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We consider the problem of testing whether two independent finite-dimensional random dot product graphs
have generating latent positions that are drawn from the same distribution, or distributions that are related
via scaling or projection. We propose a test statistic that is a kernel-based function of the estimated latent
positions obtained from the adjacency spectral embedding for each graph. We show that our test statistic
using the estimated latent positions converges to the test statistic obtained using the true but unknown latent
positions and hence that our proposed test procedure is consistent across a broad range of alternatives. Our
proof of consistency hinges upon a novel concentration inequality for the suprema of an empirical process
in the estimated latent positions setting.
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1. Introduction

The nonparametric two-sample hypothesis testing problem involves

{Xi}ni=1
i.i.d.∼ F, {Yk}mk=1

i.i.d.∼ G; H0:F = G against HA:F �= G,

where F and G are two distributions taking values in R
d . This is a classical problem and there

exist a large number of test statistics T ({Xi}ni=1, {Yk}mk=1) that are consistent for any arbitrary
distributions F and G.

In this paper, we consider a related problem that arises naturally in the context of inference
on random graphs. That is, suppose that the {Xi}ni=1 and {Yk}mk=1 are unobserved, and we ob-
serve instead adjacency matrices A and B corresponding to random dot product graphs on n

and m vertices with latent positions {Xi}ni=1 and {Yk}mk=1, respectively. Denoting by {X̂i}ni=1

and {Ŷk}mk=1 the adjacency spectral embedding of A and B (see Definition 2), we construct test

statistics T ({X̂}ni=1, {Ŷk}mk=1) for testing F = G (and related hypotheses) that are consistent for a
broad collection of distributions.

In other words, we construct a test for the hypothesis that two random dot product graphs have
the same underlying distribution of latent positions, or underlying distributions that are related via
scaling or projection. This problem may be viewed as the nonparametric analogue of the semi-
parametric inference problem considered in [32], in which a valid test is given for the hypothesis
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that two random dot product graphs have the same fixed latent positions. This formulation also
includes, as a special case, a test for the parametric problem of whether two graphs come from
the same stochastic blockmodel (where the block probability matrix is positive semidefinite) or
from the same degree-corrected stochastic blockmodel. Determining whether two random graphs
are “similar” in an appropriate sense is a problem that arises naturally in neuroscience, network
analysis, and machine learning. Examples include the comparison of graphs in a time series, such
as email correspondence among a group over time, the comparison of neuroimaging scans of pa-
tients under varying conditions, or the comparison of user behavior on different social media
platforms.

While it might seem like there are only minor differences between the nonparametric setting of
the current paper and the semiparametric setting of [32], the implications with regard to inference
are quite significant. Indeed, in the semiparametric setting, the graphs are on the same vertex set
with known vertex alignment; in the nonparametric setting we consider herein, the graphs need
not be on the same vertex set or even have the same number of vertices. This difference implies
that the nonparametric testing procedure of the current paper is applicable in more general and
diverse settings; on the other hand, when the vertex correspondences exist and are known, the
semiparametric testing procedure has more power. Second, in the semiparametric setting, the
dimensionality of the hypotheses (the number of parameters) increases with n, the number of
vertices, while in the current setup the hypotheses are fixed for all n. As such, the notion of
a consistent test procedure in [32] is considerably more subtle. Finally, while rejection regions
can be theoretically derived for the test procedures in both the nonparametric setting and the
semiparametric setting, in practice they are usually estimated via some bootstrap resampling
procedure. For the nonparametric setting wherein the null hypothesis is fixed as the size of the
graphs changes, bootstrap resampling is straightforward. A feasible bootstrapping procedure in
the semiparametric setting is much more involved.

The test statistic we construct is an empirical estimate of the maximum mean discrepancy of
[11]. The maximum mean discrepancy in this context is equivalent to an L2-distance between
kernel density estimates of distributions of the latent positions (see, e.g., [3]). The test statistic can
also be framed as a weighted L2-distance between empirical estimates of characteristic functions
similar to those of [2,4,12]. Indeed, techniques for the estimation and comparison of densities or
characteristic functions given i.i.d. data are well-known. We strongly emphasize, however, that in
our case, the observed data are not the true latent positions – which are themselves random and
drawn from the unknown distributions whose equality we wish to test – but rather the adjacency
matrices of the resulting random dot product graphs. Thus, one of our main technical contribu-
tions is the demonstration that functions of the true latent positions are well-approximated by
functions of the adjacency spectral embeddings.

The results of this paper are mainly for dense graphs, that is, those graphs for which the average
degree scale linearly with the number of vertices. Analogous results for non-dense graphs, for
example, those for which the average degree of the vertices grows at order �(log4 n) – n being
the number of vertices in the graph – are more subtle and we touch upon this briefly in Section 5.

We organize the paper as follows. In Section 2, we recall the definition of a random dot product
graph and the adjacency spectral embedding; we review the relevant background in kernel-based
hypothesis testing; and we formulate a nonparametric two-sample test of equality of distribu-
tions for the latent positions of a pair of random dot product graphs. In Section 3, we propose
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a test procedure for the two-sample test of equality up to orthogonal transformation in which
the test statistics are a function of the adjacency spectral embedding. We note that our hypothe-
ses of equality are purely a function of the non-identifiability of the random dot product graph
model. This non-identifiability also restricts our consideration of kernel-based hypothesis testing
to radial kernels. We establish the consistency of our test procedure by deriving a novel concen-
tration inequality for the suprema of an empirical process using the estimated latent positions. In
Section 4, we illustrate our test procedure with experimental results on simulated and real data.
Section 5 extends the test procedure in Section 3 to consider looser notions of equality between
the two distributions as well as sparsity in the underlying graphs model.

2. Background and setting

We first recall the notion of a random dot product graph [37].

Definition 1. Let � be a subset of Rd such that, for all ω1,ω2 ∈ �, the inner product 〈ω1,ω2〉 =
ω�

1 ω2 is contained in the interval [0,1]. For any given n ≥ 1, let X = [X1,X2, . . . ,Xn]� be a
n × d matrix whose rows are arbitrary elements of �. Given X, suppose A is a random n × n

adjacency matrix with probability

P
[
A|{Xi}ni=1

] =
∏
i<j

(
X�

i Xj

)Aij
(
1 − X�

i Xj

)1−Aij .

A is then said to be the adjacency matrix of a random dot product graph (RDPG) with latent
positions X and we denote this by A ∼ RDPG(X). Now suppose that the rows of X are not fixed,
but are instead independent random variables sampled according to some distribution F on �.
Then A is said to be the adjacency matrix of a random dot product graph with latent positions X
sampled according to F and we denote this by writing (X,A) ∼ RDPG(F ). We shall also write
A ∼ RDPG(F ) when the dependency of A on X is integrated out.

As an example of random dot product graphs, one could take � to be the unit simplex in R
d

and let F be a mixture of Dirichlet distributions. Given a matrix of latent positions X, the ran-
dom dot product model generates a symmetric adjacency matrix A whose edges {Aij }i<j are
independent Bernoulli random variables with parameters {Pij }i<j , where P = XXT . Random
dot product graphs are a specific example of latent position graphs [14], in which each vertex
is associated with a latent position and, conditioned on the latent positions, the presence or ab-
sence of the edges in the graph are independent. The edge presence probability between two
vertices is given by a symmetric link function of the latent positions of the associated vertices.
A random dot product graph with i.i.d. latent positions on n vertices is also, when viewed as an
induced subgraph of an infinite graph, an example of an exchangeable random graph [7]. Ran-
dom dot product graphs are related to stochastic block model graphs [15] and degree-corrected
stochastic block model graphs [16], as well as mixed membership block models [1]; for exam-
ple, a stochastic block model graph with K blocks and a positive semidefinite block probability
matrix B corresponds to a random dot product graph whose latent positions are drawn from a
mixture of K point masses.
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Remark. We note that non-identifiability is a property of nearly all exchangeable random graph
models, and specifically, it is an intrinsic property of random dot product graphs. Indeed, for
any matrix X and any orthogonal matrix W, the inner product between any rows i, j of X is
identical to that between the rows i, j of XW. Hence, for any probability distribution F on � and
unitary operator U , the adjacency matrices A ∼ RDPG(F ) and B ∼ RDPG(F ◦U) are identically
distributed (here, for a random variable X ∼ F , we write F ◦ U to denote the distribution of
Y = U�X).

We now define the notion of adjacency spectral embedding; this is the key intermediate step
in our subsequent two-sample hypothesis testing procedures.

Definition 2. Let A be a n × n adjacency matrix. Suppose the eigendecomposition of |A| =
(A�A)1/2 is given by

|A| =
n∑

i=1

λiuiu�
i

with λ1 ≥ λ2 ≥ · · · ≥ λn being the eigenvalues of |A| and u1, . . . ,un the corresponding eigen-
vectors. Given a positive integer d ≤ n, denote by SA = diag(λ1, . . . , λd) the diagonal matrix
whose diagonal entries are λ1, . . . , λd and denote by UA the n × d matrix whose columns are
the corresponding eigenvectors u1, . . . ,ud . The adjacency spectral embedding A into R

d is then
the n × d matrix X̂ = UAS1/2

A .

Remark. The intuition behind the notion of adjacency spectral embedding is as follows. We note
that if (A,X) ∼ RDPG(F ), then the upper triangular entries of A−XX� are independent random
variables. Let ‖ · ‖ denote the spectral norm of a matrix. Then one can show that ‖A − XX�‖ =
O(‖X‖) = o(‖XX�‖) with high probability [22]. That is to say, A can be viewed as a “small”
perturbation of XX�. If we now assume that X is of rank d for some d – an assumption that is
justified in the random dot product graphs model – then the Davis–Kahan theorem [6] implies that
the subspace spanned by the top d eigenvectors of XX� is well-approximated by the subspace
spanned by the top d eigenvectors of A. In particular, the eigendecomposition of XX� recovers
the matrix X up to an orthogonal transformation; hence the adjacency spectral embedding of A is
expected to yield a consistent estimate of X up to an orthogonal transformation (see Lemma 2).

2.1. Two-sample hypothesis testing

In this paper, we propose a nonparametric version of the two-sample hypothesis test examined in
[32]. To wit, [32] presents a two-sample random dot product graph hypothesis test as follows. Let
Xn and Yn be n × d matrices of fixed (non-random) latent positions, and O(d) the collection of
orthogonal matrices in R

d×d . Suppose A ∼ RDPG(Xn) and B ∼ RDPG(Yn) are the adjacency
matrices of random dot product graphs with latent positions Xn and Yn, respectively. Consider
the sequence of hypothesis tests

Hn
0 : Xn �Yn against Hn

A: Xn / �Yn,
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where � denotes that there exists an W ∈ O(d) such that Xn = YnW. In [32], it is shown that
rejecting for large values of the test statistic Tn defined by

Tn = min
W∈O(d)

‖X̂nW − Ŷn‖F ,

yields a consistent test procedure for any sequence of latent positions {Xn}, {Yn} for which
minW∈O(d) ‖Xn − YnW‖ diverges as n → ∞.

Our main point of departure in this work is the assumption that, for each n, the rows of the
latent positions Xn and Yn are independent samples from some fixed distributions F and G,
respectively. The corresponding tests are therefore tests of equality between F and G. More
formally, we consider the following two-sample nonparametric testing problems for random dot
product graphs. Let F and G be probability distributions on � ⊂ R

d for some d . Given A ∼
RDPG(F ) and B ∼ RDPG(G), we consider the tests:

1. Equality, up to orthogonal transformation

H0:F �G against HA:F / �G,

where F �G denotes that there exists a unitary operator U on R
d such that F = G◦U and F / �G

denotes that F �= G ◦ U for any unitary operator U on R
d .

2. Equality, up to scaling

H0:F �G ◦ c for some c > 0 against HA:F / �G ◦ c for any c > 0,

where Y ∼ F ◦ c if cY ∼ F .
3. Equality, up to projection

H0:F ◦ π−1 �G ◦ π−1 against HA:F ◦ π−1 / �G ◦ π−1,

where π is the projection x �→ x/‖x‖; hence Y ∼ F ◦ π−1 if π−1(Y ) ∼ F .

We note that the above null hypothesis are nested; F �G implies F �G ◦ c for c = 1 while
F �G ◦ c for some c > 0 implies F ◦ π−1 �G ◦ π−1.

2.2. Maximum mean discrepancy

We now introduce the notion of the maximum mean discrepancy between two distribution [11].
The maximum mean discrepancy is a distance measure for probability distributions and hence
can be used to construct a non-parametric two-sample hypothesis testing procedure (see Theo-
rem 1 below). The maximum mean discrepancy is just one of several examples of kernel-based
testing procedures; see [13] for a recent survey of the literature and for a more detailed discus-
sion.

Let � be a compact metric space and κ:� × � �→ R a continuous, symmetric, and positive
definite kernel on �. Denote by H the reproducing kernel Hilbert space associated with κ . Now
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let F be a probability distribution on �. Under mild conditions on κ , the map μ[F ] defined by

μ[F ] :=
∫

�

κ(ω, ·)dF(ω)

belongs to H. Now, for given probability distributions F and G on �, the maximum mean dis-
crepancy between F and G with respect to H is the measure

MMD(F,G;H) := ∥∥μ[F ] − μ[G]∥∥H.

We summarize some important properties of the maximum mean discrepancy from [11]. In par-
ticular, if κ is chosen so that μ is an injective map, then ‖μ[F ]−μ[G]‖H yields a consistent test
for testing the hypothesis H0:F = G against the hypothesis HA:F �= G for any two arbitrary but
fixed distributions F and G on �.

Theorem 1. Let κ:X × X �→ R be a positive definite kernel and denote by H the reproducing
kernel Hilbert space associated with κ . Let F and G be probability distributions on �; X and
X′ independent random variables with distribution F , Y and Y ′ independent random variables
with distribution G, and X is independent of Y . Then

∥∥μ[F ] − μ[G]∥∥2
H = sup

h∈H:‖h‖H≤1

∣∣EF [h] −EG[h]∣∣2

(2.1)
= E

[
κ
(
X,X′)] − 2E

[
κ(X,Y )

] +E
[
κ
(
Y,Y ′)].

Given X = {Xi}ni=1 and Y = {Yk}mk=1 with {Xi} i.i.d.∼ F and {Yi} i.i.d.∼ G, the quantity Un,m(X,Y)

defined by

Un,m(X,Y) = 1

n(n − 1)

∑
j �=i

κ(Xi,Xj ) − 2

mn

n∑
i=1

m∑
k=1

κ(Xi,Yk)

(2.2)

+ 1

m(m − 1)

∑
l �=k

κ(Yk,Yl)

is an unbiased consistent estimate of ‖μ[F ] − μ[G]‖2
H. Denote by κ̃ the kernel

κ̃(x, y) = κ(x, y) −Ezκ(x, z) −Ez′κ
(
z′, y

) +Ez,z′κ
(
z, z′),

where the expectation is taken with respect to z, z′ ∼ F . Suppose that m
m+n

→ ρ ∈ (0,1) as
m,n → ∞. Then under the null hypothesis of F = G,

(m + n)Un,m(X,Y)
d−→ 1

ρ(1 − ρ)

∞∑
l=1

λl

(
χ2

1l − 1
)
, (2.3)
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where {χ2
1l}∞l=1 is a sequence of independent χ2 random variables with one degree of freedom,

and {λl} are the eigenvalues of the integral operator IF,κ̃ : H �→H defined as

IF,κ̃ (φ)(x) =
∫

�

φ(y)κ̃(x, y) dF (y).

Finally, if κ is a universal or characteristic kernel [25,26], then μ is an injective map, that is,
μ[F ] = μ[G] if and only if F = G.

Remark. A kernel κ:X ×X �→ R is universal if κ is a continuous function of both its arguments
and if the reproducing kernel Hilbert space H induced by κ is dense in the space of continuous
functions on X with respect to the supremum norm. Let M be a family of Borel probability
measures on X . A kernel κ is characteristic for M if the map μ ∈ M �→ ∫

κ(·, z)μ(dz) is
injective. If κ is universal, then κ is characteristic for any M [25]. As an example, let X be a finite
dimensional Euclidean space and define, for any q ∈ (0,2), kq(x, y) = 1

2 (‖x‖q + ‖y‖q − ‖x −
y‖q). The kernels kq are then characteristic for the collection of probability distributions with
finite second moments [19,24]. In addition, by equation (2.1), the maximum mean discrepancy
with reproducing kernel kq can be written as

MMD2(F,Q; kq) = 2E‖X − Y‖q −E
∥∥X − X′∥∥q −E

∥∥Y − Y ′∥∥q
,

where X,X′ are independent with distribution F , Y,Y ′ are independent with distribution G, and
X,Y are independent. This coincides with the notion of the energy distances of [31], or, when
q = 1, a special case of the one-dimensional interpoint comparisons of [21].

Remark. The limiting distribution of (m + n)Un,m(X,Y) under the null hypothesis of F = G in
Theorem 1 depends on the {λl} which, in turn, depend on the distribution F ; thus the limiting
distribution is not distribution-free. Moreover, the eigenvalues {λl} can, at best, be estimated;
for finite n, they cannot be explicitly determined when F is unknown. In practice, generally the
critical values are estimated through a bootstrap resampling or permutation test.

3. Main results

We now address the nonparametric two-sample hypothesis tests of Section 2.1 using the method-
ology described in Section 2.2. Throughout, we shall always assume that the distributions of
the latent positions satisfy the following distinct eigenvalues assumption. The assumption im-
plies that the estimates of the latent position obtained by the adjacency spectral embedding in
Definition 2 will, in the limit, be uniquely determined.

Assumption 1. The distribution F for the latent positions X1,X2, . . . ,∼ F is such that the sec-
ond moment matrix E[X1X

�
1 ] has d distinct eigenvalues and d is known.

The motivation behind this assumption is as follows: the matrix E[X1X
�
1 ] is of rank d with d

known so that given a graph A ∼ RDPG(F ), one can construct the adjacency spectral embedding
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of A into the “right” Euclidean space. The requirement that E[X1X
�
1 ] has d distinct eigenvalues

is due to the intrinsic property of non-identifiability of random dot product graphs, that is, for any
random dot product graph A, the latent position X associated with A can only be estimated up to
some true but unknown orthogonal transformation. Because we are concerned with two-sample
hypothesis testing, we must guard against the scenario in which we have two graphs A and B

with latent positions X = {Xi}ni=1
i.i.d.∼ F and Y = {Yk}mk=1

i.i.d.∼ F but their estimates X̂ and Ŷ
lie in different, incommensurate subspaces of Rd . That is to say, the estimates X̂ and Ŷ satisfy
X̂ ≈ XW1 and Ŷ ≈ YW2, but ‖W1 − W2‖F does not converge to 0 as n,m → ∞. See also [10]
for exposition of a related so-called “incommensurability phenomenon.”

Indeed, we recognize that Assumption 1 is restrictive; in particular, it is not satisfied by the
stochastic block model with K > 2 blocks of equal size and edge probabilities p within commu-
nities and q between communities. However, we are not aware of any two-sample nonparametric
inference procedure in which the incommensurability problem is resolved, and Assumption 1
still permits two-sample nonparametric inference on a wide class of random graphs.

Remark. This issue of incommensurability is an intrinsic feature of many dimension reduction
techniques, and is not simply an artificial complication that arises in graph estimation. Consider,
for example, principal component analysis in the following setting. Let X,Y ∈ R

n×d and sup-
pose that the rows of X and Y are i.i.d. from some distribution F . Furthermore, suppose that X
and Y are unobserved, but instead X and Y are to be estimated or recovered from some higher
dimension data X∗ = [X | Z] ∈ R

n×D , and Y∗ = [Y | Z′] ∈ R
n×D , say via principal component

analysis, where Z and Z′ are n × (D − d) matrices whose rows are i.i.d. from some other dis-
tribution H . That is to say, X is recovered via principal component analysis of X∗ into R

d and
similarly for Y. Then depending on the covariance structure of F and H , the recovered X and Y
could lie in incommensurate subspaces.

3.1. Two technical lemmas

We now state two technical lemmas. The first lemma is the culmination of results from [20]
and [32]. The second lemma lays the foundation for an empirical process result and is also a
central ingredient for showing the convergence to zero of a suitably scaled version of our test
statistic in the two-sample setting.

Lemma 2. Let (X,A) ∼ RDPG(F )be a d-dimensional random dot product graph on n vertices
with latent position distributions F satisfying the conditions in Assumption 1. Let c > 0 be arbi-
trary but fixed. There exists n0(c) such that if n ≥ n0 and η satisfies n−c < η < 1/4, then there
exists an orthogonal matrix W dependent on X such that, with probability at least 1 − 4η,

‖X̂ − XW‖F ≤ C1, (3.1)

‖X̂ − XW‖2→∞ ≤ C2

√
log (n/η)

n
, (3.2)

where C1 and C2 are constants depending only on F and n0(c).



A nonparametric two-sample hypothesis testing problem for random graphs 1607

Lemma 2 bounds the difference between X̂ and X namely the Frobenius norm ‖ · ‖F and
the maximum of the l2 norms of the rows ‖ · ‖2→∞. The norm ‖ · ‖2→∞ is induced by the
vector norms ‖ · ‖2 and ‖ · ‖∞ via ‖A‖2→∞ = max‖x‖2=1 ‖Ax‖∞. Equation (3.2) follows from
Lemma 2.5 in [20] while equation (3.1) follows from Theorem 2.3 in [32].

As a quick application of Lemma 2, suppose (X,A) ∼ RDPG(F ) and (Y,B) ∼ RDPG(G)

where the latent position distributions F and G satisfy the distinct eigenvalues assumption and
consider the hypothesis test of H0:F �G. Let κ be a differentiable radial kernel and Un,m(X̂, Ŷ)

is defined as

Un,m(X̂, Ŷ) = 1

n(n − 1)

∑
j �=i

κ(X̂i , X̂j ) − 2

mn

n∑
i=1

m∑
k=1

κ(X̂i, Ŷk) + 1

m(m − 1)

∑
l �=k

κ(Ŷk, Ŷl).

Then there exists a deterministic unitary matrix W0 such that

Un,m(X̂, Ŷ) − Un,m(X,YW0) → 0

almost surely as n,m → ∞. This can be seen as follows. Let Wn and Vm be orthogonal matrices
in the eigendecomposition WnS1Wn = X�X, VmS2Vm = Y�Y, respectively. Then

Un,m(X̂, Ŷ) − Un,m(XWn,YVm) = 1

n(n − 1)

∑
j �=i

(
κ(X̂i, X̂j ) − κ(WnXi,WnXj )

)

− 2

mn

n∑
i=1

m∑
k=1

(
κ(X̂i, Ŷk) − κ(WnXi,VmYk)

)

+ 1

m(m − 1)

∑
l �=k

(
κ(Ŷk, Ŷl) − κ(VmYk,VmYl)

)
.

By differentiability of κ and compactness of �, we have∣∣κ(X̂i, X̂j ) − κ(WnXi,WnXj )
∣∣

≤ C max
{‖X̂i − WnXi‖,‖X̂j − WnXj‖

} ≤ C‖X̂ − XWn‖2→∞,

for some constant C independent of i and j . Similarly∣∣κ(Ŷk, Ŷl) − κ(VmYk,VmYl)
∣∣ ≤ C‖Ŷ − YVm‖2→∞,∣∣κ(X̂i, Ŷk) − κ(WnXi,VmYk)
∣∣ ≤ C

(‖X̂ − XWn‖2→∞ + ‖Ŷ − YVm‖2→∞
)
.

Thus, ∣∣Un,m(X̂, Ŷ) − Un,m(XWn,YVm)
∣∣ ≤ 2C

(‖X̂ − XWn‖2→∞ + ‖Ŷ − YVm‖2→∞
)

which converges, by Lemma 2, to zero almost surely as n,m → ∞. Furthermore,

Un,m(XWn,YVm) = Un,m

(
X,YVmW�

n

)
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as κ is a radial kernel. We have that

n−1X�X = n−1W�
1 S1W1 and

m−1Y�Y = m−1W�
2 S2W2

are
√

n-consistent and
√

m-consistent estimators of E[X1X
�
1 ] and E[Y1Y

�
1 ], respectively. Since

F and G satisfy the distinct eigenvalues condition, we can apply the Davis–Kahan theorem
to each individual eigenvectors of E[X1X

�
1 ] and E[Y1Y

�
1 ], thereby showing that Wn and Vm

are
√

n-consistent and
√

m-consistent estimator of the corresponding orthogonal matrices in the
eigendecomposition of E[X1X

�
1 ] and E[Y1Y

�
1 ], respectively. If F �G, that is, F = G ◦ W0 for

W0 orthogonal, then VmW�
n = W0 + O(max{n−1/2,m−1/2}) and hence∣∣Un,m(X̂, Ŷ) − Un,m(X,YW0)

∣∣ = ∣∣Un,m(X̂, Ŷ) − Un,m

(
X,YVmW�

n

)∣∣
+ O

(
max

{
n−1/2,m−1/2})

which also converges to zero almost surely. That is to say, the test statistic based on the estimated
latent position converges to the statistic based on the true but unknown latent positions. Thus one
can construct, using the test statistics Un,m(X̂, Ŷ), a test procedure for H0:F / �G that is consistent
against all fixed alternatives F / �G. This is in essence a first order result; in this regard, it is similar
in spirit to first order consistency results for spectral clustering [28] and vertex classification [29].
However, as we recall from Theorem 1, in order to obtain a non-degenerate limiting distribution,
we want to consider the scaled statistics (m + n)Un,m(X,Y). Showing the convergence to zero
of (m + n)(Un,m(X̂, Ŷ) − Un,m(X,YVmW�

n )) is much more involved and is the main impetus
behind the following lemma.

Lemma 3. Let κ be a twice continuously differentiable kernel. Let F� = {�(Z):Z ∈ �} where
�(Z) = κ(·,Z) is the feature map of κ , that is, f ∈ F� if f (X) = κ(X,Z) for some Z. Sup-
pose (Xn,An) ∼ RDPG(F ) for n = 1,2, . . . is a sequence of d-dimensional random dot product
graphs and the latent positions distribution F satisfies the distinct eigenvalues condition in As-
sumption 1. Denote by Wn the orthogonal matrix in the eigendecomposition WnSnW�

n = X�
n Xn.

Then as n → ∞, the sequence Wn satisfies

sup
f ∈F�

∣∣∣∣∣ 1√
n

n∑
i=1

(
f (WnX̂i) − f (Xi)

)∣∣∣∣∣ → 0

almost surely, where X̂n = {X̂i}ni=1 is the adjacency spectral embedding of An.

Lemma 3 is the main technical result of this paper. Using the bound on ‖X̂ − XW‖2→∞ from
Lemma 2 implies that for some class of continuous functions F , e.g., continuous functions of
the form φ(‖ · −c‖) for all c in a compact subset of Rd , there exists a sequence of orthogonal
matrices Wn such that

sup
f ∈F

∣∣∣∣∣1

n

n∑
i=1

(
f (WnX̂i) − f (Xi)

)∣∣∣∣∣ → 0
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almost surely as n → ∞ [20], Theorem 15. Lemma 3 improves upon this; for some special
class F , the above also holds with the factor 1/n replaced by a factor of 1/

√
n.

The proof of Lemma 3 is given in the Appendix. A rough sketch of the proof is as follows. For
fixed f ∈ F�, a Taylor expansion allows one to write n−1/2 ∑n

i=1(f (WnX̂i) − f (Xi)) in terms

of
∑

i λ
−1/2
i v�

i (A − P)ui for unit vectors vi depending on f and ui depending on {Xi}; here

λi are the eigenvalues of P. Hoeffding’s inequality applied to the sum
∑

i λ
−1/2
i u�

i (A − P)vi

provides an exponential tail bound for each f ∈ F�. A chaining argument similar to that in [33],
Section 3.2, and bounds for the so-called covering number of F� (again, see [33], Section 2.3,
for a precise definition) lead to an exponential tail bound that is uniform over all f ∈ F�.

The application of Lemma 3 to our nonparametric two-sample hypothesis testing problem is
presented in Section 3.3. Another interesting consequence of Lemma 3 is a functional central
limit theorem for X̂, which is the topic of the following subsection.

3.2. A functional central limit theorem for X̂

By replacing the class of functions F� in Lemma 3 with a more general class of functions F
whose covering numbers are still “small,” a similar chaining argument can be adapted to yield
the following functional central limit theorem. (For a comprehensive discussion of functional
central limit theorems, see, for example, [9,34] and the references therein.) We first recall certain
definitions, which we reproduce from [34]. Let Xi,1 ≤ i ≤ n be identically distributed random
variables on a measure space (X ,B), and let Pn be their associated empirical measure; that is,
Pn is the discrete random measure defined, for any E ∈ B, by

Pn(E) = 1

n

n∑
i=1

1E(Xi).

Let P denote the common distribution of the random variables Xi , and suppose that F is a class
of measurable, real-valued functions on X . The F -indexed empirical process Gn is the stochastic
process

f �→ Gn(f ) = √
n(Pn − P)f = 1√

n

n∑
i=1

(
f (Xi) −E

[
f (Xi)

])
.

Under certain conditions, the empirical process {Gn(f ) : f ∈ F} can be viewed as a map into
�∞(F), the collection of all uniformly bounded real-valued functionals on F . In particular, let F
be a class of functions for which the empirical process Gn = √

n(Pn −P) converges to a limiting
process G where G is a tight Borel-measurable element of �∞(F) (more specifically a Brownian
bridge). Then F is said to be a P -Donsker class, or for brevity, P -Donsker [34], Section 2.1.
A sufficient condition, albeit a rather strong one, for F to be P -Donsker is via the entropy for the
supremum norm. That is, let N∞(δ,F) be the smallest value of N such that there exists {fj }Nj=1
with supf ∈F minj ‖f − fj‖∞ ≤ δ. Then F is P -Donsker for any P if [34], Section 2.5.2,∫ ∞

0

√
logN∞(δ,F)dδ < ∞. (3.3)
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As an example, let F be the unit ball associated with a kernel κ on a compact � ⊂ R
d . Then

F is P -Donsker provided κ is m-times continuously differentiable on � for some m ≥ 2d + 1
[34], Theorems 2.7.1 and 2.5.6. The unit ball associated with the Gaussian kernel on Rd is thus
P -Donsker for all d .

Theorem 4. Let (Xn,An) for n = 1,2, . . . , be a sequence of d-dimensional RDPG(P ) where
the latent position distribution P satisfies the distinct eigenvalues condition in Assumption 1. Let
F be a collection of (at least) twice continuously differentiable functions on � with

sup
f ∈F ,X∈�

∥∥(∂f )(X)
∥∥ < ∞; sup

f ∈F ,X∈�

∥∥(
∂2f

)
(X)

∥∥ < ∞.

Furthermore, suppose F satisfies equation (3.3) so that Gn = √
n(Pn −P) converges to G, a P -

Brownian bridge on �∞(F). Denote by Wn the orthogonal matrices in the eigendecomposition
WnSnW�

n = X�
n Xn. Then as n → ∞, the F -indexed empirical process

f ∈F �→ Ĝnf = 1√
n

n∑
i=1

(
f (WnX̂i) −E

[
f (Xi)

])
(3.4)

also converges to G on �∞(F).

Theorem 4 is in essence a functional central limit theorem for the estimated latent positions
{X̂i} in the random dot product graph setting. We emphasize that for any n, the {X̂i}ni=1 are not
jointly independent random variables, that is, Theorem 4 is a functional central limit theorem for
dependent data. Due to the non-identifiability of random dot product graphs, there is an explicit
dependency on the sequence of orthogonal matrices Wn; note, however, that Wn depends solely
on Xn and not on the {X̂i}.

3.3. Consistent testing

We now consider testing the hypothesis H0:F �G using the kernel-based framework of Sec-
tion 2.2. For our purpose, we shall assume henceforth that κ is a twice continuously-differentiable
radial kernel and that κ is also universal. Examples of such kernels are the Gaussian kernels and
the inverse multiquadric kernels κ(x, y) = (c2 + ‖x − y‖2)−β for c,β > 0.

To justify this assumption on our kernel, we remark that in Theorem 5 below, we show that
the test statistic Un,m(X̂, Ŷ) based on the estimated latent positions converges to the correspond-
ing statistic Un,m(X,Y) for the true but unknown latent positions. Due to the non-identifiability
of the random dot product graph under unitary transformation, any estimate of the latent posi-
tions is close, only up to an appropriate orthogonal transformations, to X and Y. We have seen
in Section 3.1 that for a radial kernel, this implies the approximations κ(X̂i, X̂j ) ≈ κ(Xi,Xj ),
κ(Ŷk, Ŷl) ≈ κ(Yk,Yl) and the convergence of Un,m(X̂, Ŷ) to Un,m(X,Y). If κ is not a radial ker-
nel, the above approximations might not hold and Un,m(X̂, Ŷ) need not converge to Un,m(X,Y).
The assumption that κ is twice continuously-differentiable is for the technical conditions of
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Lemma 3. Finally, the assumption that κ is universal allows the test procedure to be consistent
against a large class of alternatives.

Theorem 5. Let (X,A) ∼ RDPG(F ) and (Y,B) ∼ RDPG(G) be independent random dot prod-
uct graphs with latent position distributions F and G. Furthermore, suppose that both F and G

satisfies the distinct eigenvalues condition in Assumption 1. Consider the hypothesis test

H0:F �G against HA:F / �G.

Denote by X̂ = {X̂1, . . . , X̂n} and Ŷ = {Ŷ1, . . . , Ŷm} the adjacency spectral embedding of A
and B, respectively. Let W1 and W2 be d × d orthogonal matrices in the eigendecomposition
W1S1W�

1 = X�X, W2S2W2 = Y�Y, respectively. Suppose that m,n → ∞ and m/(m + n) →
ρ ∈ (0,1). Then under the null hypothesis of F �G, the sequence of matrices Wn,m = W2W�

1
satisfies

(m + n)
(
Un,m(X̂, Ŷ) − Un,m(X,YWn,m)

) a.s.−→ 0. (3.5)

Under the alternative hypothesis of F / �G, the sequence of matrices Wn,m satisfies

m + n

log2 (m + n)

(
Un,m(X̂, Ŷ) − Un,m(X,YWn,m)

) a.s.−→ 0. (3.6)

Proof. We first define the statistic Vn,m(X,Y)

Vn,m(X,Y) =
∥∥∥∥∥1

n

n∑
i=1

�(Xi) − 1

m

m∑
k=1

�(Yk)

∥∥∥∥∥
2

H
(3.7)

= 1

n2

n∑
i=1

n∑
j=1

κ(Xi,Xj ) − 2

mn

n∑
i=1

m∑
k=1

κ(Xi,Yk) + 1

m2

m∑
k=1

m∑
l=1

κ(Yk,Yl).

We shall prove that the difference

(m + n)
(
Vn,m(X̂, Ŷ) − Vn,m(X,YWn,m)

) a.s−→ 0 (3.8)

under the hypothesis F �G. The claim (m + n)(Un,m(X̂, Ŷ) − Un,m(X,YWn,m))
a.s.−→ 0 in The-

orem 5 follows from equation (3.8) and the following expression

(m + n)
(
Vn,m(X̂, Ŷ) − Vn,m(X,YWn,m)

)
= (m + n)

(
Un,m(X̂, Ŷ) − Un,m(X,YWn,m)

) + r1 + r2,

where r1 and r2 are defined as (recall that κ is a radial kernel)

r1 = m + n

n(n − 1)

n∑
i=1

(
κ(Xi,Xi) − κ(X̂i, X̂i)

) + m + n

m(m − 1)

m∑
k=1

(
κ(Yk,Yk) − κ(Ŷk, Ŷk)

)
,
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r2 = m + n

n2(n − 1)

n∑
i=1

n∑
j=1

(
κ(Xi,Xj ) − κ(X̂i, X̂j )

) + m + n

m2(m − 1)

m∑
k=1

m∑
l=1

(
κ(Yk,Yl) − κ(Ŷk, Ŷl)

)
.

As κ is twice continuously differentiable, we can show, by the compactness of � and the bounds
in Lemma 2 that both r1 and r2 converges to 0 almost surely. In particular, there exists a constant
L such that both |r1| and |r2| is bounded from above by

L(m + n)

{‖X̂ − XW1‖2→∞
n − 1

+ ‖Ŷ − YW2‖2→∞
m − 1

}
.

We thus proceed to establishing equation (3.8). Define ξW , ξ̂ ∈ H by

ξW =
√

m + n

n

n∑
i=1

κ(W1Xi, ·) −
√

m + n

m

m∑
k=1

κ(W2Yk, ·);

ξ̂ =
√

m + n

n

n∑
i=1

κ(X̂i, ·) −
√

m + n

m

m∑
k=1

κ(Ŷk, ·).

Note that∣∣(m + n)
(
Vn,m(X̂, Ŷ) − Vn,m(X,YWn,m)

)∣∣ = ∣∣‖ξW‖2
H − ‖ξ̂‖2

H
∣∣

≤ ‖ξW − ξ̂‖H
(
2‖ξW‖H + |ξW − ξ̂‖H

)
.

We now bound the terms ‖ξW − ξ̂‖H and ‖ξW‖H. We first bound ‖ξW‖H. Let T1 and T2 be the
orthogonal matrices in the eigendecomposition of E[X1X

�
1 ] and E[Y1Y

�
1 ]. The distinct eigenval-

ues condition in Assumption 1 implies, by the Davis–Kahan theorem, that W1 = T1 +O(n−1/2)

and W2 = T2 + O(m−1/2). When F �G, F ◦ T1 = G ◦ T2 and hence by adding and subtracting
terms, we have

ξW =
√

m + n

n

n∑
i=1

κ(T1Xi, ·) − μ[F ◦ T1]√
n

−
√

m + n

m

m∑
k=1

κ(T2Yk, ·) − μ[G ◦ T2]√
m

+ O(1).

That is, ξW − O(1) is a sum of independent mean zero random elements of H. In addition
‖κ(Z, ·) − μ[F ]‖H ≤ 2 for any Z ∈ R

d . Using a Hilbert space concentration inequality [23],
Theorem 3.5, we obtain that

P
[‖ξW‖H ≥ √

m + n(s/
√

n + t/
√

m)
] ≤ 2

(
exp

(−(1 + m/n)s2/8
) + exp

(−(1 + n/m)t2/8
))

,

which implies that ‖ξW‖H is bounded in probability. We now bound ‖ξW − ξ̂‖H. We have

ξW − ξ̂ =
√

m + n

n

n∑
i=1

κ(W1Xi, ·) − κ(X̂i, ·)√
n

−
√

m + n

n

m∑
k=1

κ(W2Yk, ·) − κ(Ŷk, ·)√
m
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and Lemma 3 implies (as κ is radial)

√
m + n

n

n∑
i=1

κ(W1Xi, ·) − κ(X̂i, ·)√
n

a.s.−→ 0;
√

m + n

n

m∑
k=1

κ(W2Yk, ·) − κ(Ŷk, ·)√
m

a.s.−→ 0

as m,n → ∞, m/n → ρ ∈ (0,1). Thus ‖ξW − ξ̂‖H → 0 and equations (3.8) and (3.5) are estab-
lished.

We now derive equation (3.6). We note that in the case when F / �G, one still has

∣∣(m + n)
(
Vn,m(X̂, Ŷ) − Vn,m(X,YWn,m)

)∣∣ ≤ ‖ξW − ξ̂‖H
(
2‖ξW‖H + ‖ξW − ξ̂‖H

)
,

where ξ̂ and ξW are defined identically to the case when F �G. However, when F / �G, the bound
‖ξW‖H = O(1) with high probability no longer holds. Indeed, when F / �G,

ξW − O(1) =
√

m + n

n

n∑
i=1

κ(T1Xi, ·) −
√

m + n

m

m∑
k=1

κ(T2Yk, ·)

is not a sum of mean 0 random variables. We thus bound ‖ξW‖H = O(
√

n logn) with high
probability. The proof of Lemma 3 yields ‖ξ̂ − ξW‖H = O(n−1/2 logn) with high probability
(see equation (A.7) in the Appendix). Hence, |(m + n)(Vn,m(X̂, Ŷ) − Vn,m(X,YWn,m))| is of
order log3/2 n with high probability and equation (3.6) follows. �

Equations (3.5) and (3.6) state that the test statistic Un,m(X̂, Ŷ) using the estimated latent
positions is almost identical to the statistic Un,m(X,YWn,m) defined in equation (2.2) using the
true latent positions, under both the null and alternative hypothesis. Because κ is a universal
kernel, Un,m(X,YWn,m) converges to 0 under the null and converges to a positive number under
the alternative. The test statistic Un,m(X̂, Ŷ) therefore yields a test procedure that is consistent
against any alternative, provided that both F and G satisfy Assumption 1, namely that the second
moment matrices have d distinct eigenvalues.

We note that a subtle point in the statement and argument of the theorem is that Wn,m is
a random quantity depending on Xn and Ym. There does exist a deterministic matrix W0 de-
pending only on F and G such that Wn,m → W0 almost surely as m,n → ∞. Indeed, from
the proof of the theorem, we have that W1 is a

√
n-consistent estimator of T1 where T1 is the

orthogonal matrix in the eigendecomposition of E[X1X
�
1 ] and that W2 is a

√
m-consistent es-

timator of T2 where T2 is the orthogonal matrix in the eigendecomposition of E[Y1Y
�
1 ]. Under

the null hypothesis, F ◦ T1 = G ◦ T2; hence if we define W0 as T2T�
1 , then W2W�

1 is a
√

n-
consistent estimator of W0. This convergence of order O(n−1/2) is, however, not sufficiently
fast to guarantee that (m + n)(Un,m(X̂, Ŷ) − Un,m(X,YW0)) converges to zero almost surely
when F �G. For example, let F be a mixture of two multivariate logit-normal distributions with
mean parameters (0,0), (4,4), identity covariance matrices and mixture components (0.4,0.6);
let G be a multivariate logit-normal distribution with mean parameter (2,2) and identity covari-
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Figure 1. Comparison between the random Wn,m and fixed but unknown W0. The empirical distribu-
tions of (m + n)(Un,m(X̂, Ŷ) − Un,m(X,YW0)) (in red) and (m + n)(Un,m(X̂, Ŷ) − Un,m(X,YWn,m)

(in blue) under (a) the null setting of (X,A) ∼ F, (Y,B) ∼ F and (b) the alternative setting of
(X,A) ∼ F, (Y,B) ∼ G.

ance matrix. Figure 1 illustrates that the difference (m+n)(Un,m(X̂, Ŷ)−Un,m(X,YWn,m)) is in
general smaller compared to the difference (m+n)(Un,m(X̂, Ŷ)−Un,m(X,YW0)), thereby com-
plicating the derivation of the exact nondegenerate limiting distribution for (m + n)Um,n(X̂, Ŷ).
Nevertheless, since the nondegenerate limiting distribution for (m + n)Um,n(X̂, Ŷ) will not be
distribution-free, the fact that it is currently unknown is, for all practical purposes, irrelevant.
Indeed, the proposed test statistic still yields a consistent test procedure whose critical values can
be obtained through a simple bootstrapping procedure.

Remark. The computational cost for implementing the test procedure in Theorem 5 consist
mainly of two parts, namely computing the adjacency spectral embedding of the graphs A and B,
and computing the test statistic Un,m(X̂, Ŷ). Assuming n ≥ m, the adjacency spectral embedding
of A and B into R

d is a (partial) singular value decomposition of A and B and thus can be
computed in O(n2d) time. The test statistic Un,m(X̂, Ŷ) can be evaluated in O(n2) time.

Remark. The proof of Theorem 5 can be adapted to show that data-adaptive bandwidth selec-
tions behave similarly for X̂ and Ŷ as for X and Y. That is to say, we can show that under the null
hypothesis, �θ = (m+n)(Un,m(X̂, Ŷ)−Un,m(X,YWn,m)) converges to 0 uniformly over some
family of kernels {κθ : θ ∈ �}. For example, {κθ : θ ∈ �} could be the set of Gaussian kernels with
bandwidth θ ∈ � for some bounded set � ⊂R+.
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4. Experimental results

In this section, we illustrate our test statistic and procedure with two examples. The first example
investigates the comparison of distinct two-block stochastic blockmodels. The second example
considers graphs from a protein network dataset and uses our proposed test statistic to build a
classifier.

4.1. Stochastic blockmodel example

We illustrate the hypothesis tests through several simulated and real data examples. For our first
example, let Fε for a given ε > 0 be mixture of point masses corresponding to a two-block
stochastic block model with block membership probabilities (0.4,0.6) and block probabilities

Bε = [ 0.5 + ε 0.2
0.2 0.5 + ε

]. We then test, for a given ε > 0, the hypothesis H0:F0 �Fε against the

alternative HA:F0 / �Fε using the kernel-based testing procedure of Section 3. The kernel is cho-
sen to be the Gaussian kernel with bandwidth σ = 0.5. We first evaluate the performance through
simulation using 1000 Monte Carlo replicates; in each replicate we sample two graphs on n ver-
tices from RDPG(F0) and one graph on n vertices from RPDG(Fε). We then perform an adja-
cency spectral embedding on the graphs, in which we embed the graphs into R

2, and we proceed
to compute the kernel-based test statistic. We evaluate the performance of the test procedures for
both Un,m(X,Y) and Un,m(X̂, Ŷ) by estimating the power of the test statistic for various choices
of n ∈ {100,200,500,1000} and ε ∈ {0.02,0.05,0.1} through Monte Carlo simulation. The sig-
nificance level is set to α = 0.05 and the rejection regions are specified via B = 200 bootstrap
permutation using either the true latent positions X and Y or the estimated latent positions X̂
and Ŷ. These estimates are given in Table 1.

4.2. Classification of protein networks

For our last example, we show how the statistics Un,m(X̂, Ŷ) can also be adapted for use in graphs
classification. More concretely, we consider the problem of classifying proteins network into en-

Table 1. Power estimates for testing the null hypothesis F �G at a significance level of α = 0.05 using
bootstrap permutation tests for the U -statistics Un,m(X̂, Ŷ) and Un,m(X,Y). In each bootstrap test, B =
200 bootstrap samples were generated. Each estimate of power is based on 1000 Monte Carlo replicates of
the corresponding bootstrap test

ε = 0.02 ε = 0.05 ε = 0.1

n {X,Y} {X̂, Ŷ} {X,Y} {X̂, Ŷ} {X,Y} {X̂, Ŷ}
100 0.07 0.06 0.07 0.09 0.21 0.27
200 0.06 0.09 0.11 0.17 0.89 0.83
500 0.08 0.1 0.37 0.43 1 1

1000 0.1 0.14 1 1 1 1
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Table 2. Classification accuracy on the enzyme dataset

Classifier Accuracy (%)

SVM with optimized feature vector kernel [8] 80.17
SVM with random walk kernel with secondary structure [5] 77.30
k-NN with dissimilarities based on Un,m 78.20

zyme versus non-enzymes. We use the dataset of [8], which consists of 1178 protein networks
labeled as enzymes (691 networks) and non-enzymes (487 networks). For our classification pro-
cedure, we first embed each of the protein networks into R

5 using adjacency spectral embedding.
The choice of d = 5 is chosen from among the choices of embedding dimensions ranging from
d = 2 through d = 15 to minimize the classification error rate. We then compute a 1178 × 1178
matrix S of pairwise dissimilarity between the adjacency spectral embedding of the protein net-
works using a Gaussian kernel with bandwidth h = 1. The classifier is a k-NN classifier using
the dissimilarities in S in place of the Euclidean distance. We evaluate the classification accuracy
using a 10-fold cross validation. The results are presented in Table 2. For the purpose of com-
parison, we also include the accuracy of several other classifiers that were previously applied
on this data set, see [5,8]. The results of [8] are based on modeling the proteins using various
features such as secondary-structure content, surface properties, ligands, and amino acid propen-
sities, and then training a SVM using a radial basis kernel on these feature vectors. The results of
[5] are based on representing the proteins as graphs, using their secondary-structure content, and
then training a SVM classifier using a random walk kernel on the result graphs. The accuracy
of our straightforward classifier, which does not use any information about associated secondary
structure, is comparable to that obtained from using SVM with a well-designed features kernel
or well-designed graph kernels.

5. Extensions

In this section, we will consider extensions to alternative hypothesis tests that consider looser
notions of equality between the two distributions. These notions may be quite useful in practice
due to variations in graph properties that one may want to ignore in a comparison of the graphs.
We do not formally state results for these extensions but we note that they can be derived in a
similar manner to Theorem 5; see Sections A.1 and A.2 in the Appendix.

5.1. Scaling case

We now consider the case of testing the hypothesis that the distributions F and G are equal up
to scaling. In particular, the test

H0:F �G ◦ c for some c > 0 against HA:F / �G ◦ c for any c > 0,
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Table 3. Power estimates for testing the null hypothesis F �G ◦ c at a significance level of α = 0.05
using bootstrap permutation tests for the U -statistics Un,m(X̂/ŝX, Ŷ/ŝY ) and Un,m(X/sX,Y/sY ). In each
bootstrap test, B = 200 bootstrap samples were generated. Each estimate of power is based on 1000 Monte
Carlo replicates of the corresponding bootstrap test. The entries for ε = 0 coincides with bootstrap estimate
for the size of the test

ε = 0 ε = 0.05 ε = 0.1 ε = 0.2

n {X,Y} {X̂, Ŷ} {X,Y} {X̂, Ŷ} {X,Y} {X̂, Ŷ} {X,Y} {X̂, Ŷ}
100 0.05 0.04 0.184 0.02 0.79 0.16 1 0.91
200 0.06 0.1 0.39 0.11 0.98 0.7 1 1
500 0.07 0.07 0.83 0.66 1 1 1 1

1000 0.06 0.03 1 0.98 1 1 1 1

where Y ∼ F ◦ c if cY ∼ F . The test statistic is now a simple modification of the one in The-
orem 5, that is, we first scale the adjacency spectral embeddings by the norm of the empirical
means before computing the kernel test statistic. In particular, if we let

ŝX = n−1/2‖X̂‖F , ŝY = m−1/2‖Ŷ‖F , sX = n−1/2‖X‖F , sY = m−1/2‖Y‖F ,

then the conclusions of Theorem 5 hold where we use Un,m(X̂/ŝX, Ŷ/ŝY ) as the test statistic in
comparison to Un,m(X/sX,YWn,m/sY ). Note that we must restrict c so that G ◦ c is still a valid
distribution for an RDPG.

As an example let Fε be the uniform distribution on [ε,1/
√

2]2 where ε ≥ 0 and let G be
the uniform distribution on [0,1/

√
3]2. For a given ε, we test the hypothesis H0:Fε �G ◦ c for

some constant c > 0 against the alternative HA:Fε / �G ◦ c for any constant c > 0. The testing
procedure is based on the test statistic (m + n)Un,m(X̂/ŝX, Ŷ/ŝY ) using a Gaussian kernel with
bandwidth σ = 0.5. Table 3 is the analogue of Table 1 and presents estimates of the size and
power for Un,m(X/sX,Y/sY ) and Un,m(X̂/ŝX, Ŷ/ŝY ) for various choices of n and ε.

5.2. Projection case

We next consider the case of testing

H0:F ◦ π−1 �G ◦ π−1 against HA:F ◦ π−1 / �G ◦ π−1,

where π is the projection x �→ x/‖x‖ that maps x onto the unit sphere in Rd . In an abuse of
notation, we will also write π(X) to denote the row-wise projection of the rows of X onto the
unit sphere.

We shall assume that 0 is not an atom of either F or G, that is, F(0) = G(0) = 0, for otherwise
the problem is possibly ill-posed: specifically, π(0) is undefined. In addition, for simplicity in the
proof, we shall also assume that the support of F and G is bounded away from 0, that is, there
exists some ε > 0 such that F({x:‖x‖ ≤ ε}) = G({x:‖x‖ ≤ ε}) = 0. A truncation argument with
ε → 0 allows us to handle the general case of distributions on � where 0 is not an atom.
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To contextualize the test of equality up to projection, consider the very specific case of the
degree-corrected stochastic blockmodel [16]. A degree-corrected stochastic blockmodel can be
view as a random dot product graph whose latent position Xv for an arbitrary vertex v is of
the form Xv = θvνv where νv is sampled from a mixture of point masses and θv (the degree-
correction factor) is sampled from a distribution on (0,1]. Thus, given two degree-corrected
stochastic blockmodel graphs, equality up to projection tests whether the underlying mixture
of point masses (that is, the distribution of the νv) are the same modulo the distribution of the
degree-correction factors θv .

For this test, under the assumption that both F and G have supports bounded away from the
origin, the conclusions of Theorem 5 hold where we use Un,m(π(X̂),π(Ŷ)) as the test statistic
and compare it to Un,m(π(X),π(Y)Wn,m).

5.3. Local alternatives and sparsity

We now consider the test procedure of Theorem 5 in the context of (1) local alternatives and (2)
sparsity. It is not hard to show that the test statistic Un,m(X̂, Ŷ) is also consistent against lo-
cal alternatives, in particular the setting (Xn,An) ∼ RDPG(Fn), (Yn,Bn) ∼ RDPG(Gn) with
‖μ[Fn] − μ[Gn]‖H → 0. In this setting, the accuracy of X̂n and Ŷn as estimates for Xn and
Yn is unchanged; the only difference is that the distance between Fn and Gn is shrinking. Thus
equations (3.5) and (3.6) continue to hold and the test procedure is consistent against all local
alternatives for which ‖μ[F ] − μ[G]‖H = ω(n−1/2 logK(n)) for some integer K ≥ 2 (cf. [11],
Theorem 13).

Another related setting is that of sparsity, in which (Xn,An) ∼ RDPG(α
1/2
n F ), (Yn,Bn) ∼

RDPG(α
1/2
n G), with F and G being fixed distributions but the sparsity factor αn → 0. That is

to say, (Xn,An) ∼ RDPG(α
1/2
n F ) for αn ≤ 1 if the rows of Xn are sampled i.i.d. from F and,

conditioned on Xn, An is a random n × n adjacency matrix with probability

P
[
A|{Xi}ni=1

] =
∏
i≤j

(
αnX

�
i Xj

)Aij
(
1 − αnX

�
i Xj

)1−Aij .

Now the accuracy of X̂n and Ŷn as estimates for Xn and Yn decreases with αn due to increas-
ing sparsity. More specifically, if X̂n denotes the adjacency spectral embedding of An where
(Xn,An) ∼ RDPG(αnF ), then Lemma 2 can be extended to yield that, with probability at least
1 − 4η, there exists an orthogonal matrix Wn such that∥∥α

−1/2
n X̂n − XnWn

∥∥
F

≤ α
−1/2
n C1 (5.1)

for some constant C1. We note that there are n rows in X̂n and hence, on average, we have that
for each index i, ‖α−1/2

n X̂i − WnXi‖ ≤ (nαn)
−1/2C1 with high probability. Thus, if nαn →

∞, we have that, on average, each α
−1/2
n X̂i is a consistent estimate of the corresponding Xi .

Thus we should expect that there exists some sequence of orthogonal matrices Vn such that
|Un,m(α

−1/2
n X̂n,α

−1/2
n Ŷn) − Un,m(Xn,YnVn)| → 0 as n → ∞. More formally, we have the

following.
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Proposition 6. Let (Xn,An) ∼ RDPG(α
1/2
n F ) and (Ym,Bm) ∼ RDPG(β

1/2
m G) be independent

random dot product graphs with latent position distributions F and G and sparsity factor αn

and βm, respectively. Furthermore, suppose that both F and G satisfies the distinct eigenvalues
condition in Assumption 1 and that αn and βm are known. Consider the hypothesis test

H0:F �G against HA:F / �G.

Denote by X̂n = {X̂1, . . . , X̂n} and Ŷm = {Ŷ1, . . . , Ŷm} the adjacency spectral embedding of
An and Bm, respectively. Let W1 and W2 be d × d orthogonal matrices in the eigende-
composition W1S1W�

1 = X�
n Xn, W2S2W2 = Y�

mYm, respectively. Suppose that m,n → ∞,
m

m+n
→ ρ ∈ (0,1) and furthermore that nαn = ω(log4 n) and mβm = ω(log4 m). Then the se-

quence of matrices Wn,m = W2W�
1 satisfies

Un,m

(
α

−1/2
n X̂n,β

−1/2
m Ŷm

) − Un,m(Xn,YmWn,m)
a.s.−→ 0. (5.2)

Proof Sketch. Let ψ = Un,m(α
−1/2
n X̂n,β

−1/2
m Ŷm) − Un,m(Xn,YmWn,m). We have

ψ = 1

n(n − 1)

∑
j �=i

(
κ
(
α

−1/2
n X̂i, α

−1/2
n X̂j

) − κ(W1Xi,W1Xj)
)

− 2

mn

n∑
i=1

m∑
k=1

(
κ
(
α

−1/2
n X̂i, β

−1/2
m Ŷk

) − κ(W1Xi,W2Yk)
)

+ 1

m(m − 1)

∑
l �=k

(
κ
(
β

−1/2
m Ŷk,β

−1/2
m Ŷl

) − κ(W2Yk,W2Yl)
)
.

Let SX ⊂ {1,2, . . . , n} and SY ⊂ {1,2, . . . ,m} be defined by

SX = {
i:

∥∥α
−1/2
n X̂i − W1Xi

∥∥ ≤ C1(nαn)
−1/2 logn

}
,

SY = {
k:

∥∥β
−1/2
m Ŷk − W2Yk

∥∥ ≤ C2(mβm)−1/2 logm
}
.

From equation (5.1), the number of indices i /∈ SX is of order o(n), with high probability. Simi-
larly, the number of indices k /∈ SY is of order o(m) with high probability. Therefore,

ψ = 1

n(n − 1)

∑
i∈SX

∑
j∈SX

(
κ
(
α

−1/2
n X̂i, α

−1/2
n X̂j

) − κ(W1Xi,W1Xj)
)

− 2

mn

∑
i∈SX

∑
k∈SY

(
κ
(
α

−1/2
n X̂i, β

−1/2
m Ŷk

) − κ(W1Xi,W2Yk)
)

+ 1

m(m − 1)

∑
k∈SY

∑
l∈SY

(
κ
(
β

−1/2
m Ŷk,β

−1/2
m Ŷl

) − κ(W2Yk,W2Yl)
) + o(1).
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We consider the term 1/(n(n − 1))
∑

i∈SX

∑
j∈SX

(κ(α
−1/2
n X̂i, α

−1/2
n X̂j ) − κ(W1Xi,W1Xj)).

By the differentiability of κ and compactness of �, we have∣∣κ(
α

−1/2
n X̂i, α

−1/2
n X̂j

) − κ(W1Xi,W1Xj)
∣∣

≤ C max
{∥∥α

−1/2
n X̂i − W1Xi

∥∥,
∥∥α

−1/2
n X̂j − W1Xj

∥∥}
for some constant C independent of i and j . Thus,∣∣∣∣ 1

n(n − 1)

∑
i∈SX

∑
j∈SX

(
κ
(
α

−1/2
n X̂i, α

−1/2
n X̂j

) − κ(W1Xi,WnXj )
)∣∣∣∣

≤ max
i∈SX

C
∥∥α

−1/2
n X̂i − W1Xi

∥∥.

Similar reasoning yields

|ψ | ≤ 2C
(

max
i∈SX

∥∥α
−1/2
n X̂i − W1Xi

∥∥ + max
k∈SY

∥∥β
−1/2
m Ŷk − W2Yk

∥∥)
+ o(1)

≤ 2C
(
C1(nαn)

−1/2 logn + C2(mβm)−1/2 logm
) + o(1)

with high probability. As nαn = ω(log4 n) and mβm = ω(log4 m), we have ψ
a.s.−→ 0 as

m,n → ∞. �

We assume in the statement of Proposition 6 that the sparsity factors αn and βm are known. If
αn and βm are unknown, then they can be estimated from the adjacency spectral embedding of
An and Bm, but only up to some constant factor. Hence the hypothesis test of

H0:F �G against HA:F / �G

is no longer meaningful (as the sparsity factors αn and βm cannot be determined uniquely) and
one should consider instead the hypothesis test of equality up to scaling of Section 5.1.

We note that the conclusion of Proposition 6, namely equation (5.2), is weaker than that of
Theorem 5 due to the lack of the m + n factor in equation (5.2) as compared to equations (3.5)
and (3.6). The more difficult question, and one which we will not address in this paper, is to refine
the rate of convergence to zero of equation (5.2) in the sparse setting. We suspect, however, that
equation (3.5) will not hold in the case where αn = o(n−1/2) and βm = o(m−1/2). Nevertheless,
Proposition 6 still yields a test procedure that is consistent against any alternative, provided that
both F and G satisfy Assumption 1, and that the sparsity factors αn and βm do not converge to 0
too quickly.

6. Discussion

In summary, we show in this paper that the adjacency spectral embedding can be used to generate
simple and intuitive test statistics for the nonparametric inference problem of testing whether two
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random dot product graphs have the same or related distribution of latent positions. The two-
sample formulations presented here and the corresponding test statistics are intimately related.
Indeed, for random dot product graphs, the adjacency spectral embedding yields a consistent
estimate of the latent positions as points in R

d ; there then exist a wide variety of classical and
well-studied testing procedures for data in Euclidean spaces.

New results on stochastic blockmodels suggest that they can be regarded as a universal ap-
proximation to graphons in exchangeable random graphs, see, for example, [35,36]. There is
thus potential theoretical value in the formulation of two-sample hypothesis testing for latent
position models in terms of a random dot product graph model on Rd with possibly varying d .
However, because the link function and the distribution of latent positions are intertwined in the
context of latent position graphs, any proposed test procedure that is sufficiently general might
also possess little to no power.

The two-sample hypothesis testing we consider here is also closely related to the problem
of testing goodness-of-fit; the results in this paper can be easily adapted to address the latter
question. In particular, we can test, for a given graph, whether the graph is generated from some
specified stochastic blockmodel. A more general problem is that of testing whether a given graph
is generated according to a latent position model with a specific link function. This problem has
been recently studied; see [36] for a brief discussion, but much remains to be investigated. For
example, the limiting distribution of the test statistic in [36] is not known.

Finally, two-sample hypothesis testing is also closely related to testing for independence; given
a random sample {(Xi, Yi)} with joint distribution FXY and marginal distributions FX and FY ,
X and Y are independent if the FXY differs from the product FXFY . For example, the Hilbert–
Schmidt independence criterion is a measure for statistical dependence in terms of the Hilbert–
Schmidt norm of a cross-covariance operator. It is based on the maximum mean discrepancy
between FXY and FXFY . Another example is Brownian distance covariance of [30], a measure
of dependence based on the energy distance between FXY and FXFY . In particular, consider the
test of whether two given two random dot product graphs (X,A) ∼ RDPG(FX) and (Y,B) ∼
RDPG(FY ) on the same vertex set have independent latent position distributions FX and FY .
While we surmise that it may be possible to adapt our present results to this question, we stress
that the conditional independence of A given X and of B given Y suggests that independence
testing may merit a more intricate approach.

Appendix: Additional proofs

Proof of Lemma 3. As κ is twice continuously differentiable, F is also twice continuously
differentiable [27], Corollary 4.36. Denote by W the orthogonal matrix such that X = UPS1/2

P W.
Let f ∈F�, a Taylor expansion of f then yields

1√
n

n∑
i=1

(
f (WX̂i) − f (Xi)

) = 1√
n

n∑
i=1

(∂f )(Xi)
�(WX̂i − Xi)

+ 1

2
√

n

∑
i

(WX̂i − Xi)
�(

∂2f
)(

X∗
i

)
(WX̂i − Xi),
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where, for any i, X∗
i ∈ R

d is such that ‖X∗
i − Xi‖ ≤ ‖WX̂i − Xi‖. We first bound the quadratic

terms, i.e. those depending on ∂2f . We note that since κ is twice continuously differentiable,
supf ∈F�,X∈� ‖(∂2f )(X)‖ is bounded (the norm under consideration is the spectral norm on
matrices). Therefore,

sup
f ∈F�

∣∣∣∣∣
n∑

i=1

(WX̂i − Xi)
�(∂2f )(X∗

i )(WX̂i − Xi)√
n

∣∣∣∣∣ ≤ sup
f ∈F ,X∈�

‖(∂2f )(X)‖‖X̂W − X‖2
F√

n
.

Hence, by applying Lemma 2 to bound ‖X̂W − X‖2
F in the above expression, we have

sup
f ∈F�

∣∣∣∣∣
n∑

i=1

(WX̂i − Xi)
�(∂2f )(X∗

i )(WX̂i − Xi)√
n

∣∣∣∣∣ a.s.−→ 0

as n → ∞.
We now bound the linear terms, i.e., those depending on ∂f . For any f ∈ F�, and any

X1, . . . ,Xn, let M(∂f ) = M(∂f ;X1, . . . ,Xn) ∈ R
n×d be the matrix whose rows are the vectors

(∂f )(Xi). We then have

ζ(f ) := 1√
n

n∑
i=1

(∂f )(Xi)
�(WX̂i − Xi)

= 1√
n

tr
(
(X̂W − X)

[
M(∂f )

]�) = 1√
n

tr
((

UAS1/2
A − UPS1/2

P

)
W

[
M(∂f )

]�)
.

Now A = UASAU�
A +E where, as we recall in Definition 2, SA is the diagonal matrix containing

the d largest eigenvalues of |A| (which coincides, with high probability, with the eigenvalues
of A) and UA is the matrix whose columns are the corresponding eigenvectors. The eigendecom-
position of E can be written in terms of the eigenvalues and eigenvectors that are not included
in SA and UA. Thus EUA = 0 and UAS1/2

A = UASAU�
AUAS−1/2

A = (UASAU�
A + E)UAS−1/2

A =
AUAS−1/2

A . Similarly, P = UPSPU�
P (because P is rank d) and UPS1/2

P = PUPS−1/2
P . Thus,

ζ(f ) = 1√
n

tr
((

AUAS−1/2
A − PUPS−1/2

P

)
W

[
M(∂f )

]�)

= 1√
n

tr
((

A(UA − UP)S−1/2
A + AUP

(
S−1/2

A − S−1/2
P

) + (A − P)UPS−1/2
P

)
W

[
M(∂f )

]�)
.

We therefore have

sup
f ∈F�

∣∣ζ(f )
∣∣ ≤ supf ∈F�

‖M(∂f )‖F√
n

(∥∥A(UA − UP)S−1/2
A W

∥∥
F

+ ∥∥AUP
(
S−1/2

A − S−1/2
P

)
W

∥∥
F

)
(A.1)

+ 1√
n

sup
f ∈F�

∣∣tr([M(∂f )
]T

(A − P)UPS−1/2
P W

)∣∣.
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We bound the first two terms on the right-hand side of equation (A.1) using the following result
from [20]. �

Lemma 7. Let (X,A) ∼ RDPG(F ) and let c > 0 be arbitrary but fixed. There exists n0(c) such
that if n > n0 and η satisfies n−c < η < 1/2, then with probability at least 1 − 2η, the following
bounds hold simultaneously

∥∥A(UA − UP)S−1/2
A

∥∥
F

≤ 24
√

2d log (n/η)√
γ 5(F )n

, (A.2)

∥∥AUP
(
S−1/2

A − S−1/2
P

)∥∥
F

≤ 48d log (n/η)√
γ 7(F )n

, (A.3)

where γ (F ) is the minimum gap between the distinct eigenvalues of the matrix E[X1X
�
1 ] with

X1 ∼ F .

Equation (A.2) in the above lemma is a restatement of Lemma 3.4 in [20] where we have used
the fact that the maximum row sum of A is n. Equation (A.3) follows from Lemma 3.2 in [20] and
the fact that ‖M1M2‖2→∞ ≤ ‖M1‖2→∞‖M2‖ for any matrices M1 and M2. As the individual
bound in equations (A.2) and (A.3) holds with probabilty 1 − η, they hold simultaneously with
probability 1 − 2η.

Lemma 7 then yields

supf ∈F�
‖M(∂f )‖F√
n

(∥∥A(UA − UP)S−1/2
A W

∥∥
F

+ ∥∥AUP
(
S−1/2

A − S−1/2
P

)
W

∥∥
F

) ≤ C(F) logn√
n

with probability at least 1 − n−2, where C(F) is a constant depending only on F .
We next show that the last term on the right-hand side of equation (A.1) is also of order

n−1/2(logn) with probability at least 1 − n−2. To control this supremum, we use a chaining
argument. Denote by ∂F� the space of functions ∂F� = {∂f :f ∈ F�} from R

d to R
d . For a

given ∂f ∈ ∂F� let ‖∂f ‖∞ denote the quantity supX∈� ‖(∂f )(X)‖2, where ‖·‖2 is the Euclidean
norm in R

d . Similarly, for given ∂f, ∂g ∈ ∂F�, let ‖∂f −∂g‖∞ denote supX∈� ‖(∂f −∂g)(X)‖2.
As κ is twice continuously differentiable and � is compact, ∂F� is totally bounded with respect
to ‖ · ‖∞. Put δ = sup∂f ∈∂F�

‖∂f ‖∞. Then for any j ∈ N, we can find a finite subset Sj =
{∂f1, ∂f2, . . . , ∂fnj

} of ∂F� such that for any ∂f ∈ ∂F�, there exists a ∂fl ∈ Sj with ‖∂f −
∂fl‖∞ ≤ δj := 2−j δ. We shall assume that Sj is minimal among all sets with the above property.

Given Sj , define �j as the mapping that maps any ∂f ∈ ∂F� to an (arbitrary) ∂fl ∈ ∂F�

satisfying the condition ‖∂fl − ∂f ‖∞ ≤ δj . Denote by X̃1, . . . , X̃n the rows of the matrix

AUPS−1/2
P W. Then by the separability of ∂F�, we have

ζ̃ (f ) := 1√
n

sup
f ∈F�

∣∣tr[M(∂f )
]�

(A − P)UPS−1/2
P W

∣∣

= sup
f ∈F�

∣∣∣∣∣ 1√
n

n∑
i=1

(∂f )(Xi)
�(X̃i − Xi)

∣∣∣∣∣
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= sup
f ∈F�

∣∣∣∣∣
(

1√
n

n∑
i=1

∞∑
j=0

(�j+1∂f − �j∂f )(Xi)
�(X̃i − Xi)

)
+ c0√

n

∣∣∣∣∣
= sup

f ∈F�

∣∣∣∣∣
(

1√
n

∞∑
j=0

n∑
i=1

(�j+1∂f − �j∂f )(Xi)
�(X̃i − Xi)

)
+ c0√

n

∣∣∣∣∣
≤

∞∑
j=0

sup
f ∈F�

∣∣∣∣∣ 1√
n

n∑
i=1

(�j+1∂f − �j∂f )(Xi)
�(X̃i − Xi)

∣∣∣∣∣ +
∣∣∣∣ c0√

n

∣∣∣∣,

where c0 = ∑n
i=1(�0∂f )(Xi)

T (X̃i − Xi).

The term n−1/2 ∑n
i=1(�j+1∂f − �j∂f )(Xi)

�(X̃i − Xi) can be written as sum of quadratic
form, i.e.,

1√
n

n∑
i=1

(�j+1∂f − �j∂f )(Xi)
�(X̃i − Xi)

(A.4)

= 1√
n

d∑
s=1

(
π

(j,j+1)
s (∂f )

)�
(A − P)usλ

−1/2
s ,

where π
(j,j+1)
s (∂f ) for s = 1,2, . . . , d are the columns of the n × d matrix with rows

W(�j+1∂f −�j∂f )(Xi) for i = 1, . . . , n and us and λs are the eigenvectors and corresponding
eigenvalues of P.

Now, for any vectors b = (b1, b2, . . . , bn) and c = (c1, c2, . . . , cn),

bT (A − P)c = 2
∑
i<j

bi(A − P)ij cj +
∑

i

Piibici .

The sum over the indices i < j in the above display is a sum of independent random variables.
Therefore, Hoeffding’s inequality ensures that

P

[∣∣∣∣2∑
i<j

bi(A − P)cj

∣∣∣∣ ≥ t

]
≤ 2 exp

(
− t2

8
∑

i<j b2
i c

2
j

)
≤ 2 exp

(
− t2

8‖b‖2‖c‖2

)
.

In addition,
∑

i Piibici ≤ ‖b‖‖c‖. We apply the above argument to equation (A.4). First,

‖π (j,j+1)
s (∂f )‖2 ≤ 3/2δj

√
n for all ∂f ∈ ∂F . In addition, ‖us‖ = 1 for all s. Hence, for all

t ≥ 2δjλ
−1/2
d ,

P

[
1√
n

∣∣∣∣∣
d∑

s=1

(
π

(j,j+1)
s (∂f )

)T
(A − P)usλ

−1/2
s

∣∣∣∣∣ ≥ dt

]
≤ 2d exp

(
− t2

Kδ2
j λ

−1
d

)
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for some universal constant K > 0. Let Nj be the cardinality of {�j+1∂f − �j∂f :f ∈ F�}.
Then by the union bound,

P

[
sup

f ∈F�

∣∣∣∣∣ 1√
n

n∑
i=1

(�j+1∂f − �j∂f )(Xi)
T (X̃i − Xi)

∣∣∣∣∣ ≥ dt

]
≤ 2dNj exp

(
− t2

Kδ2
j λ

−1
d

)
.

Now Nj ≤ |Sj+1|2 and hence, for any tj > 0,

P

[
sup

f ∈F�

∣∣∣∣∣ 1√
n

n∑
i=1

(�j+1∂f − �j∂f )(Xi)
T (X̃i − Xi)

∣∣∣∣∣ ≥ ηj

]
≤ 2d exp

(−t2
j

)
, (A.5)

where ηj = d

√
Kδ2

j λ
−1
d (t2

j + log |Sj+1|2). Summing equation (A.5) over all j ≥ 0, and bounding

n−1/2c0 using another application of Hoeffding’s inequality, we arrive at

P

[
sup

f ∈F�

∣∣ζ̃ (f )
∣∣ ≥

∞∑
j=0

K ′ηj

]
≤ 2d

∞∑
j=0

exp
(−t2

j

)

for some constant K ′ > 0. We now bound
∑∞

j=0 ηj = ∑∞
j=0 d

√
Kδ2

j λ
−1
d (t2

j + log |Sj+1|2). To

bound |Sj |, we use the covering number for �, i.e., |Sj | ≤ (L/δj )
d [33], Lemma 2.5, for some

constant L independent of δj . Then by taking t2
j = 2(log j + logn),

P

[
sup

f ∈F�

∣∣ζ̃ (f )
∣∣ ≥ dλ

−1/2
d (C1 logn + C2)

]
≤ 2dC3

n2
(A.6)

for some constants C1, C2 and C3. Equations (A.6) and (A.1) implies

sup
f ∈F�

∣∣ζ(f )
∣∣ ≤ C(F) logn√

n
+ dλ

−1/2
d (C1 logn + C2) (A.7)

with probability at least 1 − (1 + 2dC3)n
−2. Since there exists some constant c > 0 for which

λd/(cn) → 1 almost surely, an application of the Borel–Cantelli lemma to equation (A.7) yields
supf ∈F�

|ζ(f )| → 0 almost surely. Lemma 3 is thus established.

A.1. Proof for the scaling case Section 5.1

The proof parallels that of Theorem 5. We sketch here the requisite modifications for the case
when the null hypothesis F �G ◦ c holds. Namely, we show that when F �G ◦ c for some
constant c > 0,

(m + n)(Vn,m(X̂/ŝX, Ŷ/ŝY ) − Vn,m(X/sX,YWn,m/sY )
a.s−→ 0. (A.8)
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Define ξW , ξ̂ ∈H by

ξW =
√

m + n

n

n∑
i=1

κ(W1Xi/sX, ·) −
√

m + n

m

m∑
k=1

κ(W2Yk/sY , ·),

ξ̂ =
√

m + n

n

n∑
i=1

κ(X̂i/ŝX, ·) −
√

m + n

m

m∑
k=1

κ(Ŷk/ŝY , ·).

Define r1 and r2 similar to that in the proof of Theorem 2, i.e.,

r1 = m + n

n(n − 1)

n∑
i=1

{
κ

(
X̂i

ŝX
,
X̂i

ŝX

)
− κ

(
Xi

sX
,
Xi

sX

)}

+ m + n

m(m − 1)

m∑
k=1

{
κ

(
Ŷk

ŝY
,
Ŷk

ŝY

)
− κ

(
Yk

sY
,
Yk

sY

)}
,

r2 = m + n

n2(n − 1)

n∑
i=1

n∑
j=1

{
κ

(
X̂i

ŝX
,
X̂j

ŝX

)
− κ

(
Xi

sX
,
Xj

sX

)}

+ m + n

m2(m − 1)

m∑
k=1

m∑
l=1

{
κ

(
Ŷk

ŝY
,
Ŷl

ŝY

)
− κ

(
Yk

sY
,
Yl

sY

)}
.

There exists an L depending only on κ such that |r1| and |r2| is bounded from above by

L(m + n)

{‖X − X̂W‖2→∞
(n − 1)ŝX

+ |sX − ŝX|
(n − 1)sXŝX

+ ‖Y − ŶW‖2→∞
(m − 1)ŝY

+ |sY − ŝY |
(m − 1)sY ŝY

}
.

Lemma 2 implies |r1 + r2| → 0 almost surely. Now denote σX = (E[‖X‖2])1/2 and σY =
(E[‖Y‖2])1/2. Then sX and sY are

√
n-consistent and

√
m-consistent estimators of σX and σY ,

respectively. When F �G ◦ c, μ[F ◦ T1 ◦ σ−1
X ] = μ[G ◦ T2 ◦ σ−1

Y ]. Denote by ξ
(X)
W and ξ

(Y )
W the

quantities

ξ
(X)
W = √

m + n

(
n∑

i=1

κ(T1Xi/σX, ·) − μ[F ◦ T1 ◦ σ−1
X ]

n

)
,

ξ
(Y )
W = √

m + n

(
m∑

k=1

κ(T2Yk/σY , ·) − μ[G ◦ T2 ◦ σ−1
Y ]

m

)
.

Then ξW = ξ
(X)
W + ξ

(Y )
W + O(1) and hence ξW − O(1) is once again a sum of independent mean

zero random elements of H. A Hilbert space concentration inequality similar to that of [23],
Theorem 3.5, yields that ‖ξ‖H is bounded in probability.
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We next bound ‖ξW − ξ̂‖H. We mimic the proof of Lemma 3, paying attention to the terms
ŝX and sX . A Taylor expansion of κ yields

1√
n

n∑
i=1

(
�

(
Xi

sX

)
− �

(
WX̂i

ŝX

))
(·)

= 1√
n

n∑
i=1

∂�

(
Xi

sX

)
(·)�

(
WX̂i

ŝX
− Xi

sX

)

+ 1

2
√

n

n∑
i=1

(
WX̂i

ŝX
− Xi

sX

)�
∂2�

(
X∗

i

sX

)
(·)

(
WX̂i

ŝX
− Xi

sX

)
.

The terms depending on ∂2� in the above display is bounded as∣∣∣∣∣ 1

2
√

n

n∑
i=1

(
WX̂i

ŝX
− Xi

sX

)�
∂2�

(
X∗

i

sX

)
(·)

(
WX̂i

ŝX
− Xi

sX

)∣∣∣∣∣
≤ supZ∈� ‖∂2�(Z)‖

2
√

n

n∑
i=1

∥∥∥∥WX̂i

ŝX
− Xi

sX

∥∥∥∥
2

≤ supZ∈� ‖∂2�(Z)‖‖X̂W − X‖2
F√

n(ŝX)2

which converges to 0 almost surely. For the terms depending on ∂�, we have

1√
n

n∑
i=1

∂�

(
Xi

sX

)
(·)�

(
WX̂i

ŝX
− Xi

sX

)
= 1√

n

n∑
i=1

∂�

(
Xi

sX

)
(·)� WX̂i − Xi

ŝX

+ 1√
n

n∑
i=1

∂�

(
Xi

sX

)
(·)�Xi

(
ŝX − sX

ŝXsX

)
.

The first sum on the right-hand side of the above display can be bounded using a chaining ar-
gument identical to that in the proof of Lemma 3 and an application of Slutsky’s theorem (for
ŝX → (E[‖X‖2])1/2 almost surely). For the second sum on the right-hand side, we have∣∣∣∣∣ 1√

n

n∑
i=1

∂�

(
Xi

sX

)
(·)�Xi

(
ŝX − sX

ŝXsX

)∣∣∣∣∣ =
∣∣∣∣∣ 1√

n

n∑
i=1

�

(
Xi

sX

)
(·)�Xi

(
ŝ2
X − s2

X

(ŝX + sX)ŝXsX

)∣∣∣∣∣
≤ supZ,Z′∈� |(∂�(Z))(Z′)�Z|√

n

|‖X̂‖2
F − ‖X‖2

F |
(ŝX + sX)ŝX

.

We note that ‖X̂‖2
F = ‖S1/2

A ‖2
F and ‖X‖2

F = ‖S1/2
P ‖2

F . Thus |‖X̂‖2
F − ‖X‖2

F | ≤ √
d‖SA − SP‖F

by the Cauchy–Schwarz inequality. Lemma 3.2 in [20] can then be applied to ‖SA − SP‖F to
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show that |‖X̂‖2
F − ‖X‖2

F | is of order O(logn) with probability at least 1 − n−2; note that this
bound for ‖SA − SP‖F is much stronger than that obtained from Weyl’s inequality and a con-
centration bound for ‖A − P‖ from [17,18,22]. Hence by the compactness of �, smoothness of
� and Slutsky’s theorem, the second sum also converges to 0 almost surely, thereby establishing
equation (A.8).

A.2. Proof for the projection case Section 5.2

The proof of this result is almost identical to that of Theorem 5. We note here the requisite
modifications for the case when the null hypothesis of F ◦ π−1 �G ◦ π−1 holds. Define ξW , ξ̂ ∈
H by

ξW =
√

m + n

n

n∑
i=1

κ
(
W1π(Xi), ·

) −
√

m + n

m

m∑
k=1

κ
(
W2π(Yk), ·

)
,

ξ̂ =
√

m + n

n

n∑
i=1

κ
(
π(X̂i), ·

) −
√

m + n

m

m∑
k=1

κ
(
π(Ŷk), ·

)
.

In addition, define r1 = r11 + r12 and r2 = r21 + r22 by

r11 = m + n

n(n − 1)

n∑
i=1

(
κ
(
π(Xi),π(Xi)

) − κ
(
π(X̂i),π(X̂i)

))
,

r12 = m + n

m(m − 1)

m∑
k=1

(
κ
(
π(Yk),π(Yk)

) − κ
(
π(Ŷk),π(Ŷk)

))
,

r21 = m + n

n2(n − 1)

∑
i,j

(
κ
(
π(Xi),π(Xj )

) − κ
(
π(X̂i),π(X̂j )

))
,

r22 = m + n

m2(m − 1)

∑
k,l

(
κ
(
π(Yk),π(Yl)

) − κ
(
π(Ŷk),π(Ŷl)

))
.

Using the assumption that ‖Z‖ ≥ c0 F -almost everywhere for some constant c0 > 0, both |r1|
and |r2| can be bounded from above by

L(m + n)

{
2‖X − X̂W‖2→∞

(n − 1)c0
+ 2‖Y − ŶW‖2→∞

(n − 1)c0

}

for some constant L depending only on κ . To complete the proof, we adapt the argument in the
proof of Lemma 3 to the family of functions

F = {
f = (

∂(� ◦ π)(·))(Z):Z ∈ �
}

to show that ‖ξW − ξ̂‖H → 0 almost surely as n → ∞.
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