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The pragmatic character of the Dutch book argument makes it unsuitable as an "epi- 
stemic" justification for the fundamental probabilist dogma that rational partial beliefs 
must conform to the axioms of probability. To secure an appropriately epistemic jus- 
tification for this conclusion, one must explain what it means for a system of partial 
beliefs to accurately represent the state of the world, and then show that partial beliefs 
that violate the laws of probability are invariably less accurate than they could be 
otherwise. The first task can be accomplished once we realize that the accuracy of 
systems of partial beliefs can be measured on a grarlational scale that satisfies a small 
set of formal constraints, each of which has a sound epistemic motivation. When ac- 
curacy is measured in this way it can be shown that any system of degrees of belief that 
violates the axioms of probability can be replaced by an alternative system that obeys 
the axioms and yet is more accurate in everj>possible world. Since epistemically rational 
agents must strive to hold accurate beliefs, this establishes conformity with the axioms 
of probability as a norm of epistenzic rationality whatever its prudential merits or defects 
might be. 

1. Introduction. According to the doctrine ofprobabilisrn (Jeffrey 1992, 
44) any adequate epistemology must recognize that opinions come in 
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varying gradations of strength and must make conformity to the axi- 
oms of probability a fundamental requirement of rationality for these 
graded or partial beliefs.' While probabilism has long played a central 
role in statistics, decision theory, and, more recently, the philosophy 
of science, its impact on the traditional theory of knowledge has been 
surprisingly modest. Most epistemologists remain committed to a dog- 
matist paradigm that takes full belief-the unqualified acceptance of 
some proposition as true-as the fundamental doxastic attitude. Partial 
beliefs, when considered at all, are assigned a subsidiary role in con- 
temporary epistemological theories. 

Probabilism's supporters deserve part of the blame for this unhappy 
state of affairs. We probabilists typically explicate the concept of par- 
tial belief in pragmatic terms, often quoting Frank Ramsey's dictum 
that, "the degree of a belief is a causal property of it, which we can 
express vaguely as the extent to which we are prepared to act on it" 
(1931, 166). Moreover, when called upon to defend the claim that ra- 
tional degrees of belief must obey the laws of probability we generally 
present some version of the Dutch Book Argument (Ramsey 1931, de 
Finetti 1964), which establishes conformity to the laws of probability 
as a norm of prudential rationality by showing that expected utility 
maximizers whose partial beliefs violate these laws can be induced to 
behave in ways that are sure to leave them less well off than they could 
otherwise be. This overemphasis on the pragmatic dimension of partial 
beliefs tends to obscure the fact that they have properties that can be 
understood independently of their role in the production of action. 
Indeed, probabilists have tended to pay little heed to the one aspect of 
partial beliefs that would be of most interest to epistemologists: namely, 
their role in representing the world's state. My strong hunch is that this 
neglect is a large part of what has led so many epistemologists to rel- 
egate partial beliefs to a second-class status. 

I mean to alter this situation by first giving an account of what it 
means for a system of partial beliefs to accurately represent the world, 
and then explaining why having beliefs that obey the laws of proba- 
bility contributes to the basic epistemic goal of accuracy. This strategy 
is not new. Roger Rosenkrantz (1981) has taken a similar approach, 
arguing that if the accuracy of degrees of belief is measured by a quan- 
tity called the Brier score, then systems of degrees of belief that violate 
the laws of probability are necessarily less accurate than they need to 
be. In a similar vein, Bas van Fraassen (1983) and Abner Shimony 

1. A further tenet of the view is that Buyesian conditioning is the only legitimate method 
for revising beliefs in light of new evidence. This aspect of probabilism, which remains 
an active topic of debate in philosophical circles, will not be our concern here. 
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(1988) have maintained that accuracy can be measured using a quantity 
called the calibration index, and they have argued, in slightly different 
ways, that any system of degrees of belief that violates the probability 
axioms can be replaced by a better calibrated system that satisfies them. 
While both these approaches are on the right track, we shall see below 
that neither ultimately succeeds. The van FraassenIShimony strategy 
fails because calibration is not a reasonable measure of accuracy for 
partial beliefs, and Rosenkrantz ends up begging the question (albeit 
in a subtle and interesting way). 

To secure my nonpragmatic vindication of probabilism I will need 
to clarify the appropriate criterion of epistemic success for partial be- 
liefs. The relevant success criterion for full beliefs is well-known and 
uncontroversial. 

The Norm of Truth (NT):2 An epistemically rational agent must 
strive to hold a system of full beliefs that strikes the best attainable 
overall balance between the epistemic good of fully believing truths 
and the epistemic evil of fully believing falsehoods (where fully be- 
lieving a truth is better than having no opinion about it, and having 
no opinion about a falsehood is better than fully believing it).3 

2. Even though the Norm of Truth is widely accepted, there is no consensus about the 
basis of its prescriptive force. Some read it as expressing a prima facie intellectual 
obligation that is binding on all believers (Chisholm 1977, 7). Others portray it as an 
"internal" norm that is partially constitutive of what it is to be a believer, so that an 
attitude toward X cannot even be counted as a full belief (as opposed to a supposition 
or wish that X) unless its holder is committed to regarding the attitude as successful iff 
X is true. See, e.g., Anscombe 1957, Smith 1987, and Velleman 1996. A third view, 
which has been championed by Richard Foley (1987, 66), sees the Norm as being 
grounded in our practices of epistemic evaluation; terms like "justified" or "epistemi- 
cally rational" can only be meaningfully applied to individuals who regard their full 
beliefs as successful iff they are true. For present purposes, it does not matter which of 
these rationales for the Norm of Truth one adopts. The iinportant point is that there 
is little real dispute about its status as a basic criterion of epistemic success for full 
beliefs. 

3. Mark Kaplan has observed that the Norm of Truth is not a pure accuracy principle 
since it places a premium on believing truths as against suspending judgment. He sug- 
gests, however, that none of my arguments rely upon this aspect of Norm, and that I 
could have just as easily made accuracy for systems of full belief a matter or the their 
truth-to-falsehood rutio. While I think this is right, I have decided to stick with NT as 
my official "success condition" for full beliefs because doing so helps make sense of 
some important debates in the epistemology of full belief. Notice that N T  does not say 
how vvzuch better (worse) it is to believe a truth (falsehood) than it is to have no opinion 
about it, nor does it give any hint about what the best overall balance of truths to 
falsehoods might be. The way we decide these issues will greatly effect the form of 
dogmatic epistemology. For example, those who tend to put great emphasis on the 
avoidance of error may see only a small difference between believing truly and sus- 
pending belief whereas the difference between suspending belief and believing falsely 
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This principle underlies much of dogmatic epistemology. It implies that 
we should aim to accept truths and reject falsehoods whenever we have 
a choice in the matter, that we should evaluate our full beliefs, even 
those we cannot help holding, on the basis of their truth-values, and 
that we should treat evidence for the truth of some proposition as a 
prima facie reason for believing it. Probabilism's main shortcoming has 
been its inability to articulate any similarly compelling criterion of ep- 
istemic success to serve as the normative focus for an epistemology of 
partial belief. I shall formulate and defend such a criterion, and prove 
that holding degrees of belief that obey the laws of probability is an 
essential prerequisite to its satisfaction. This will establish the require- 
ment of probabilistic consistency for partial beliefs as a norm of epi- 
stemic rationality, whatever its prudential costs or benefits might be. 

My argument will be based on a new way of drawing the distinction 
between full and partial beliefs. The difference between these two sorts 
of attitudes, I claim, has to do with the appropriate standard of acczl- 
racy relative to which they are evaluated. While both "aim at the 
truth," they do so in quite different ways. Full beliefs answer to a 
categorical, "miss is as good as a mile," standard of accuracy that 
recognizes only two ways of "fitting the facts": getting them exactly 
right or having them wrong, where no distinctions are made among 
different ways of being wrong. This is reflected in the Norm of Truth, 
which is really nothing more than the prescription to maximize the 
categorical accuracy of one's full beliefs. 

A simple accuratelinaccurate dichotomy does not work for partial 
beliefs because their accuracy is ultimately a matter of degree. As I 
shall argue, partial beliefs are appropriately evaluated on a gradational, 
or "closeness counts," scale that assigns true beliefs higher degrees of 
accuracy the more strongly they are held, and false beliefs lower degrees 
of accuracy the more strongly they are held. My position is that a 
rational partial believer must aim not simply to accept truths and reject 
falsehoods, but to hold partial beliefs that are gradationally accurate 
by adjusting the strengths of her opinions in a way that best maximizes 
her degree of confidence in truths while minimizing her degree of con- 
fidence in falsehoods. For the same reasons4 that a person should aim 
to hold full beliefs that are categorically accurate, so too should she 
aim to hold partial beliefs that are gradationally accurate. We thus are 
lead to the following analogue of the Norm of Truth: 

may loom quite large. Conversely, Popperians who want to encourage "bold conjec- 
turing" will emphasize the "believe the truth" aspect of the Norm of Truth and down- 
play its prescription to avoid the false. 

4. The options here are roughly the same as those listed in fn. 2. 
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The Norm of Gradational Accuracy (NGA): An epistemically ra- 
tional agent must evaluate partial beliefs on the basis of their gra- 
dational accuracy, and she must strive to hold a system of partial 
beliefs that, in her best judgment, is likely to have an overall level 
of gradational accuracy at least as high as that of any alternative 
system she might adopt. 

The system of partial beliefs with the highest attainable level of gra- 
dational accuracy will, of course, always be the one in which all truths 
are believed to the maximum degree and all falsehoods are believed to 
the minimum degree. This does not, however, imply that an epistemi- 
cally rational agent must hold partial beliefs of only these two extreme 
types. Indeed, she should rarely do so. Unlike full believers, partial 
believers must worry about the epistemic costs associated with different 
ways of being wrong. Since the worst way of being wrong is to be 
maximally confident in a falsehood, there is a significant epistemic dis- 
incentive associated with the holding of extreme beliefs. Indeed, I shall 
argue that on any reasonable measure of gradational accuracy the in- 
centive structure will force a rational agent to "hedge her epistemic 
bets" by adopting degrees of belief that are indeterminate between cer- 
tainty of truth and certainty of falsehood for most contingent propo- 
sitions. 

The Norm of Gradational Accuracy will be the cornerstone of my 
nonpragmatic vindication of probabilism. To show that epistemically 
rational partial beliefs must obey the laws of probability, I will first 
impose a set of abstract constraints on measures of gradational accu- 
racy, then argue that these constraints are requirements of epistemic 
rationality, and finally explain why conformity to the laws of proba- 
bility improves accuracy relative to any measure that satisfies them. It 
will then follow from NGA that it is irrational, from the purely episte- 
mic perspective, to hold partial beliefs that violate the laws of proba- 
bility. 

There are five sections to come. Section 2 sketches a version of the 
Dutch book argument and explains why it does not provide an appro- 
priately "episteniic" rationale for conforming one's degrees of belief to 
the axioms of probability. Section 3 introduces the notion of grada- 
tional accuracy and explains why it is the appropriate standard of eval- 
uation for degrees of belief. Section 4 criticizes rival accounts of ac- 
curacy for partial beliefs, and presents a formal theory of gradational 
accuracy. Section 5 shows that degrees of belief which violate the axi- 
oms of probability are less accurate than they otherwise could be rela- 
tive to any reasonable measure of accuracy. Section 6 explains how 
these results can be applied to more realistic cases in which agents are 
not assumed to have precise numerical degrees of belief. 
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2. The Dutch Book Argument and its Shortcomings. To specify a partial 
belief one must indicate a proposition X and the strength with which it 
is held to be true. We will imagine that the propositions about which 
our subject has beliefs are included in a o-complete Boolean algebra R, 
i.e., a non-empty set of propositions that is closed under negation and 
countable disjunction. The strength of the person's belief in X is a 
matter of how confident she is in its truth. For the moment, we will 
engage in the useful fiction that our agent's opinions are so definite 
and precise that their strengths can be measured by a real-valued cre-
dencejilnction b that assigns every proposition X C R a unique degree 
of belief b(X).This is absurd, of course; in any realistic case there will 
be many propositions for which a rational agent need have no definite 
degree of belief. We discuss these imprecise beliefs in the last section of 
the essay. 

According to probabilism, a rational believer's credence function 
must obey the laws of probability: 

Normalization: b (XV - X) = 1. 

Non-negativity: b(X)2 0 for all X C 0. 

Additivity: If {XI,
X,, X,, . . .) is a finite, or denumerably infinite, 
partition of the proposition X into pairwise incompatible disjuncts, 
so that X = (X,v X,v X,v . . .) where X,and X,are incompatible 
for all j and k, then b (X) = b (XI)+ b (X,)+ b (X,). . . . 

The principal aim of this essay is to provide a justification of the prob- 
abilist's "fundamental dogma" that rational agents must have degrees 
of belief that obey these three laws. 

To understand the justification I am going to give, it will be useful 
to begin by considering a particularly revealing version of the Dutch 
book argument due to Bruno de Finetti (1974)and Leonard Savage 
(1971).Even though this argument ultimately fails to provide an ac- 
ceptable epistemic rationale for the fundamental dogma it does suggest 
a fruitful way of approaching the problem. De Finetti and Savage de- 
veloped an ingenious piece of psychometrics, which I call the prevision 
game, that was designed to reveal the strengths of a person's partial 
beliefs. To simplify things they assumed they were dealing with a miser 
who desires only money, and whose love of it remains fixed no matter 
how rich or poor she might b e ~ o m e . ~  This miser is presented with a list 

5. In saying that a miser loves only money we imply that (a) all her desires are directed 
toward propositions that specify her net worth under various contingencies, and 
(b) that money has constant nzargirzal utilitj) for her, so that giving her an extra dollar 
always increases her happiness by the same amount no matter how large her fortune 
might be. Proponents of the Dutch book do of course realize that no misers 
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of propositions X = (X,, X,, . . . , X,) and is offered a dollar to des- 
ignate a corresponding sequence of real numbersp = (p,, p,, . . . ,p,,). 
The catch is that she must repay a portion of her dollar once the truth- 
values of the X, have been revealed. The size of her loss is fixed by the 
game's scoring rule, a function S(p, o )  that assigns a penalty of up to 
$1 to each pair consisting of a joint truth-value assignment o for the 
propositions in R (hereafter a "possible world"), and a sequence of 
numbers p. For reasons that will be made clear shortly, de Finetti and 
Savage focused their attention on games scored using quadratic-loss 
rules that have the form S(p,o) = C,I,[o(X,) -p,I2 where I , ,  . . . , I, 
are non-negative real numbers that sum to one and o(X,) is the truth- 
value (either 0 or 1) that X, has at world o .  An illuminating example 
is provided by the rule that weights each X, equally, so that A,  = I, 
-- . . . = A,,= lln. This is called the Brier score in honor of the me- 
teorologist George Brier (1950), who proposed that it be used to mea- 
sure the accuracy of probabilistic weather forecasts (as in, "the chance 
of rain is 30%"). Following de Finetti, let us call the numbers that an 
agent reports in a game scored using a quadratic-loss function herpre- 
visions for the various X,. 

De Finetti and Savage used quadratic-loss functions to score pre- 
vision games because these rules have two properties that make them 
uniquely suited to the task. First, they force any minimally rational 
miser to report previsions that obey the laws of probability. Second, 
they reveal the beliefs of expected utility maximizers because a miser 
who aims to maximize her expected payoff will invariably report a 
prevision for each proposition that coincides with her degree of belief 
for it. The fact that there exist scoring rules with these two properties 
is supposed to show that it is irrational to hold partial beliefs that 
violate the laws of probability. 

Quadratic-loss functions ensure that rational previsions will be 
probabilities in virtue of 

De Finetti's Lemma: In a prevision game scored by a quadratic- 
loss rule S, every prevision sequence p that violates the axioms of 
probability can be canonically associated with a sequence p* that 
obeys the probability axioms and which dominatesp in the sense 
that S(p, o )  > S(p*, o )  for all worlds a. 

In other words, for every sequence of previsions that violates the laws 

actually exist, but they use them as a useful ideulization. Insofar as a person is rational, 
it is claimed, she will pursue an abstract measure of overall satisfaction, utility, in the 
same way that a miser seeks wealth. The miser's craving for money is thus meant to 
mirror the universal desire for happiness. 
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of probability there is a sequence that obeys them whose penalty is 
strictly smaller iri every possible ~vorld. No rational miser would ever 
choose to report previsions that are dominated in this way, since doing 
so would be tantamount to throwing away money. 

I shall leave it to the reader to work out why the quadratic-loss rules 
penalize violations of Normalization and Non-negativity. For Additiv- 
ity, imagine a person who reports previsions (0.6,0.2) for (X, -X) when 
losses are given by the Brier score. This agent will incur a 10#penalty if 
X is true, and a 50yj penalty if X is false. Figure 1 shows how she could 
have saved a sure penny by reporting the previsions (0.7,0.3). 

Figure 1. De Finetti's Lemma for S((p. q), o )  = l/2[(w(X) - p)? + (o(-X) - q)2]. 
Previsiorls for (X, -X) appear as points in the (p, +plane. V = ((1,O). (0,l)) is the set of 
all consistent truth-value assignmellts for X and -X. The line segment V +  is V"' convex hull. 
It colltaills all (p. q) pairs with p + q - 1. Arc C, = {(p, q): S((p.q), 1) = 0.5) is made up 
of points whose penalty is the same as that of (0.6, 0.2) when X is true. C,  = {(p, q): S((p, 
g), 0) = 0.1j contains all points whose penalty is the same as that of (0.6, 0.2) when X is 
false. The shaded region o j ' d o m i ~ ~ u ~ ~ c e  is the set of (p, q) pairs that have a smaller penalty 
than (0.6, 0.2) whether- Xis true orfcfse .  This region always intersects V +  at (p" qq*)where 
p" [p 4 (1 - q)]/2 and q* = /p -t (1 - q)]/2. The Lemma says that one only has (p, q) 
-..- (p2*, qd) when p f q = I .  
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This example mirrors the general case. If X is a finite sequence of 
propositions, then its consistent truth-value assignments form a family 
of binary sequences 

V = {(o(X,), o(X,), . . ., o(Xn)): o a possible world) 

within real n-dimensional space 8" .  The convex hull of V is the subset 
V +  of 3" whose points can be expressed as weighted averages of V's 
elements. De Finetti showed that V +  is the set of all prevision assign- 
ments for elements of Xthat obey the laws of probability. He then used 
the convexity of V +(the fact that it contains the line segment between 
any two of its points) to show that, for any quadratic-loss rule S(p, o )  
= C,h,[o(X,)- p,I2 and any p B V + ,there is a unique p* C V+ that 
minimizes d(q) = C,h,[y,- p,I2 on V + and that this function has a lower 
S-score than p does relative to every truth-value assignment in V.6 

De Finetti's Lemma shows that a rational miser will always report 
previsions that obey the laws of probability when playing a prevision 
game scored by a quadratic-loss rule. But why think these previsions 
to have anything special to do with her degrees of belief? De Finetti 
often spoke as if there were no meaningful question to be asked here. 
A person's degrees of belief, he suggested, are operationally de$ned as 
whatever previsions she would report in a game scored with a yuadratic- 
loss rule. This cannot be right. Aside from familiar difficulties with 
behaviorist interpretations of mental states, this view actually under- 
mines itself. The problem is that it always makes sense to ask why a 
quadratic-loss function, rather than some other scoring rule, should 
be used to define degrees of belief. And, even if it is granted that a 
quadratic-loss rule should be used, one can still wonder whether all 
such rules will lead a rational miser to report the same previsions. After 

6. Strictly speaking, this only establishes Additivity in thejkite case. De Finetti did not 
go on to argue that the quadratic-loss rules enforce countable additivity because he felt 
a reasonable person should be able to assign the same, non-zero probability of winning 
to each ticket in a countably infinite lottery. As a number of authors have noted, how- 
ever, de Finetti's argument for finite additivity extends easily to the infinite case. I have 
never seen a proof of this for the version of the Dutch book argument considered here. 
There are proofs for other versions (see Skyrms 1984, 21-23). Here is an (incomplete) 
sketch of how the proof would go: Norlnality and finite Additivity imply that any 
assignment p of previsions to a countably infinite set of pairwise incompatible propo- 
sitions X = (X,, X,, X,, . . .) is square-convergent, i.e. C, p: is finite. V and V+ are 
subsets of the space of square-convergent sequences. V+contains the countably additive 
prevision assignments for X. If we imagine previsions scored using a rule the quadratic 
S(p, o )  = C, h,(o(X,) - p,)?, then for any p L V' and q E V+ we can set D(q) = 
(C, h,(ql - p,)2)112and minimize to find pY L V+.Calculation then shows that S(p*, o )  
> S(p, a )  for all o. 
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all, what prevents previsions from varying with changes in the weight- 
ing constants A,, . . . ,A,,? The point here is a general one. In the same 
way that it makes no sense to define "temperature" as "the quantity 
measured by thermometers" because it is impossible to know a priori 
either that such a quantity tracks any important physical property or 
that different thermometers will always assign similar values in similar 
circumstances, so too it makes no sense to define "degree of belief' as 
"the prevision reported in a quadratic-loss game" because it is impos- 
sible to know a priori either that previsions measure anything interest- 
ing or that different scoring rules elicit similar previsions in similar 
circumstances. It cannot be a definition which establishes that previ- 
sions reveal degrees of belief; it takes an argument. 

As it turns out, de Finetti did not really need to rely on his opera- 
tionism since he already had the required argument on hand (and in- 
deed gave it). The reasoning turns on a substantive claim about the 
nature of practical rationality: viz., that a rational miser will always 
report previsions that maximize her subjective expected utility. She will, 
that is, always choose a prevision p, for X that minimizes her expected 
penalty Exp @) = b (X)S@, 1) + (1 - b (X)) S(p, 0) where b (X) is her 
degree of belief for X. It is not difficult to show that this function is 
uniquely minimized at p, = b (X) when Sis any quadratic-loss function. 
This means that the previsions of expected utility maximizers do indeed 
reveal their degrees of belief. Since de Finetti's Lemma shows that these 
previsions must obey the laws of probability, we are thus led to 

The Dutch Book Theorem: If prudential rationality requires ex- 
pected utility maximization, then any prudentially rational agent 
must have degrees of belief that conform to the laws of probability. 

There are two main reasons why the Dutch book argument fails to 
convince people. First, there are some who reject the idea that pruden- 
tial rationality requires expected utility maximizati~n.~ I think these 
people are wrong, but will not argue the point here since for my pur- 
poses it is best to concede that the thesis is controversial so as to ad- 
vertise the advantages of a defense of probabilism that does not pre- 
suppose it. A more significant problem has to do with the pragmatic 
character of the Dutch book argument. There is a distinction to be 
drawn between prudential reasons for believing, which have to do with 
the ways in which holding certain opinions can affect one's happiness, 
and epistemic reasons for believing, which concern the accuracy of the 
opinions as representations of the world's state. Since the Dutch book 
argument provides only a prudential rationale for conforming 

7. The references here are too numerous to list. See Gardenfors and Shalin 1988 
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one's partial beliefs to the laws of probability, it is an open question 
whether it holds any interest for epistemology. There are some who 
think it does not. Ralph Kennedy and Charles Chihara have written 
that: 

The factors that are supposed to make it irrational to have a [prob- 
abilistically inconsistent] set of beliefs . . . are irrelevant, episte- 
mologically, to the truth of the propositions in question. The fact 
(if it is a fact) that one will be bound to lose money unless one's 
degrees of belief [obey the laws of probability] just isn't epistemo- 
logically relevant to the trutlz of those beliefs. (1979, 30). 

Roger Rosenkrantz has expressed similar sentiments, writing that the 
Dutch book theorem is a 

roundabout way of exposing the irrationality of incoherent beliefs. 
What we need is an approach that . . . [shows] why incoherent 
beliefs are irrational from the perspective of the agent's purely cog-
nitive goals. (1981, 214) 

If this is right, then the pragmatic character of the Dutch book argu- 
ment may well make it irrelevant to probabilism construed as a thesis 
in epistemology. 

Proponents of the Dutch book argument might try to parry this 
objection by going pragmatist and denying that there is any sense in 
which the epistemic merits of a set of beliefs can outrun its prudential 
merits. Some old-line probabilists took this position, but it is unlikely 
to move anyone who feels the force of the KennedylChiharalRosen- 
krantz objection. There does seem to be a clear difference between 
appraising a system of beliefs in terms of the behavior it generates or 
in terms of its agreement with the facts. Unless the pragmatists can 
convincingly explain this intuition away it is hard to see how their view 
amounts to more than the bald assertion that there is no such subject 
as traditional epistemology. Probabilism is not worth that price. 

More sophisticated probabilist responses acknowledge that partial 
beliefs can be criticized on nonpragmatic grounds, but they go on to 
suggest that imprudence, while not constitutive of epistemic failings, 
often reliably indicates them. People who choose means insufficient to 
their ends frequently do so because they weigh evidence incorrectly, 
draw hasty conclusions, engage in wishful thinking, or have beliefs that 
do not square with the facts. While this last flaw is no defect in ration- 
ality, it is reasonable to think that systematic deficiencies in practical 
reasoning that do not depend on the truth or jalsity of the reasoner's 
beliefs, like the tendency of probabilistically inconsistent misers to 
throw away money, are symptoms of deeper flaws. If this is so, then 
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the Dutch book argument can be read as what Brian Skyrms (1984, 
21-22) calls a "dramatic device" that provides a vivid pragmatic illus- 
tration of an essentially epistemic form of irrationality. 

The kind of irrationality Skyrms has in mind is that of making in-
consistent value judgments. As Ramsey first observed, an expected util- 
ity maximizer whose degrees of belief violate the axioms of probability 
cannot avoid assigning a utility to some prospect that is higher than 
the sum of the utilities she assigns to two others that together produce 
the same payoff as the first in every possible world. Her violations 
of the laws of probability thus leads her to commit both the prudential 
sin of squandering happiness and the epistemic sin of valuing prospects 
differently depending upon how they happen to be described. I want 
to agree that this is surely the right way to read the Dutch book ar- 
gument: what the argument ultimately shows is that probabilistically 
inconsistent beliefs breed logically inconsistent preferences. The will- 
ingness to squander money is a side-effect of the more fundamental 
defect of having inconsistent desires. Still, even if we grant this point, 
it remains unclear why this should be counted an epistemic defect given 
that the inconsistency in question attaches to preferences or value judg- 
ments. It would be one thing if a Dutch book argument could show 
that the strengths of an agent's beliejs vary with changes in the ways 
propositions happen to be expressed when she violates the laws of 
probability, but it cannot be made to show any such thing unless de- 
grees of belief are assumed to obey the Additivity axiom from the start. 
The sort of inconsistency-in-valuing Skyrms decries is undeniably a 
serious shortcoming, but it remains unclear precisely what clearly ir- 
rational property of beliejs underlies it.8 In the end, the only way to 
answer the ChiharaIKennedylRosenkrantz objection is by presenting 
an argument that shows how having degrees of belief that violate the 
laws of probability engenders epistemic failings that go beyond their 
effects on an agent's preferences. 

3. The Concept of Gradational Accuracy. The main obstacle to such an 
argument is the lack of any compelling criterion of epistemic success 
for partial beliefs. Such a criterion has eluded probabilists because they 
have been slow to realize that full and partial beliefs "fit the facts" in 
different ways. The accuracies of full beliefs are evaluated on a cate-

8. One might be tempted here to say that it is the agent's beliefs about what is desirable 
that are inconsistent. Aside from the fact that this would locate the epistemic flaw 
associated with my strongly believing both that it will be hot and that it will be cold 
tomorrow not in my beliefs about the weather but in my beliefs about the values of 
wagers, the underlying view that a desire can be understood as a kind of belief has 
serious difficulties. See Lewis 1988 and 1996 for relevant discussion. 
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gorical scale. The extent to which a full belief about X fits the facts is 
a matter of its "valence" (accept-X, reject-X, suspend belief), and X's 
truth-value. Maximum (minimum) accuracy is attained when X is true 
(false) and accepted or when X is false (true) and rejected, and an 
intermediate value is obtained when belief is suspended. The "fit" be- 
tween partial beliefs and the world is determined in a similar way except 
that, being attitudes that can come in a continuum of "valences," their 
appropriate standard of accuracy must be a gradational one on which 
accuracy increases with the agent's degrees of confidence in truths and 
decreases with her degrees of confidence in falsehoods. 

To see what I have in mind, it is useful to consider Richard Jeffrey's 
distinction between guesses and estimates of numerical quantities (Jef- 
frey 1986). When one tries to guess, say, the number of hits that a 
baseball player will get in his next ten at-bats, one aims to get the value 
exactly right. Guessing two hits when the batter gets three is just as 
wrong as guessing two hits when he gets ten. In guessing, closeness 
does not count. Not so for estimation. If the player gets five hits, it is 
better to have estimated that he would get three than to have estimated 
two or nine. Notice that, whereas it makes no sense to guess that a 
quantity will have a value that it cannot possibly have, it can make 
sense to estimate it to have such a value. One might, e.g., use a hitter's 
batting average to estimate that he will get 3.27 hits in his next ten at- 
bats. Such an estimate can never be exactly right of course, but in 
estimation there is no special advantage to being exactly right; the goal 
is to get as close as possible to the value of the estimated quantity. In 
conditions of uncertainty it is often wise to "hedge one's bets" by 
choosing a estimate that is sure to be off the mark by a little so as to 
avoid being off by a lot. 

Following de Finetti, Jeffrey assumes that estimates must conform 
to the laws of mathematical expectation, and he identifies degrees of 
belief with estimates of truth-values. He is entirely right about the sec- 
ond point, but a bit too hasty with the first. When restricted to esti- 
mates of truth-values, the laws of mathematical expectation just are 
the laws of probability. Jeffrey takes this to provide a justfication for 
requiring partial beliefs to satisfy the latter laws because he takes the 
former to be "as obvious as the laws of logic" (1986, 52). This, of 
course, is unlikely to convince anyone not already well disposed toward 
probabilism. The basic law of expectation is an additivity principle that 
requires a person's expectation for a quantity to be the sum of her 
expectations of its summands, so that Exp(F) = CjExp(<) when F = 

C,F,. No one who has qualms about additivity as it applies to degrees 
of belief is going to accept this stronger constraint without seeing a 
substantive argument. 
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The way to give a substantive argument, I believe, is to (a) grant 
Jeffrey's basic point that an agent's degree of belief for a proposition 
X is that number b(X) that she is committed to using as her estimate 
of X's truth-value when she recognizes that she will be evaluated for 
accuracy on a gradational standard appropriate for partial beliefs, and 
(b) argue that degrees of belief that obey the laws of probability are 
more accurate than those which do not when measured against this stan- 
dard. What I have in mind here is a kind of "epistemic Dutch book ar- 
gument" in which the relevant scoring rule assigns each credence func- 
tion b and possible world o a penalty Z(b, o )  assessed in units of 
gradational inaccuracy. The rule Z will gauge the extent to which the 
truth-value estimates sanctioned by b diverge from the truth-values that 
propositions would have were o actual. My claim is going to be that, 
once we appreciate what Imust look like, we will see that violations of 
the laws of probability always decrease the accuracy of partial beliefs. 

Lest the reader think that I merely plan to restate the Dutch book 
argument and call it epistemology, let me highlight a crucial difference 
between my approach and that of de Finetti and Savage. Since a miser 
always aims to increase her fortune, de Finetti and Savage were at 
liberty to choose any scoring rule they wanted without having to worry 
about whether their subject would seek to minimize the penalties it 
assessed. This was advantageous for them because once they had dis- 
covered that the quadratic-loss rules rewarded the reporting of previ- 
sions that obey the laws of probability they could count on their subject 
to want to report such previsions. De Finetti and Savage did, of course, 
have to worry about whether their rules would induce a miser to report 
previsions that reveal her partial beliefs, which is why they needed to 
appeal to the principle of expected utility maximization. My problem 
is a mirror image of this. I cannot simply assume that my subjects will 
seek to minimize their penalties relative to any scoring rule I might 
choose. The Norm of Gradational Accuracy portrays an epistemically 
rational agent is a kind of "accuracy miser." So, if a rule Z does not 
measure gradational inaccuracy, then there is no good reason to think 
that such an agent will aim to minimize it. On the other hand, if Idoes 
measure gradational inaccuracy, then we can be sure that she will strive 
to have a system b of degrees of belief that minimizes Z(b, o,) with 
respect to the actual world o,. So, unless I can establish that my "scor- 
ing rule" really does measure inaccuracy in the epistemically relevant 
sense, I will have no grounds for concluding that we should care about 
its penalties. On the bright side, once I do find such a rule I can be sure 
that every epistemically rational agent will aim to have degrees of 
belief, not merely previsions, that minimize its values. This makes part 
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of my task easier than the one that faced de Finetti and Savage since 
I will not need to invoke any analogue of expected utility maximization. 

To see why this is an advantage, consider a justification for proba- 
bilism offered by Roger Rosenkrantz ( I  981). While he does not invoke 
the distinction between categorical and gradational accuracy, it is not 
too much of a stretch to see Rosenkrantz asking the question that 
concerns us: assuming that the gradational inaccuracy of a system of 
degrees of belief can be measured by a function I(b, a),what properties 
must I have if it is going to be the sort of thing epistemically rational 
agents will seek to minimize. Rosenkrantz answers by introducing ax- 
ioms that are meant to pick out the quadratic-loss rules as the only 
candidates for I.Among them we find: 

Expected Accuracy Maximization: A rational agent should aim to 
hold a set of partial beliefs b that minimizes her expected inaccu-
racy, i.e., for any partition XI,  X,, . . . , XI, it must be true that 
Exp (I(b, a))  = Cib (Xi)I(b, Xi) 2 Exp (Z(b*, a))  = C,b(X,)Z(b*, Xi) 
for any alternative sets of degrees of belief b*. 

Non-Distortion: The function Exp(I(b*, a))  attains a minimum at 
b (X,) = b *(X,)lCib *(X,) . 

'The quadratic-loss rules satisfy these conditions, and Rosenkrantz con- 
jectures that they do so uniquely. While this may be so, the point is 
moot unless some non-circular rationale can be given for Expected 
Accuracy Maximization and Non-Distortion. Rosenkrantz does not 
offer any. Though I am happy to grant that both principles hold for 
partial beliefs that obey the axioms of probability, the problem is that 
they must also hold when the axioms are violated if they are to serve 
as premises in a justification for the fundamental dogma of probabi- 
lism. Here is a simple (but generalizable) example that shows why this 
cannot work. Let {X,, X,, X,} be a partition, and imagine someone 
with the probabilistcially inconsistent beliefs b (XI) = b (X,) = b (X,) 
= 113 and b(X, V X,) = 314. If Rosenkrantz were right, this persoil 
would have to think that the most accurate degree of belief for XI  is 
simultaneously 113 = b(Xl)/[b(Xl) + b(X,) + b(X,)] and 4110 = 
b(Xl)/[b(Xl) + b(X, v X,)] because these are the answers that Non- 
distortion and Expected Accuracy Maximization sanction when ap- 
plied to the partitions {XI, X,, X,} and {XI, (X, v X,)} respectively. 
Perhaps Rosenkrantz would want to construe this inconsistency as an 
indication of irrationality, but unless he can offer us some independent 
rationale for his two principles we can just as well take the inconsis- 
tency to invalidate them as norms of epistemic rationality. The point 
here is basically the same as the one raised in connection with Jeffrey's 
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identification of estimates and expectations: we cannot hope to justify 
probabilism by assuming that rational agents should maximize the ex-
pected accuracy of their opinions because the concept of an expectation 
really only makes sense for agents whose partial beliefs already obey 
the laws of probability. 

4. Measures of Gradational Accuracy. Despite this flaw in his argument, 
Rosenkrantz was right to think that a defense of the fundamental 
dogma should start from an analysis of inaccuracy measures, and that 
it should show that agents whose partial beliefs violate the axioms of 
probability are always less accurate than they need to be. I will provide 
a defense along these lines by formulating and justifying a set of con- 
straints on measures of gradational inaccuracy, and then showing that 
any function that meets these constraints will encourage conformity to 
the laws of probability in the strongest possible manner. It will turn 
out that, relative to any such measure, a system of partial beliefs that 
violates the axioms of probability can always be replaced by a system 
that both obeys the axioms and better fits the facts no matter what the 
facts turn out to be. 

In developing these ideas, I will speak as if gradational accuracy can 
be precisely quantified. This may be unrealistic since the concept of 
accuracy for partial beliefs may simply be too vague to admit of sharp 
numerical quantification. Even if this is so, however, it is still useful to 
pretend that it can be so characterized since this lets us take a "super- 
valuationist" approach to its vagueness. The supervaluationist idea is 
that one can understand a vague concept by looking at all the ways in 
which it can be made precise, and treating facts about the properties 
that all its "precisifications" share as facts about the concept itself. In 
this context a "precisification" is a real function that assigns a definite 
inaccuracy score Z(b, o)to each set of degrees of belief b and world o. 
In what follows, I am going to be interested not so much in what the 
function Zis, but in the properties that all reasonable "precisified" mea- 
sures of gradational inaccuracy must share. 

Let me begin by codifying the notation. The measure Z is defined 
over pairs in B x V, where B is the family of all credence functions 
defined on a countable9 Boolean algebra of propositions 0 and V is 
the subset of B containing all consistent truth-value assignments to 
members of 0.We will continue referring to these truth-value assign- 

9. It does no harm to assume that .Q is countable since violations of the laws of prob- 
ability always occur in countable sets. On an uncountable algebra of propositions the 
probabilist requirement is that degrees of belief should obey the probability axioms on 
every countable .subiilgebvci. 
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ments as "possible worlds" and using "co" as a generic symbol for 
them. The collection of all probability functions in B is V's convex hull 
V+. B - V+ is thus the set of all assignments of degrees of belief to the 
propositions in IR that violate the laws of probability. The set B is 
endowed with a great deal of geometrical structure. It always contains 
a unique "line" L = {hb + ( 1  -h)b*: h E 8)that passes through any 
two of its "points" b and b*. The line segment from b to b*, hereafter 
bb*, is the subset of L for which h falls between zero and one. A func-
tion [hb + ( 1  -h)b*]that falls on this segment is called a mixture of b 
and bJ' since it assigns each X E 0 a "mixed" value of hb(X)  + 
( 1  -h)b*(X).This mixture effects a kind of compromise between b and 
b* when the two differ. If h > 112 the compromise favors the b beliefs 
since hb(X)  + ( 1  -h)bJ'(X)is always closer to b ( X )than to b*(X).The 
reverse occurs when h < 112. The even mixture ( h  = 112) is a "fair" 
compromise that sets X's degree of belief exactly halfway between b ( X )  
and b*(X).A number of the constraints to be imposed below will ex- 
ploit this geometry of lines and segments. 

Our first axiom says that inaccuracy should be non-negative, that 
small changes in degrees of belief should not engender large changes 
in accuracy, and that inaccuracy should increase without limit as de- 
grees of belief move further and further from the truth-values of the 
propositions believed. 

Structure: For each o E V, I(b, o) is a non-negative, continuous 
function of b that goes to infinity in the limit as b ( X )  goes to infinity 
for any X E IR. 

This weak requirement should be uncontroversial given that grada- 
tional accuracy is supposed to be a matter of "closeness to the truth." 

Our next constraint stipulates that the "facts" which a person's par- 
tial beliefs must "fit" are exhausted by the truth-values of the propo- 
sitions believed, and that the only aspect of her opinions that matter 
is their strengths. 

Extensionality: At each possible world o ,  I(b, o) is a function of 
nothing other than the truth-values that o assigns to propositions 
in IR and the degrees of confidence that b assigns these propositions. 

Most objections to Extensionality conflate the task of finding a mea- 
sure of accuracy for partial beliefs with the more ambitious project of 
defining an epistemic utility function that gauges the overall goodness 
of a system of partial beliefs in all epistemologically relevant respects.1° 
Accuracy is only one virtue among many that we want our opinions to 

10. For an excelle~lt recent discussio~l of epistemic utility, see Maher 1993. 
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possess. Ideally, a person will hold beliefs that are informative, simple, 
internally coherent, well-justified, and connected by secure causal links 
to the world. A notion of epistemic utility will balance off all these com- 
peting desiderata to provide an "all-in" measure of doxastic quality. 
While accuracy will be a strongly-weighted factor in any such measure, 
it will not be the only factor. Since properties like the informativeness of 
a belief or its degree ofjustification are not extensional, epistemicutility 
cannot be either. Extensionality does make sense for gradational accu- 
racy, however, since gradational accuracy is supposed to be the analogue 
of truth for partial beliefs. Just as the accuracy of a full beliefis afunction 
of its attitudinal "valence" (acceptlrejectlsuspend judgment) and its 
truth-value, so too the accuracy of a partial belief should be a function 
of its "valence" (degree) and truth-value. 

A second objection to Extensionality is that it does not take verisi-
militude into account.ll Here is how the complaint might go: 

Copernicus (let us suppose) was exactly as confident that the 
earth's orbit is circular as Kepler was that it is elliptical. However, 
both were wrong since the gravitational attraction of the moon 
and the other planets causes the earth to deviate slightly from its 
largely elliptical path. Extensionality rates the two thinkers as 
equally inaccurate since both believed a falsehood to the same high 
degree. Still Kepler was obviously nearer the mark, which suggests 
that evaluations of accuracy must be sensitive not only to the truth- 
values of the propositions involved, but also to how close false 
propositions come to being true. 

I am happy to admit that Kepler held more accurate beliefs than Co- 
pernicus did, but I think the sense in which they were more accurate is 
best captured by an extensional notion. While Extensionality rates 
Kepler and Copernicus as equally inaccurate when their false beliefs 
about the earth's orbit are considered apart,from their effects on other 
beliefs, the advantage of Kepler's belief has to do with the other opin- 
ions it supports. An agent who strongly believes that the earth's orbit 
is elliptical will also strongly believe many more truths than a person 
who believes that it is circular (e.g., that the average distance from the 
earth to the sun is different in different seasons). This means that the 
overall effect of Kepler's inaccurate belief was to improve the exten-
sional accuracy of his system of beliefs as a whole. Indeed, this is why 
his theory won the day. I suspect that most intuitions about falsehoods 
being "close to the truth" can be explained in this way, and that they 
therefore pose no real threat to Extensionality. 

11. Thanks to Bob Batterman for helping me think this issue through. 
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Our third axiom requires the accuracy of a system of degrees of belief 
to be an increasing function of the believer's degree of confidence in 
any truth and a decreasing function of her degree of confidence in any 
falsehood. 

Dominance: If b(Y) = b*(Y) for every Y E R other than X, then 
Z(b, o )  > Z(b", o )  if and only if lo(X) - b (X)I > lo(X) - 6"(X)I. 

Tliis principle really says two things. First, it lets us speak of the ac- 
curacy of each individual degree of belief taken in isolation from the 
belief system as a whole. Second, it says that the accuracy of b(X) 
always increases as it approaches o(X). Thus, moving one's degree of 
belief for X closer to X's truth-value improves accuracy no matter what 
one's other degrees of belief r~zight be. Were this not the case one could 
have a perverse incentive to lower one's degree of belief in a proposition 
for whose truth one has strong evidence because doing so would in- 
crease overall accuracy. 

To see how bizarre these incentives can be, consider the calibration 
index, a measure of accuracy for degrees of belief that Bas van Fraassen 
and Abner Shimony have each tried to use in a vindication of proba- 
bilism similar to the one sought here. As Wesley Salmon (1988) noted, 
many probabilists are attracted to frequency driven accounts of subjec- 
tive probability. The truth-frequency of a family of propositions X = 

{X,, X,, . . . ,X,} at a world o is the proportion of the X, that hold in 
o ,  so that Fveq(X, o )  = [co(X,) + o(X,,) + . . . + o(X,l)]/n. It is easy 
to show that an agent who has well-defined degrees of belief for all X's 
elements can only satisfy the axioms of probability if her expected fre-
quency of truths in X is equal to her average degree of belief for the 
various X,, so that Exp(Fveq(X)) = [b (X,) + . . . + b(X,)]ln. A special 
case of this is 

The Calibration Theorem: If an agent assigns the same degree of 
belief x to every proposition in X, then a necessary condition for 
her degrees of belief to satisfy the axioms of probability is that her 
expectation for the frequency of truths in X must be x. 

This seems to get at something deep about partial beliefs. What can it 
mean, after all, to assign degree of belief x to X if not to think some- 
thing like, "Propositions like X are true about x proportion of the 
time"? Moreover, unlike the principle of mathematical expectation 
from which it follows, the Calibration Theorem does not presuppose 
probabilism in any obvious way. Perhaps the thing to do is to replace 
"satisfy the axioms of probability" by "be rational" and "expectation" 
by "estimate," and to treat the Calibration Theorem as a conceptual 
truth about degrees of belief. And, if one does so, the accuracy of a set 
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of degrees of belief can be analyzed as a function of the discrepancy 
between the relative frequency estimates it sanctions and the actual 
relative frequencies. 

The meteorologist A. Murphy found a way to measure this discrep- 
ancy (Murphy 1973). For any credence function b defined over afinite 
family of propositions X,  one can always subdivide X into disjoint 
reference classes = {X C X: h(X) = b,}, where {b,, . . . ,b,J lists all 
the values that b assumes on X. The Calibration Theorem tells us that 
bj is the only estimate for Freq(T.) that b can sanction. Murphy char- 
acterized the divergence of these estimates from the actual frequencies 
at world o using a quantity called the calibration index Cal(b, X, o)= 

C,(n,ln)[Freq(o(X,))- bjI2 where n is the number of propositions in 
X and n, is the number of propositions in X,.The function b isperfectly 
calibrated when Cal(b, X, co) = 0. In this case, half the elements 
of X assigned value 112 are true, two-fifths of those assigned value 
215 are true, three-fourths of those assigned value 314 are true, and 
SO on. 

Some have championed calibration as the best measure of "fit" be- 
tween partial beliefs and the world. Van Fraassen, for example, has 
written that calibration "plays the conceptual role that truth . . . has 
in other contexts" (1983, 301), and has suggested that the appropriate 
analogue of consistency for degrees of belief is calibmbility, the ability 
to be embedded within ever richer systems of beliefs whose calibration 
scores can be made arbitrarily small. He and Abner Shimony (1988) 
have even sought to vindicate probabilism by arguing, in different 
ways, that the only way to achieve calibrability with respect to finite 
sets of propositions is by having degrees of belief that conform to the 
laws of probability. If either of these arguments had succeeded we 
would have had our nonpragmatic vindication of probabilism. 

They fail for two reasons. First, van Fraassen and Shimony need to 
employ very strong structural assumptions that are not well motivated 
as requirements of rationality. While the two assumptions are similar, 
van Fraassen's is easier to state because he deals only with propositions 
of the monadic form "x is A." He requires that for any assignment b 
of degrees of belief to the elements of a set X of such propositions it 
should be possible to extend b to a function b* defined on a superset 
X* of X in such a way that each proposition "x is A" in X can be 
associated with a subset in X* of the form 

where (a) k may be any positive integer, (b) b*(x, is A) = b(x is A) for 
every j, and (c) the propositions in X(x, A) are logically independent of 
one another. In effect, van Fraassen is introducing dummy propo- 
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sitions to ensure that each element of X can be embedded in a proba- 
bilistically homogenous reference class of any chosen truth-frequency. 
Shimony uses a somewhat more general condition, his El  (1988, 156- 
157), to achieve substantially the same end. These are extremely strong, 
and rather ad hoc, assumptions, and it is not at all surprising that grand 
conclusions can be deduced from them. What remains unclear, how- 
ever, is why rational degrees of belief should be required to satisfy any 
such conditions. 

But, even supposing that it is possible to show that they should, a 
more substantive problem with the van FraassenIShimony approach is 
that calibration is simply not a reasonable measure of accuracy for 
partial beliefs.12 Consider the following table, which gives four sets of 
degrees of belief for propositions in X = {XI, X,, X,, X,) and their 
calibration scores at a world o in which XI and X2 are true and X, and 
X, are false: 

Cal 0 11400 131100 0 

Figure 2. Calibratio~l Scores 

Notice that b,  is better calibrated than b, even though all of 6,'s values 
are closer to the actual truth-values than those of b,. This happens 
because each individual degree of belief can affect the overall calibra- 
tion of its credence function not only by being closer to the truth-value 
of the proposition believed, but by manipulating the family of subsets 
relative to which calibration is calculated. To see why this is a problem 
imagine that an agent with degrees of belief b, who has strong evidence 
for X, and X,, somehow learns that exactly two of the X, hold, without 
being told which ones. What should he do with this information'? One 
might think that a rational believer would lower his estimates for X, 
and X, to nearly zero and keep his estimates for X, and X, close to 
one. If we equate accuracy with good calibration, however, this is 
wrong! The best way for our agent to improve his calibration score 
(indeed to ensure that it will be zero) is to keep his estimates for X, 

12. My discussion here is indebted to Seidenfeld 1985. 
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and X, fixed, ignore all his evidence, and lower his estimates for X ,  and 
X, to 112. The Dominance requirement rules out this sort of absurdity. 

Our fourth axiom says that differences among possible worlds that 
are not reflected in differences among truth-values of proposition that 
the agent believes should have no effect on the way in which accuracy 
is measured. 

Normality: If lo(X)- b(X)I = la*(X)- b*(X)I for all X E R, then 
Z(b, o) = I(b*, a * ) .  

In the presence of the other conditions, this merely says that the stan- 
dard of gradational accuracy must not vary with changes in the world's 
state that do not effect the truth-values of believed propositions. Were 
this not so there would be no uniform notion of "what it takes" for a 
system of partial beliefs to fit the facts. 

Our final two constraints concern mixtures of credence functions. 

Weak Convexity: Let m = (1126 + 1/2bA)be the midpoint of theline 
segment between b and b*. If Z(b,a) = Z(b*,a),then it will always 
be the case that Z(b,o)2 Z(m,o)with identity only if b = b*. 

Symmetry: If Z(b, o) = Z(b*, o),then for any E [O,l]one has 
Z(hb + ( 1  -h)b", a) = Z ( ( 1  -h)b + hb", a). 

To see why Weak Convexity is a reasonable constraint on gradational 
inaccuracy notice that in moving from b to m an agent would alter each 
of degree of belief b ( X )  by adding an increment of k(X)  = 

1/2[b*(X)- b ( X ) ] .She would add the same increment of k(X) to each 
m(X)  in moving from m to b". To put it in geometrical terms, the 
"vector" k that she must add to b to get m is the same as the vector 
she must add to m to get b*. Furthermore, since b* = b + 2k the 
change in belief involved in going from b to b* has the same direction 
but a doubly greater magnitude than change involved in going from b 
to m. This means that the former change is more extreme than the 
latter in the sense that, for every proposition X, both changes alter the 
agent's degree of belief for X in the same direction, either by moving 
it closer to one or closer to zero, but the b to b" change will always 
move b ( X ) twice as far as the b to m change moves it. Weak Convexity 
is motivated by the intuition that extremism in the pursuit of accuracy 
is no virtue. It says that if a certain change in a person's degrees of 
belief does not improve accuracy then a more radical change in the 
same direction and of the same magnitude should not improve accu- 
racy either. Indeed, this is just what the principle says. If it did not 
hold, one could have absurdities like this: "I raised my confidence levels 
in X and Y and my beliefs became less accurate overall, so I raised my 
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confidence levels in X and Y again, by exactly the same amounts, and 
the initial accuracy was restored." 

To understand the rationale for Symmetry observe first that, when 
b and b" are equally accurate at w, Weak Convexity entails that there 
will always be a unique point on the interior of the line segment be- 
tween them that minimizes inaccuracy over the segment, i.e., there will 
be a c = pb + (1 -y)b* with 0 < y < 1 such that Z(hb + (1 -L)b*, 
a)2 Z(c, w) for all h with 0 5 L 5 l . I 3  If c were not the midpoint of 
bb*, then it would have to be closer to b or to b*. Given the initial 
symmetry of the situation this would amount to an unmotivated bias 
in favor of one set of beliefs or the other. If c = 1/4b + 3/4b*, for 
example, then c would lie between b* and the midpoint of bb*. This 
would mean that a person who held the b beliefs would need to alter 
her opinions more radically than a person who held the b* beliefs in 
order to attain the maximum accuracy along bb*. The reverse would 
be true if c = 3/4b + 1/46". Symmetry rules this sort of thing out. It 
says that when b and b* are equally accurate there can be no grounds, 
based on considerations of accuracy alone, for preferring a "compro- 
mise" that favors b to a symmetrical compromise that favors b*. It 
does this by requiring that the change in belief that moves an agent a 
proportion h along the line segment from b toward b* has the same over- 
all effect on her accuracy as a "mirror image" change that moves her the 
same proportion h along the line segment from b* toward 6 .  

Structure, Extensionality, Normality, Dominance, Weak Convexity, 
and Symmetry are the only constraints on measures of gradational 
accuracy we need to vindicate the fundamental dogma of probabilism. 
Those who find these conditions compelling, and who agree with my 
analysis of partial beliefs as estimates of truth-value, are thereby com- 
mitted to thinking that epistemically rational degrees of belief must 
obey the laws of probability. Those who deny this will either need to 
explain where my conditions go wrong or will have to dispute my anal- 
ysis of partial beliefs. For the reasons presented, I do not believe either 
line of attack will succeed. 

5. Vindicating the "'Fundamental Dogma". In this section we will see 
how any system of degrees of belief that violates the axioms of prob- 
ability can be replaced by a system that both obeys these axioms and 
is more accurate relative any assignment of truth-values to the prop- 
ositions believed. The aim is to prove the 

Main Theorem: If gradational inaccuracy is measured by a func- 

13. The proof of this fact is essentially the same as the proof of Lemma-1. below. 
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tion Z that satisfies Structure, Extensionality, Normality, Domi- 
nance, Weak Convexity, and Symmetry, then for each c C B - V+ 
there is a c" C V + such that Z(c, o )  > Z(C*, a )  for every o C V .  

Begin -the proof by defining a map D(b, c) = Z(o + (b -c), a )  where 
o + (b -c) is defined by ( o  + b -c)(X) = w(X) + b (X) -c(X). (I 
have chosen the symbol "D" here to suggest the notion of a distance 
function.) 

The following facts are simple consequences of the conditions we 
have imposed on I: (Proofs are left to interested readers, but the axioms 
needed for each case are given.) 

I. 	 D(., c) is continuous for each c C B. [Structure] 
11. D's value does not depend on the choice of o E V . [Structure] 
111. D(b, c) goes to infinity as b(X) goes to infinity for any X 	C R. 

[Structure] 
IV. D(b, c) 2 D(6") c*) if Ib(X) - c(X)I 2 Ib*(X) -c*(X)I holds for 

all X C R, and the former inequality is strict if the latter is strict 
for some X. [Dominance] 

V. 	 If c* lies on the line segment bc and if c* # b, then D(b, c) > 
D(c") c). [via IV] 

VI. D(b, c) 	= D(b*, c) if and only if D(., c) has a unique minimum 
along the line segment bb* at its midpoint 1/2b + 1/26*. [Sym- 
metry, Weak Convexity] 

We will use these facts to prove a series of lemmas that establish the 
Main Theorem. 

Let c be any fixed element of B - V + .Our first lemma shows how 
to select c*, the point in V+ that is "closer to the truth" than c is no 
matter what the truth turns out to be. 

LEMMA-1: There is a point c* C V +  such that the function D(., c) 
attains its unique minimum on V+ at c*. 

PROOF:A classic result from point-set topology says that a contin- 
uous, real-valued function defined on a closed, bounded region 
always attains a minimum on that region. Since V + is closed and 
bounded it follows from (I) that there is a point c" C V+  with 
D(c*, c) ID(b, c) for all b C V + .To see why this minimum is 
unique, suppose it is attained by another b* C V + .Since D(b", c) 
= D(c*) c), fact (VI) entails that D(., c) assumes a unique mini- 
mum on the line segment c*b* at its midpoint 1/2c* + 1/2b*. Since 
V +  is convex it will contain this midpoint, which contradicts the 
hypothesis that c* minimizes D(., c) on V+. Q.E.D. 

Given Lemma- 1, we can prove Main Theorem by showing that Z(c, o )  
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> Z(c*, o )  for all o C V. Start by selecting an arbitrary o .  We may 
assume that c" and o are distinct, and thus that D(c", c) < D(o, c), 
since the desired inequality follows trivially from (IV) if they are iden- 
tical. Let L = {kc" + (1 -k)o: k C M) be the line in B that contains 
c* and o ,  and let R = {kc" + (1 -k)o: h 2 1) be the ray of L that 
begins at c* but does not contain o .  

LEMMA-2: There is a point m on R such that (a) rn uniquely mini- 
mizes D(.,c) on R, (b) c* is an element of the segment of L that 
runs between m and o ,  and (c) I(m, o )  2 I(c*, a ) .  

PROOF: Fact (111) entails that D(., c) goes to infinity on R as h does. 
Given that D(c", c) < D(w, c) it follows from (I), and the Inter- 
mediate Value Theorem, that there is a point k on R such that 
D(k, c) = D(o, c). Let m = 1/2k + 1/20 be the midpoint of the 
line segment kw. By (VI), m is the unique minimum of D(., c) on 
this segment. m cannot lie strictly between c* and o on L because 
it would then be contained in V +,  which would entail that c* does 
not minimize D(., c) on Vt . Thus, c* must be on segment mw. and 
(V) entails that Z(m, o )  2 Z(C", a) ,  with the equality strict if c* # 
m. Q.E.D. 

Given these two Lemmas, the Main Theorem follows if it can be 
shown that I(c, o )  > Z(m, o).  This is one of those cases where a picture 
is worth a thousand words. 

LEMMA-3: Z(C, a )  > z(m, (3). 
PROOF: By the construction of Lemma-2 we know that D(k, c) = 

D(o, c). Since c minimizes D(., c) on the line segment from k to 
2c - k, (VI) entails that D(k, c) = D(2c - k, c). Together these 
identities yield 

( A )  D(w, c) = D(2c - k, c). 
Given (A), fact (VI) entails that D(., c) attains a unique minimum 
on line segment between o and 2c - k at [1/2(o - k) + c]. It 
follows that 

Figure 3. The Key Lemma in the Proof of the Maill Theorern: d, > d2 
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( B )  D(w, c) > D(1/2(w - k) + c, c). 
Since D is a symmetric function of its two arguments this means 
that 

(C)  D(c, w) > D(c, 1/2(w - k) + c). 

We can now use the definition of D to obtain 


Z(c, o )  = I)(&.,o )  > D(c, 1/2(w - k) + c) 
= Z(w + ( c  - [1/2(w - k) + c)], o )  
= Z(112w + 1/2k, o )  
= Z(m, a ) .  

So, we have shown that Z(c, w) > Z(m, o).  Q.E.D. 

Since we already know from Lemma-2 that Z(m, w) 2 Z(c*, a) ,  we 
obtain the inequality Z(c, o )  > Z(c", w) from Lemma-3. This completes 
the proof of the Main Theorem. It is thus established that degrees of 
belief that violate the laws of probability are invariably less accurate 
than they could be. Given that an epistemically rational agent will 
always strive to hold partial beliefs that are as accurate as possible, this 
vindicates the fundamental dogma of probabilism. 

6. Some Loose Ends. The foregoing results suggests two further lines 
of investigation. First, it would be useful to know what functions obey 
the constraints imposed on I. Second, to apply the Main Theorem in 
realistic cases we need to understand how it applies to partial beliefs 
that do not admit of measurement in precise numerical degrees. 

I cannot now specify the class of functions that satisfy my axioms, 
but I do know it is not empty. The quadratic-loss rules are among its 
elements, as is any map Z(b, w) - F(C, ;,, h,[w(X) - b(X)I2) where P 
is a continuous, strictly increasing real function. The proofs of these 
claims are, however, beyond the scope of this paper. I am not certain 
whether there are other functions that meet the requirements,I4 but I 
suspect there are. 

Turning to the second issue, the Main Theorem tells us that partial 
beliefs whose strengths can be measured in precise numerical degrees 
must conform to the laws of probability, but its import is less clear for 
partial beliefs specified in inore realistic ways. Most probabilists recog- 
nize that opinions are often too vague to be pinned down in numerical 
terms, and it has therefore become standard to represent a person's par- 
tial beliefs not by some single credence function but by the class of all 
credence functions consistent with her opinions. One then thinks of a 
doxastic state not as a single element of B but as one of its subsets B*. 

14. One large class of functions that do not satisfy them (because they violate Symmetry) 
are the [,-norms: Z(b, w) = (C,, ,,>,,[w(X,) - b ( X , ) l ~ ) ' l p ,for p 2 1 other than p = 2. 



A NONPRAGMATIC VINDICATION OF PROBABILISM 601 

The most minimal probabilistic consistency requirement for partial 
beliefs that are modeled in this way is that there should be at least one 
probability among the elements of B*. In other words, an epistemically 
rational agent's partial beliefs should always be extendible to some 
system of degrees of belief that satisfy the axioms of probability. The 
Main Theorem provides a compelling rationale for this requirement 
because if B* contained no probabilities then every way of making the 
agent's opinions precise would result in a system of degrees of belief 
that are less accurate than they could otherwise be. It would then be 
determinately the case that the agent's partial beliefs are not as accurate 
as they could be because every precisification of them would yield a 
credence function that is less accurate than it could be. 

One of the best things about looking at matters in this way is that 
it helps to make sense of some old results pertaining to the probabilistic 
representation of ordinal confidence rankings. In a seminal paper, 
Kraft, et al. (1959) presented a set of necessary and sufficient conditions 
for a comparative probability ranlcing to be represented by a probability. 
We may think of such a ranking as a pair of relations (.>., .?.) defined 
on R, where X .>.Y and X .>. Y mean, respectively, that the agent 
is more confident in X than in Y, or as confident in X as in Y. The 
conditions Kraft et al. laid down can be expressed in a variety of ways, 
but the most tractable formulation is due to Dana Scott (1964). Say 
that two ordered sequences of (not necessarily distinct) propositions 
(XI, X,, . . . , X,J and (Y,, Y,, . . . , Y,) drawn from R are isovalent 
(my term) when the number of truths that appear in the first is neces- 
sarily identical to the number that appear in the second, so that o(X,) 
+ o(X,) + . . . + o(X,,) = o(Y,) + o(Y,) + . . . + o(Y,,,) holds at 
every world o. The important thing about isovalence is that a proba- 
bility function P will always be additive over isovalent sequences, so 
that C, P(X,) = C, p(YJ when (X,, X,, . . . ,X,) and (Y,, Y,, . . . ,Y,) 
are isovalent. Scott introduced the following constraint on confidence 
rankings to ensure that all their representations would have this gen- 
eralized additive property: 

Scott's Axiom: If (X,, X,, . . , X,) and (Y,, Y,, . . . , Y,) are iso- 
valent, it should never be the case that X, .>.Y, for every i = 1, 
2, . . . ,n where XI .>.Y, for some j. 

He then proved that, for finite Q, Scott's Axiom (plus a nontriviality 
requirement) is necessary and sufficient for the existence of a proba- 
bility representation for (.>., .>.). 

Commentators have not known what to make of Scott's condition. 
Scott himself worried about its "non-Boolean" nature. Terrence Fine 
points out, quite rightly, that it makes essential reference to s u r ? ~ ~of 
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propositions which generally will not be propositions themselves. A 
reasonable theory of comparative probability, he writes, should be, 
"concerned only with [propositions]. Why should we be concerned 
about objects that have no reasonable interpretation in terms of ran- 
dom phenomena?" (1973, 24) Peter Forrest, commenting on a condi- 
tion of his own that is equivalent to Scott's Axiom, writes: 

My results are largely negative, I motivate the search for a certain 
kind of representation and I provide a condition which, given vari- 
ous intuitive rationality constraints, is necessary, sufficient and 
non-redundant. Unfortunately, this condition is not itself an in- 
tuitive rationality constraint. That is why my results are negative. 
Their chief purpose is to throw out a challenge. Is it possible to 
provide an intuitive rationality constraint that implies [Scott's Ax- 
iom]? (1989, 280) 

Fortunately, we already have one! Scott's Axiom is just the require- 
ment one would impose if one wanted partial beliefs to be gradationally 
accurate. If (X,, X,, . . . , X,,) and (Y,, Y,, . . . ,Y , )  are isovalent, then 
every logically consistent set of truth-value assignments w will be found 
somewhere in the bounded, closed, convex set 

U = {b E B: b(X,) + . . .  + b(X,) = 

b(Yl) + . . . + b(Yn), for 0 5 b(X,), b(Y,) 5 1).  

If X, .>.Y, for all i with XI .r.Y, for some j, then any credence function 
c that represents these beliefs will satisfy [c(Xl) + . . . + c(Xn)]> [c(Y,)
+ . . . + c(Yn)], which means that c will lie outside U.By recapitulating 
our argument for the Main Theorem we can find a point c" E U such 
that Z(c, w) > Z(c", w) for evevy world o.Thus, once we start thinking 
in terms of gradational accuracy, Scott's Axiom can be interpreted as 
a constraint that prevents people from having partial beliefs that are 
less accurate than they need to be. This, as we have seen, is something 
to be avoided on pain of episternic irrationality. 
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