-diagonal components of the conductivity

tensor are all set to zero.

Multiplying Eq. (13) by r first and by a test function U∗, then integrating by part, Eq.

(13) will lead to the weak form of the problem:
∫

�

(

ρCPU
∗w

∂U

∂θ
+ Kr

∂U∗

∂r

(

r
∂U

∂r

)

+ Kθ

1

r

∂U∗

∂θ

∂U

∂θ
+ Kzr

∂U∗

∂z

∂U

∂z

)

rdrdθdz

=
[

U∗n · K∇U
]

Ŵ

K being the conductivity tensor, n the outward normal and Ŵ the boundary of the domain

�. Equation (14) is therefore the governing equation to be solved, coupledwith the bound-

ary conditions depicted in Fig. 4. A boundary condition of symmetry impose the continuity
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Fig. 4 The modeling of the ATP process

of the temperature between ply l at θ = 2π and ply l − 1 at θ = 0. The tip of the very first

layer is considered adiabatic. The boundary conditions are reviewed in Eq. 14.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

U (r = Rc , θ ) = Tb

U (r ∈]Rc + tl × (l − 1);Rc + tl × l], 0) = Tin

U (r ∈]Rc;Rc + tl × (l − 1)], 0) = U (r ∈]Rc + tl ;Rc + tl × l], 2π )

∇U |r∈]Rc ;Rc+tl ],θ=2π · n = 0

∇U |r=(Rc+tl∗(l−1))− ,θ∈[0;lθ ]
· n = hair (U − U∞)

∇U |r=(Rc+tl∗(l−1))+ ,θ∈[0;lθ ]
· n = hair (U − U∞)

∇U |r=Rc+tl∗(l),θ
· n = hair (U − U∞)

(14)

with tl = 0.2mm the thickness of a prepreg layer, and lθ ≈ 3.55 rad the angular length

between the probe 3 in Fig. 2a and the point of contact between layers l and l − 1,

hair = 15W/m2k the coefficient of convection with the air at ambient temperatureT∞ =

25 ◦C. In the experimental results, Tb and Tin are constantly changing, therefore they

are considered as extra parameters of the problem, varying inside a predefined interval:

Tin ∈ [25; 350] ◦C and Tb ∈ [25; 250] ◦C. Moreover, the deposit angular velocity w as

well as the thermal heat flux generated by the radiatives sources RHS1 and RHS2, Q1 and

Q2 respectively, are also considered as extra parameters of the problem. The solution is

therefore obtained in a separated form as:

U (r, θ , z, Tin, Tb,w, Q1, Q2) =

i=N
∑

i=1

Ri(r)Zi(θ , z)Ti(Tin)Ui(Tb)Qi(Q1)Pi(Q2) (15)

Readers unfamiliarwith the PGDsolution in separated formare referred to the following

references and their references therein [10,11].

Moreover, a thermal contact resistance is introduced between deposited ply, as

described in [12,18], with a thermal conductance h = 6000W/m2 K. The involved prob-

lem parameters are depicted in Table 2.

The simulation results are depicted in Fig. 5 for the deposition of layers 3 and 5. The

results show a discontinuity between deposited layers, as induced by themodeled thermal

contact resistance. The simulated results are compared to the experimental ones in Figs. 6
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Table 2 Process and material parameters

Parameter Values (SI units)

rho 1350 kg/m3

Cp 1700 J/kg K

Tin [25;350] C

Tb [25;250] C

Kr = Kz = K⊥ 0.6 w/mK

Kθ = K// 6 W/mK

w [0.18;2.06] rad/s

Q1 [0;20000] W/m2

Q2 [0;20000] W/m2

Fig. 5 Vertical section in the deposited layers during the deposition of the 3rd and 5th layers. Temperatures

in ◦C
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(a) Deposition of the third layer along with
the temperature measured by probes 1 and
2 illustrated in figure 2(a) for set 1 of exper-
imental parameters
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(b) Deposition of the fifth layer along with
the temperature measured by probes 1 and
2 illustrated in figure 2(a) for set 1 of exper-
imental parameters

Fig. 6 Comparison of the simulated temperature in the middle of the top layer, with experimental

measurements, for the 3rd and 5th layer deposition. Temperatures in ◦C

and 7. The experimental results show large variability. Only 4 experiments were available

to compute the mean and the standard deviation. The results are shown for w = 0.0533

rad/s, Q1 = 9250W/m2 and Q2 = 4500W/m2. Tin and Tb are experimental inputs.
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(a) Deposition of the third layer, l = 3,
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for set 1 of experimental parameters
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(b) Deposition of the fifth layer, l = 5, along
with the temperature measured by probes 1,
2, 3 and 4 illustrated in figure 2(b) for set 1
of experimental parameters

Fig. 7 Comparison of the simulated temperature in the middle of layer l − 1 during the deposition of layer n,

with experimental measurements, for l = 3 and l = 5. Temperatures in C

NPMmethod applied for the PGD simulation of the automated tape placement

process

Once the experimental and simulation results available, the NPM for PGD algorithm

can be used to update and correct the simulated results with the experimental data. The

experimental data are considered ground truth in this work, despite the large variability

shown in some measurements. The cost function to optimize in this problem is given by:

J = 0.9

i=6
∑

i=1

(

Eexp − E(Usim)
)

.2 + 0.1

i=6
∑

i=1

(

σexp − σ (Usim)
)

.2 (16)

With Usim = U
(

rexp, θ exp, z = Zmax/2, T
exp
in , T

exp

b
,wexp, Q

exp
1 , Q

exp
2

)

, the evaluation of

the simulation abacus at the points having the same input parametric values as the per-

formed experiments. In Eq. (16), σ refers to the standard deviation.

One may note that evaluating the cost function (16) would require multiple evaluation

of the PDE solution, however no extra solution is required in the PGD framework. Only

multiplications of vectors and matrices are involved.

The enriched PGD solution with NPM for PGD algorithm are illustrated in Figs. 8 and

9 for the temperature fields in the 3rd and 5th deposited layer respectively. The results

are computed after performing m = 100 calculation of the enrichment basis. The PGD

enrichment is limited to the 5 most energetic PGD product of vectors. Figures 8 and 9

show the results for NPM–PGD enhancement. The results shown an adaptation of the

solution to overlap as much as possible with the experimental results, while translating

the experimental results’ variability into a simulation confidence interval.

Conclusion

In thiswork,we illustrate the possibility of using theNon-parametric ProbabilisticMethod

(NPM) in the Proper Generalized Decomposition (PGD) framework. The formulation for

the PGD framework shows the possibility to enrich the solution and correct it using the

NPM, without the need to perform any extra PDE solutions.



Ghnatios and Barasinski Adv. Model. and Simul. in Eng. Sci.           (2021) 8:20 Page 11 of 13

Fig. 8 Enrichement of the deposition of the fifth layer using the NPM for PGD algorithm, l = 3.

Temperatures in C

Fig. 9 Enrichement of the deposition of the fifth layer using the NPM for PGD algorithm, l = 5.

Temperatures in C

The selected application was the ATP, which deposits unidirectional fiber reinforced

plastics on a cylindrical shape using a continuous deposition, and radiative heating. The

process is modeled using a novel approach and the simulation results are compared to

the experimental ones, before and after enrichment. Before enrichment, the results are

in good agreement with the experimental ones. The enrichment process induced a large

improvement the results and illustrates the experimental variability as reflected on the

presented results.

Acknowledgements

The authors acknowledge the contribution of CANOE for data production.

Authors’ contributions

CG contributed to the theoretical, coding and writing parts. AB contributed to the theoretical, data collection and writing

parts. Both authors read and approved the final manuscript.

Funding

This work is made possible by the financial support of the Chair partners (E2S UPPA, ARKEMA and CANOE) AWESOME. The

authors would like to thank the aforementioned Chair partners (E2S UPPA, ARKEMA and CANOE) for funding their work.



Ghnatios and Barasinski Adv. Model. and Simul. in Eng. Sci.           (2021) 8:20 Page 12 of 13

Availability of data andmaterials

Raw measurement data are available upon request.

Declarations

Competing interests

Not applicable.

Author details
1Department of mechanical engineering, Notre Dame University-Louaize, PO Box 72, Zouk Mosbeh, Lebanon, 2Universite

de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France.

Received: 13 June 2021 Accepted: 20 August 2021

References

1. Ahmed Adel and khaled Salah. Model order reduction using artificial neural networks. In 2016 IEEE International

Conference on Electronics, Circuits and Systems (ICECS), pages 89–92. IEEE, 2016.

2. Ammar Amin, Chinesta Francisco, Diez Pedro, Huerta Antonio. An error estimator for seperated representations of

highly multidimensional models. Computer methods in applied mechanics and engineering. 2010;199:1872–80.

3. Ammar Amin, Chinesta Francisco, Falco Antonio. On the convergence of a greedy rank-one update algorithm for a

class of linear systems. Archive of computational methods in engineering. 2010;17(4):473–86.

4. Amsallem D, Zahr M, Choi Y, Farhat C. Design optimization using hyper-reduced-order models. Structural and

Multidisciplinary Optimization. 2015;51(4):919–40.

5. David Amsallem and Charbel Farhat. Projection-based reduced-order modeling. In Stanford University Reduced Order

modelling Course, (2011).

6. Bernardi Christine, Maday Yvon. Spectral methods. Handbook of Numerical. Analysis. 1997;5:209–485.

7. Breitkopf Piotr, Rassineux Alain, Villon Pierre. An introduction to moving least squares meshfree methods. Meshfree

Computational Mechanics. 2002;11:825–67.

8. Bui-Thanh T,Willcox K, GhattasO. Parametric reduced-ordermodels for probabilistic analysis of unsteady aerodynamic

applications. American Institute of Aeronautics and Astronautics Journal. 2008;46(10):2520–9.

9. Chinesta F, Cueto E, Abisset-Chavan E, Duval J-L, Khaldi F. Virtual, digital and hybrid twins: A new paradigm in

data-based engineering and engineered data. Archives of Computational Methods in Engineering. 2020;27:105–34.

10. Chinesta F, Keunings R, Leygue A. The proper generalized decomposition for advanced numerical simulations.

Springer; 2014.

11. Chinesta Francisco, Ammar Amine, Cueto Elias. Recent advances in the use of the proper generalized decomposition

for solving multidimensional models. Archives of Computational Methods in Engineering. 2010;17(4):327–50.

12. Chinesta Francisco, Leygue Adrien, Bognet Brice, Ghnatios Chady, Poulahon Fabien, Bordeu Felipe, Barasinski Anais,

Poitou Aranud, Chatel Sylvain, Maison-Le-Poec Sebastien. First steps towards an advanced simulation of composites

manufacturing by automated tape placement. International journal of material forming. 2014;7(1):81–92.

13. Cueto Elias, Ghnatios Chady, Chinesta Francisco, Monte Nicolas, Sanchez Fernando, Falco Antonio. Improving com-

putational efficiency in lcm by using computational geometry and model reduction techniques. Key Engineering

Materials. 2014;611:339–43.

14. B.P. Van de Weg, L. Greve, M. Andres, T.K. Eller, and B. Rosic. Neural network-based surrogate model for a bifurcating

structural fracture response. Engineering Fracture Mechanics, 241:107424, January 2021.

15. Farhat C, BosA, Avery P, SoizeC.Modeling andquantificationofmodel-formuncertainties in eigenvalue computations

using a stochastic reduced model. American Institute of Aeronautics and Astronautics Journal. 2017;56(3):1–22.

16. Ghanem R, Spanos PD. Stochastic Finite Elements: A spectral approach. New York: Springer Verlag; 1991.

17. R. Ghanem and P.D. Spanos. Stochastic Finite Elements: A spectral approach (revised edition). Dover publications,

New York, 2003.

18. C. Ghnatios. Simulation avancée des problemes thermiques rencontrés lors de lamise en forme des composites. PhD thesis,

Ecole Centrale Nantes, October (2012).

19. C. Ghnatios. A hybrid modeling combining the proper generalized decomposition (pgd) approach to data-driven

model learners, with application to non-linear biphasic materials. Comptes rendus mécanique, In Press, 2021.

20. Ghnatios C, Alfaro I, Gonzalez D, Chinesta F, Cueto E. Data-driven generic modeling of poroviscoelastic materials.

Entropy. 2019;21(12):1165.

21. C. Ghnatios, A. Ammar, A. Cimetiere, A. Hamdouni, A. Leygue, and F. Chinesta. First steps in the space separated

representation of models defined in complex domains. In ASME 2012 11th Biennial Conference on Engineering Systems

Design and Analysis, ESDA 2012, pages 37–42. ASME, 2012.

22. C. Ghnatios, G. Asmar, E. Chakar, and C. BouMosleh. A reduced-order model manifold technique for automated struc-

tural defects judging using the pgd with analytical validation. Comptes rendus mecanique, 34(2):101–113, February

2019.

23. C. Ghnatios, I. Hage, and N. Metni. Knee joint injury risk assessment bymeans of experimental measurements and

proper generalized decomposition. Comptes rendusmécanique, 1, 2021.

24. Ghnatios C, Hage R-M, Hage I. An efficient tabu-search optimized regression for data-drivenmodeling. Compte rendu

mecanique. 2019;347(11):806–16.

25. ChadyGhnatios, EmmanuelleAbisset, AmineAmmar, Elias Cueto, Jean-LouisDuval, and FranciscoChinesta. Advanced

separated spatial representations for hardly separable domains. Computer methods in applied mechanics and

engineering, 354:802–819, September 2019.



Ghnatios and Barasinski Adv. Model. and Simul. in Eng. Sci.           (2021) 8:20 Page 13 of 13

26. Chady Ghnatios, Elias Cueto, Antonio Falco, Jean-Louis Duval, and Francisco Chinesta. Spurious-free interpolations

for non-intrusive pgd-based parametric solutions: Application to composites forming processes. International Journal

of material forming, 2020.

27. Ghnatios Chady, Mathis Christian H, Simic Rok, Spencer Nicholas D, Chinesta Francisco. Modeling soft permeable

matter with the proper generalized decomposition (pgd) approach, and verification by means of nanoindentation.

Soft Matter. 2017;13:4482–93.

28. Gonzlez D, Chinesta F, Cueto E. Learning corrections for hyperelastic models from data. Front Mater. 2019;6(14):1–12.

29. Gonzlez D, Chinesta F, Cueto E. Thermodynamically consistent data-driven computational mechanics. Contin Mech

Thermodyn. 2019;31:239–53.

30. M.A. Grepl, Y. Maday, N.C. Nguyen, and A. Patera. A. efficient reduced-basis treatment of nonaffine and nonlinear

partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis, 41(30):575–605, 2007.

31. Grmela M. Multiscale thermodynamics Enthropy. 2021;23(165):1–46.

32. Hage R-M, Hage I, Ghnatios C, Jawahir IS, Hamade R. Optimized tabu search estimation of wear characteristics and

cutting forces in compact core drilling of basalt rock using pcd tool inserts. Computers & industrial engineering.

2019;136(10):477–93.

33. David Hartman and Lalit K. Mestha. A deep learning framework for model reduction of dynamical systems. In 2017

IEEE Conference on Control Technology and Applications (CCTA), pages 1917–1922, Hawai, USA, 2017. IEEE.

34. Leonenko GM, Phillips TN. On the resolution of the fokker-planck equation using a high-order reduced basis approx-

imation. Computer Methods in Applied Mechanics and Engineering. 2009;199(1–4):58–168.

35. Arthur Levy, Dirk Heider, John Tierney, and John W. Gillespie Jr. Simulation and optimization of the thermoplastic

automated tape placement (atp) process. In SAMPLE Conference, Baltimore, May 2012.

36. Le Maitre OP, Knio OM. Spectral Methods for Uncerainty Quantification with Applications to Computational Fluid

Dynamics. Heidelberg: Springer; 2010.

37. Nguyen N, Peraire J. An efficient reduced-order modeling approach for nonlinear parametrized partial differential

equations. International Journal for Numerical Methods in Engineering. 2008;76(1):27–55.

38. Ottinger HC. Beyond Equilibrium Thermodynamics. Wiley-Interscience; 2005.

39. Patera Anthony T, Ronquist Einar M. Reduced basis approximation and a posteriori error estimation for a boltzmann

model. Computer Methods in Applied Mechanics and Engineering. 2007;196:2925–42.

40. Perez M, Barasinski A, Courtemanche B, Ghnatios C, Chinesta F. Sensitivity thermal analysis in the laser-assisted tape

placement process. AIMS Materials Science. 2018;5(6):1053–72.

41. Porsching TA. Estimation of the error in reduced basis method solution of nonlinear equations. Mathematical and

Computer Modelling. 1985;45(172):487–96.

42. Schueller GI. Computational methods in stochastic mechanics and reliability analysis. Computer methods in applied

mechanics and engineering. 2005;194(12–16):1251–795.

43. Soize C. A nonparametric model of random uncertainties for reduced matrix models in structural dynamics. Proba-

bilistic Engineering Mechanics. 2000;15(3):277–94.

44. Soize C. Stochastic modeling of uncertainties in computational structural dynamics - recent theoretical advances.

Journal of Sound and Vibration. 2013;332(10):2379–95.

45. Soize C, Farhat C. A nonparametric probabilistic approach for quantifying uncertainties in low- and high-dimensional

nonlinear models. International Journal for Numerical methods in engineering. 2016;109:837–88.

46. Soize C, Farhat C. Probabilistic learning for modeling and quantifying model-form uncertainties in nonlinear compu-

tational mechanics. International Journal for Numerical methods in engineering. 2019;117:819–43.

47. R. Xu, N. Wang, and D. Zhang. Solution of diffusivity equations with local sources/sinks and surrogate modeling using

weak form theory-guided neural network. Advances in water resources, In press, 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	A nonparametric probabilistic method to enhance PGD solutions with data-driven approach, application to the automated tape placement process
	Abstract
	Introduction
	NPM method for PGD solutions
	Short review of NPM for reduced order basis
	NPM method for PGD solutions

	The automated tape placement process, simulation and measurements
	Experimental process
	PGD simulation


	NPM method applied for the PGD simulation of the automated tape placement process

	Conclusion
	Declarations

	References


