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A nonsmooth generalized-˛ scheme for flexible multibody
systems with unilateral constraints

Qiong-zhong Chen1, Vincent Acary2, Geoffrey Virlez1 and Olivier Brüls1,*,†
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Mechanical systems are usually subjected not only to bilateral constraints, but also to unilateral constraints. 
Inspired by the generalized-˛ time integration method for smooth flexible multibody dynamics, this paper 
presents a nonsmooth generalized-˛ method, which allows a consistent treatment of the nonsmooth phe-
nomena induced by unilateral constraints and an accurate description of the structural vibrations during free 
motions. Both the algorithm and the implementation are illustrated in detail. Numerical example tests are 
given in the scope of both rigid and flexible body models, taking account for both linear and nonlinear 
systems and comprising both unilateral and bilateral constraints. The extended nonsmooth generalized- 
˛ method is verified through comparison to the traditional Moreau–Jean method and the fully implicit 
Newmark method. Results show that the nonsmooth generalized-˛ method benefits from the accuracy and 
stability property of the classical generalized-˛ method with controllable numerical damping. In particular, 
when it comes to the analysis of flexible systems, the nonsmooth generalized-˛ method shows much better 
accuracy property than the other two methods.

KEY WORDS: nonsmooth dynamics; unilateral constraints; generalized-˛ method; time integration
scheme; flexible multibody systems

1. INTRODUCTION

The equations of motion for a mechanical system with bilateral constraints can be characterized

by a mixed set of second order differential and algebraic equations. One of the classical research

interests is in the efficient numerical solutions. Among the classical numerical solvers, the Hilber–

Hughes–Taylor (HHT) method [1] and the generalized-˛ method [2], which are extended from the

original implicit Newmark approach [3], are popular and have been extensively applied in struc-

tural dynamics. With an optimal choice of parameters, these solvers yield second-order accuracy

and unconditional stability, which are of utmost importance because the structural dynamics equa-

tions can be very stiff with a broad range of system eigenfrequencies [4]. Cardona and Géradin [5]

proposed to apply these solvers to index-3 DAEs in flexible multibody dynamics. These authors

have demonstrated that, in the linear regime, the numerical instability in the Lagrangian multipliers

can be removed with a small amount of numerical dissipation at high frequencies [4]. An extended

analysis on the global convergence can be found in [6].

In practice, mechanical systems are usually subjected not only to bilateral constraints, but also to

unilateral constraints. For instance, the global dynamic behaviour of wind turbines is characterized

*Correspondence to: Olivier Brüls, Department of Aerospace and Mechanical Engineering (LTAS), University of Liège
Chemin des Chevreuils, 1 (B52/3), 4000 Liège, Belgium.

†E-mail: o.bruls@ulg.ac.be
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by vibrations of structural elements such as the blades and the tower coupled with strong nonlinear-

ities in the transmission line due to contacts between stiff or rigid bodies with backlash and friction

phenomena. Unilateral constraints can be modelled either by regularization techniques based on

single-valued force laws, or by set-valued force laws that lead to nonsmooth models. Regularization

techniques aim at replacing the discontinuity by a stiff but compliant model,for example, the con-

tinuous impact models proposed in [7]. However, the knowledge of a number of physical contact

parameters such as contact stiffness and damping, which are difficult to be obtained by experi-

ments, can be required [7], and these techniques result in stiff differential equations and inexact

solutions [8]. Nonsmooth models, represented as differential inclusions, complementarity systems

or variational inequalities [9], are used in order to model the unilateral nature of the constraints, usu-

ally modelled by the Signorini condition. Alternatively, nonsmooth models can also express impact

laws, required by the unilateral constraints in finite-dimensional systems (rigid models or space-

discretized systems). In the sequel, Newton’s impact law will be used. When nonsmooth models are

involved, one of the main computational challenges remains the numerical time integration of the

dynamics of systems, which may also be nonsmooth with impacts and jumps in velocities.

In the context of rigid multibody systems, occurrences of impacts and/or abrupt changes in

the velocities due to Signorini’s condition and Coulomb’s friction require great cares in the time

integration method in order to ensure consistency and stability. There exist two main groups of

numerical integration schemes for nonsmooth systems, namely, event-driven schemes and time-

stepping schemes. Event-driven schemes are based on an accurate event detection, and the time step

is adapted such that the end of the step coincides with an event. At this time instant, the event is

solved with the help of an impact law. Such schemes are accurate for the free flight smooth motions,

but fail to handle frequent transitions in a short time and no convergence proof has been provided

[9–11]. In practice, they are only suitable for small multibody systems with a limited number of

events. Contrary to the event-driven schemes, time-stepping schemes do not adapt their time step

size on events but only on some accuracy requirements if needed. Two main families of schemes

have been designed up to now : the Schatzman–Paoli scheme [12, 13] is based on central difference

scheme and the Moreau–Jean scheme [14–16] is based on a � -method [17]. Time-stepping methods

have been proven to be convergent and robust, and are extensively applied as the solution to the non-

smooth system models. In contrast to event-driven schemes, time-stepping schemes are expected to

have order-one accuracy even in the smooth part of the motion [10, 18]. Thus, the accuracy is less

satisfactory unless a very small step size is applied. However, it remains robust and efficient even for

a large number of events as it is usual in structural dynamics. Attempts have recently been made to

improve the global order of accuracy of time-stepping schemes with nonsmooth events [10, 19, 20].

But for the moment, the application to nonsmooth mechanical systems of the classical time integra-

tion schemes for structural and flexible multibody systems, that is, HHT method and generalized-˛

method, has not been successfully carried out. Within the time-stepping strategy, it remains difficult

to expect to increase the order of accuracy of the scheme when an impact occurs. Nevertheless,

the goal of this paper is to bridge this gap in order to benefit from the qualitative properties of the

generalized-˛ scheme and the HHT scheme, in terms of stability and controlled numerical damping.

In the context of computational contact mechanics of solids and structures, a lot of variants of

the Newmark scheme have been proposed to solve the contact dynamics problems, see [21, 22] for

two recent reviews. Mostly, it is implicitly assumed in these references that the solutions includ-

ing positions, displacements, velocities and contact forces are sufficiently smooth so that Newmark

schemes of order two are applicable. Nevertheless, the lack of robustness and the numerical insta-

bilities of the midpoint, trapezoidal rule and even dissipative HHT schemes, often leading to the

blow-up of the numerical computation, have motivated the development of alternatives and modifi-

cations to standard integration schemes. To cite a few of them, the invocation of energy-conserving

and dissipative schemes was the first attempt to remedy this problem [23–29]. It generally results in

a scheme of lower order where the contact forces or impulses are treated in a fully implicit manner

[26, 27], and where the constraint is expressed at the velocity level [24, 25, 29]. It should be noted

that these requirements exactly meet the principles of design of the Moreau–Jean time-stepping

schemes [14–16], but in the latter case, they are motivated by the nonsmoothness of solutions. By the

way, the reader will find in [30] a comparison between the Moreau–Jean scheme and the Newmark
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scheme for space–discretized impacting bars. The convergence of the Newmark scheme with cen-

tral differences and with an implicit treatment of the contact constraint at the position level has been

proven in [31] for vibrating beams between two stops. Fortunately enough, it has been shown in [32]

that the question of the coefficient of restitution is not raised on this case. The implicit treatment of

the contact forces was also proposed in the context of explicit integrators in a seminal paper [33].

Other attempts have been based on (1) a mass redistribution, which consists in removing the mass

from the contact boundaries [34,35] or (2) a contact stabilization of the relative velocities at contact

[36]. In our case, the contact activation between discrete mechanical models induces the nonsmooth-

ness of the solutions and, because rigid bodies are involved, it is difficult to remove masses and to

stabilize contact without resorting to an impact law. Therefore, the direct application of higher order

schemes in this context may be hazardous.

Within the framework of structural dynamics with rigid and flexible bodies, this paper proposes

to take the best of the generalized-˛ method and the Moreau–Jean scheme by

� keeping the integration rule of the generalized-˛ scheme for the nonlinear smooth dynamics;

the aim is to enjoy the stability, the robustness and the controlled numerical dissipation at high

frequencies;

� dealing, as in the Moreau–Jean scheme, with the contact forces and impacts through their asso-

ciated impulses; in this way, the consistency of the evaluation of the contact reactions is ensured

when the time-step vanishes and an impact occurs;

� treating, as in the Moreau–Jean scheme, the unilateral constraint at the velocity level together

with the impact law; this yields an energetically consistent treatment of the jumps in velocity

together with a correct stabilization of the velocity at contact.

The proposed method aims at providing a general solver for structural dynamics, which can take

both smooth and nonsmooth mechanics into account. Even though the global accuracy remains order

one because of the nonsmoothness [8, 9] or the presence of constraint forces, it will improve the

control of high-frequency numerical damping in comparison with the Moreau–Jean time-stepping

scheme based on the � -method. Stability and convergence will be empirically analyzed and the

properties of the proposed method will be illustrated based on academic examples.

This paper is organized as follows. Section 2 describes the theory of dynamical equations of a

flexible multibody system with both bilateral and unilateral constraints. Based on the equations of

motion, Section 3 presents the formulation of a time stepping method, herewith called the nons-

mooth generalized-˛ method. Numerical implemention of this method is introduced in Section 4.

In Section 5, numerical examples, consisting of impacts of both rigid and flexible multibody sys-

tems, ranging from single unilateral constraint to multi unilateral constraints, are given for analysis.

Finally, conclusions are presented in Section 6.

2. EQUATIONS OF MOTION

The equations of a flexible multibody system including bilateral and unilateral constraints can be

expressed in the following form:

M.q/ dv C ˆ
T
q .q/ dib D f.q, v, t / dt C gT

q .q/ diu, (1)

ˆ.q/ D 0, (2)

0 6 g.q/ ? diu > 0, (3)

where

� q is the vector of generalized coordinates, for example, absolute nodal coordinates;

� f D fext .t/ � fdamp.q, v/ � fint .q/ collects the external, damping and internal forces;

� M is the mass matrix, which is assumed to be non-singular;
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� ˆ is the vector of bilateral holonomic constraints, and ˆq is the matrix of constraint gradients;

� g is the vector of unilateral holonomic constraints, and gq is the corresponding matrix of

constraint gradients;

� dv is the differential measure associated with the velocity v assumed to be of bounded variation;

� t is time, and dt is the corresponding standard Lebesgue measure;

� diu and dib are the impulse measure of the contact reaction and the bilateral force, respectively.

Equation (3) is formulated as a complementarity condition, that is, gT .q/diu D 0 with both g.q/

and diu being non-negative. To complete the model, an impact law is needed. The Newton impact

law defines the normal velocity jump in case of an impact as gqv.tC/ D �e gqv.t�/, where e is

the coefficient of restitution, and v.t�/ and v.tC/ denote the velocity before and after the impact,

respectively. The complementarity condition can then be expressed at the velocity level in the

following form:

if g.q/ 6 0 then 0 6 gqv.tC/ C e gqv.t�/ ? diu > 0. (4)

This reformulation means that if a unilateral holonomic constraint is active, the complementarity

condition is expressed with respect to the unilateral constraint at the velocity level.

Because the motion might be nonsmooth, jumps in the velocity and the corresponding impacts

are expected yielding the following decomposition of the measures‡:

dv D Pv dt C
X

i

�
v.tC

i / � v.t�

i /
�

ıti , (5)

diu D �
u dt C

X

i

pu
i ıti , (6)

dib D �
b dt C

X

i

pb
i ıti , (7)

where �
u and �

b are the vectors of Lagrange multipliers associated with Lebesgue measurable uni-

lateral and bilateral forces, respectively;
�
v

�
tC

i

�
� v

�
t�

i

��
is the jump in velocity at the instant ti ;

ıti is the Dirac delta supported at ti ; pu
i and pb

i are impulses. Inserting Equations (5–7) in (1–3)

yields the standard equations of motion for almost every time t :

MPv C ˆT
q �

b D f C gT
q �

u, (8)

ˆ.q/ D 0, (9)

0 6 g.q/ ? �
u

> 0, (10)

and the impact equations at time ti

M
�
v

�
tC

i

�
� v

�
t�

i

��
C ˆT

q pb
i D gT

q pu
i , (11)

ˆq.q/v
�
tC

i

�
D 0, (12)

0 6 gqv
�
tC

i

�
C e gqv

�
t�

i

�
? pu

i > 0. (13)

‡we neglect singular measures
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3. TIME INTEGRATION METHOD

In order to present the time integration method, we propose to split the equation in a slightly different

way by separating the contribution of the contact reaction and bilateral force from the contribution

of smooth forces such that

dv D Pev dt C dw, (14)

with

M Pev D f,

Mdw C ˆ
T
q dib D gT

q diu,
(15)

where Pev is an acceleration variable related with the smooth force f, and dw is a differential measure

because of the contact reaction and bilateral force. A key idea of the proposed method is to integrate

the variable Pev using a second-order accurate generalized-˛ method, whereas the differential mea-

sure dw is treated using a time-stepping method based on the first-order Euler implicit scheme. If

the constraints are furthermore expressed at the velocity level, this combination ensures a consistent

treatment of nonsmooth dynamic effects and an accurate description of structural vibrations during

free motions. The discrete evaluation of the first equation in (15) will be denoted as

MnC1
PevnC1 D fnC1, (16)

where MnC1 D M.qnC1/ and fnC1 D f.qnC1, vnC1, tnC1/. For the other part, we keep the values of

the impulse over the time step .tn, tnC1� as primary unknowns, that is,

MnC1WnC1 C ˆ
T
q,nC1ƒ

b
nC1 D gT

q,nC1ƒ
u
nC1, (17)

where WnC1 represents a velocity jump over the time step; ƒ
b
nC1 and ƒ

u
nC1 are the Lagrange mul-

tipliers linked to bilateral force and unilateral contact reaction respectively. Equation (17) is actually

a first-order approximation of the integral of the second equation in (15), that is,

Z

Œtn,tnC1/

�
Mdw C ˆ

T
q dib

�
D

Z

Œtn,tnC1/

gT
q diu. (18)

The discretization of the contact law is written as

if Ng 6 0 then 0 6 gq,nC1vnC1 C e gq,nvn ? ƒ
u
nC1 > 0, (19)

where Ng is defined either as Ng D gn or as Ng D g
p
nC1, with g

p
nC1 defined as the prediction of the

unilateral constraints at time tnC1. Equation (19) can be rewritten in an equation form as

if Ng 6 0 then ‰
�
ƒ

u
nC1, gq,nC1vnC1 C e gq,nvn

�
D 0, (20)

with ‰.a, b/ D a � max.0, a � � b/, � > 0. Defining the set of active constraints gA as the set of

all the unilateral constraints satisfying Ng 6 0 and ƒ
A as the corresponding Lagrange multipliers, the

discretized form of the equations of motion becomes

MnC1
PevnC1 D fnC1, (21)

MnC1WnC1 C ˆ
T
q,nC1ƒ

b
nC1 D

�
gA

q,nC1

�T
ƒ

A
nC1, (22)

0 D ˆq,nC1vnC1, (23)

0 D ‰

�
ƒ

A
nC1, gA

q,nC1vnC1 C e gA
q,nvn

�
. (24)
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In this expression, the bilateral constraints are formulated at the velocity level. A consequence of this

index-2 formulation is the drift-off phenomena. To deal with the drift of the constraints, projection

methods can be applied if needed, see [17, 37].

For smooth dynamics, the classical generalized-˛ algorithm can be obtained by introducing a

vector a of acceleration-like variables in the Newmark formulae [2]. The nonsmooth generalized-˛

method is obtained by further taking the impulsive terms into account so that it takes the following

form:

eqnC1 D qn C hvn C h2

�
1

2
� ˇ

�
an C h2ˇanC1, (25)

evnC1 D vn C h.1 � 
/an C h
anC1, (26)

.1 � ˛m/anC1 C ˛man D .1 � ˛f /PevnC1 C ˛f
Pevn, (27)

vnC1 DevnC1 C WnC1, (28)

qnC1 DeqnC1 C 1

2
hWnC1, (29)

where eq, ev are intermediate variables representing some smooth positions and velocities respec-

tively, whereas q, v stand for the generalized position and velocity in the general sense; a is an

intermediate acceleration-like variable defined as in (27) and initialized at the initial time as a0 D Pev0;

the time step size is h D tnC1 � tn.

The form of Equations (28–29) is justified as follows. Suppose that an impact is detected at time

ti 2 Œtn, tnC1/, the impact reaction then occurs only in the atomic measure at the instant ti . The

influence of the impact is then considered only at the current time step and not at any other time

steps. The impulsive increments to the velocity and position are then derived as:

vnC1 �evnC1 D
Z

Œtn,tnC1/

dw D WnC1, (30)

qnC1 �eqnC1 D
Z

Œtn,tnC1/

Z

Œtn,t/

dw dt D 1

2
h WnC1, (31)

where WnC1 also satisfies the discrete equations of motion in (21–24).

In the unconstrained case for the smooth generalized-˛ algorithm, the condition of second-order

accuracy yields:


 D 1

2
C ˛f � ˛m.

A small amount of numerical damping, represented by the spectral radius of the algorithm at the

high-frequency limit �1 with �1 2 Œ0, 1� can be introduced. The optimal parameters for the

generalized-˛ method are then derived as [2]:

˛m D 2�1 � 1

�1 C 1
, ˛f D �1

�1 C 1
, ˇ D 1

4

�

 C 1

2

�2

.

For the HHT algorithm, ˛m D 0 and ˛f 2 Œ0, 1=3�, whereas for the Newmark algorithm,

˛f D ˛m D 0.

The proposed method will be compared with the Moreau–Jean � -method, which is obtained by

replacing Equations (25–29) by the following equations

eqnC1 D qn C h.1 � �/vn C h�evnC1, (32)
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Figure 1. Spectral properties of time integration schemes.

evnC1 D vn C h.1 � �/Pevn C h� PevnC1, (33)

vnC1 DevnC1 C WnC1, (34)

qnC1 DeqnC1 C h�WnC1. (35)

with � 2 Œ0, 1�. The Moreau–Jean method with � D 1=2 is equivalent to the nonsmooth

generalized-˛ scheme with ˛m D ˛f D 0, ˇ D 1=4, 
 D 1=2 and anC1 D PevnC1.

In order to compare the numerical damping of the proposed nonsmooth time integration algo-

rithms, which will be tested in Section 5, Figure 1 shows the spectral radius as a function of the

frequency parameter !h. It is worth noting that these spectral properties are obtained in case of

unconstrained motion. The spectral analysis is made for a linear test problem Rq C !2q D 0. The

algorithmic parameters are chosen as follows: for the generalized-˛ method, the spectral radius at

infinity is chosen as �1 D 0.8; for the Moreau–Jean method, � D 1, which implies the implicit Euler

method; for the so-called fully implicit Newmark method, 
 D 1 and ˇ D 1=4.
 C 1=2/2 D 0.5625.

As one can see from Figure 1, the generalized-˛ method has the least numerical dissipation. In

contrast, the Moreau–Jean method is the most numerically dissipative one.

4. IMPLEMENTATION OF NONSMOOTH GENERALIZED-˛ ALGORITHM

4.1. A generalized Newton method

Formulae (25–29) can be solved together with the discretized equations of motion (21–24) using a

predictor-corrector scheme coupled with a solver for linear complementarity problems. Let us treat

ev, v, ƒ
b and ƒ

A as independent sets of unknowns. The linearized equation for Newton iteration

becomes:
2
6664


t M C ˇt Kt Ct C 1=2 hKt 0 0

�M C ˇt K
con
t M C 1=2 hKcon

t ˆ
T
q �

�
gA

q

�T

ˇtˆq2 ˆq C 1=2 hˆq2 0 0

ˇt‰q ‰v C 1=2 h‰q 0 ‰
ƒ

A

3
7775

2
664

�ev
�v

�ƒ
b

�ƒ
A

3
775 D

2
664

�resq

�resW

�resˆ

�res‰

3
775 , (36)

where

� the numerical parameters: 
t D .1 � ˛m/=Œ.1 � ˛f /
h� and ˇt D ˇh=
 � 1=2 h;

� the tangent stiffness and damping matrices are respectively defined as: Kt D @.MPev � h/=@q

and Ct D �@h=@v;

� Kcon
t is defined as Kcon

t D @
�

MW C ˆ
T
q ƒ

b �
�
gA

q

�T
ƒ

A
�

=@q;
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� ˆq2 is the derivative of ˆq,nC1vnC1 with respect to qnC1;

� ‰q, ‰v and ‰
ƒ

A are the partial derivatives of the function ‰

�
ƒ

A
nC1, gA

q,nC1vnC1 C e gA
q,nvn

�

with respect to qnC1, vnC1 and ƒ
A
nC1 respectively and are indeed the generalized Jacobian

matrices at the point of discontinuity;

� resq, rescon, resˆ and res‰ denote respectively the residuals of the four sets of equations in

(21–24). Using a superscript ’*’ to denote the value of a variable at Newton iteration k, the

residuals are

2
664

resq

resW

resˆ

res‰

3
775 D

2
6666664

M�

nC1
Pev�

nC1 � h�

nC1

M�

nC1W�

nC1 C
�
ˆ�

q,nC1

�T

ƒ
b�

nC1 �
�

gA�

q,nC1

�T

ƒ
A�

nC1

ˆ
�

q,nC1v�

nC1

‰
�

nC1

3
7777775

. (37)

The detailed computation of generalized Jacobians of ‰ can be found in [38,39] together with some

generalized Newton method that allows to solve the contact problem directly by iteratively solving

Equation (36). The extension to the frictional case is then straightforward. In the next subsection, we

propose a simpler approach to the frictionless case based on a sequence of linear complementarity

problems (LCPs) that are solved at each Newton iteration.

4.2. Reduction to a sequential linear complementarity problems

In this section, we propose to reformulate the iteration in (36) as a LCP, see [9, 40, 41], which

replaces the linearized system that we have to solve at each Newton’s step. A LCP solver is able to

find a vector z given a matrix M and a vector r such that 0 6 Mz C r ? z > 0.

If we define �xT D
h
�ev T �vT .�ƒ

b/T
i
, the linearized form of equations (21–23) for iteration

k C 1 can be recast as

St �x D �res C b
�
ƒ

A
nC1 � ƒ

A�

nC1

�
(38)

with

St D

2
64


t M
� C ˇt K

�
t C�

t C 1=2 hK�
t 0

�M� C ˇt K
con�
t M� C 1=2 hKcon�

t ˆ
�T
q

ˇtˆ
�

q2 ˆ�
q C 1=2 hˆ

�

q2 0

3
75 ,

res D

2
4

resq

resW

resˆ

3
5 and b D

2
4

0

.gA�
q /T

0

3
5 .

(39)

The unilateral constraint at the velocity level is also linearized as

0 6 gA�

q,nC1v�

nC1 C egA
q,nvn C cT �x (40)

with

cT D
�
ˇt g

A�

q2,nC1 gA�

q,nC1 C 1=2 hgA�

q2,nC1 0
�

,

where gA
q2,nC1 is defined as gA

q2,nC1 D @
�

gA
q,nC1vnC1 C egA

q,nvn

�
=@qnC1.

Therefore, by substituting Equation (38) into (40), the complementarity condition in Equation

(24) is obtained in the standard form as

0 6 Mƒ
A
nC1 C r ? ƒ

A
nC1 > 0 (41)
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with
´

M D cT S�1
t b

r D gA�

q,nC1v�

nC1 � cT S�1
t res � cT S�1

t bƒ
A�

nC1 C e gA
q,nvn.

To sum up, the flowchart of the predictor–corrector iterative method for the nonsmooth generalized-

˛ method based on a sequential LCP is shown in Algorithm 1.

Algorithm 1 Nonsmooth generalized-˛ time integration scheme

Initial values q0 and v0
Pev0 WD M�1h.q0, v0, t0/

a0 WD Pev0

for n D 0 to nfinal � 1 do

PevnC1 WD 0

anC1 WD 1=.1 � ˛m/
�
˛f

Pevn � ˛man

�

evnC1 WD vn C h.1 � 
/an C h
anC1

vnC1 WDevnC1

qnC1 WD qn C hvn C h2.1=2 � ˇ/an C h2ˇanC1

ƒ
b
nC1 WD 0

Compute NgnC1, find out the index of the active set: A D find .NgnC1 6 0/

ƒ
A
nC1 WD 0

for i D 1 to imax do

Compute the residual res and ‰

if
p

kresk2 C k‰k2 < tol then

break

end if

ƒ
A�

nC1 WD ƒ
A
nC1

Compute S�1
t b and S�1

t res

Compute M and r

ƒ
A
nC1 WD LCP solver.M, r/

�x WD �S�1
t res C S�1

t b .ƒA
nC1 � ƒ

A�

nC1/

Extract the increments �ev, �v and �ƒ
b from �x

evnC1 WDevnC1 C �ev
vnC1 WD vnC1 C �v

qnC1 WD qnC1 C ˇt�ev C 1=2 h�v

PevnC1 WD PevnC1 C 
t�ev
ƒ

b
nC1 WD ƒ

b
nC1 C �ƒ

b

end for

anC1 WD anC1 C .1 � ˛f /=.1 � ˛m/PevnC1

end for

5. NUMERICAL EXAMPLES

Examples are given in this section to test the numerical methods. In order to highlight the properties

of the presented time integration method, the examples comprise of both rigid-body systems and

discretized flexible systems, as shown in Figure 2. The first three examples, namely, a bouncing

ball, a bouncing oscillator and a bouncing elastic bar, have a linear behaviour in free motion and can

be compared with exact solutions. Besides that, two pendulum examples are also studied: one is the

9



(a) (b) (c)

(d) (e)

(f)

Figure 2. Examples: (a) bouncing ball; (b) linear vertical oscillator; (c) bouncing of an elastic bar; (d) impact
of a flexible rotating beam; (e) impact of a rigid pendulum; (f) multiple impacts of a crank-slider mechanism.

impact of a flexible rotating beam with geometric nonlinearities; the other is the impact of a simple

rigid pendulum with the simultaneous presence of unilateral and bilateral constraints. The applica-

tion is finally extended to an example of a crank-slider mechanism with a translational clearance

joint. Multiple impacts encountered in the crank-slider mechanism composed of only rigid bodies

or a mix of rigid and flexible bodies are then studied.

5.1. Bouncing ball

The first example is a standard bouncing ball on a rigid plane, as depicted in Figure 2(a). The bounc-

ing ball is a well-known benchmark with one degree of freedom (DOF) in the field of nonsmooth

mechanics. As usual, both the ball and the plane are rigid. It starts from rest, falls because of the grav-

ity and rebounds against the rigid plane with a restitution coefficient of e D 0.8. Thus, it introduces

a unilateral constraint on the vertical position. The dynamic response includes an accumulation

phenomenon with an infinite number of rebounds over a finite time interval. An event-capturing

technique would fail to simulate this phenomenon because it is not possible to stop and restart

the numerical integration an infinite number of times. Other physical parameters of this model are

10



as follows: mass m D 1kg, radius R D 0.2m, gravity acceleration g D 10m=s2, initial height

h0 D 1.001m (with an initial height of h0 D 1m, the first impact would be synchronized with a

time step ; this special case would be numerically favourable but not representative of a general

situation).

The simulation is first carried out using three valid time integration algorithms, namely, the

nonsmooth generalized-˛, the Moreau–Jean and the fully implicit Newmark schemes. The numer-

ical parameters are set as: nominal time step h D 10�3s for all the methods; for the nonsmooth

generalized-˛ method, �1 is chosen as 0.8, for the Moreau–Jean time stepping method, � D 1 and

for the fully implicit Newmark, 
 D 1 and ˇ D 0.5625. Figure 3 shows the position and velocity of

the ball.

Then, Figure 4 demonstrates the inconsistency of some alternative schemes for this simple

example. The smooth generalized-˛ algorithm (�1 D 0.8) is based on the assumption that both

bilateral and unilateral forces are treated as non-impulsive quantities and are integrated accord-

ing to the generalized-˛ second-order method. The fully implicit Newmark scheme is a special

case of this method with 
 D 1 and ˛f D ˛m D 0. We also consider formulations where

the constraint at velocity level in Equation (24) is replaced by the constraint at position level:

0 D ƒnC1 � max.0, ƒnC1 � g.qnC1//. As one can see from Figure 4, the numerical methods based

on the position-level constraint are not reliable. The smooth generalized-˛ method with �1 D 0.8

is not consistent either, even when the constraint is imposed at velocity level.

For the three consistent methods, the errors are computed by comparison with an analytically-

exact solution, Appendix A [10]. Figure 5 shows the convergence analysis of these three methods.

Exact solution
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Figure 3. Position and velocity of the bouncing ball vs. time: numerical methods with velocity-level
constraint.
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Figure 4. Position and velocity of the bouncing ball vs. time: numerical methods with non consistent
response.
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Figure 5. Relative errors on L1 norm for the bouncing ball: (a) position, (b) velocity.

The relative error is analyzed on the L1 norm, which is defined for constant stepsize as

kek1 D
NX

iD0

jei j
,

NX

iD0

jf .ti /j, (42)

where N is the number of time steps, ei D fi � f .ti /, fi is the numerical solution and f .ti / is the

exact solution.

The convergence analysis is made on the interval Œ0, 4�s. As one can see from the figure,

all the three methods remain first order accurate in the overall range. However, the nonsmooth

generalized-˛ and the fully implicit Newmark methods have a slightly better accuracy.

5.2. Bouncing of a linear oscillator

In this example, the bouncing of a vertical linear oscillator model is studied, Figure 2(b). The oscil-

lator consists of two masses connected by a spring. It is subject to the gravity force and has two

DOFs in the vertical direction. After the lower mass impacts against the plane, it bounces back with

a restitution coefficient of e D 0.8. In the meanwhile, it is also subjected to a force by the com-

pressed spring. Thus, a second impact or multiple impacts can occur right after the first impact.

In the free-flight mode after impacts, the system is oscillating with its natural frequency. Physical

parameters used in this model are: mass m D 1kg and radius R D 0.2m for each ball; the stiffness

of the spring k D 104N=m and the unstretched length l D 1m; the initial velocity is zero and the

initial height h0 D 1.001m; the gravity acceleration g D 10m=s2.

The nominal time step size is set as h D 5 � 10�4s and the other algorithmic parameters are:

�1 D 0.8 for the nonsmooth generalized-˛ method; � D 1 for the Moreau–Jean method and 
 D 1

and ˇ D 0.5625 for the fully implicit Newmark method. Results in Figure 6 show respectively

the position and velocity of the bottom mass, and the numerical results are compared with a semi-

analytical solution, Appendix B. In the analytical analysis, the exact time instants can be obtained

using an iterative method. Thus, here in this example, accuracy is compared for the results including

only a couple of impacts: from the first impact t0 D 0.4s till the occurrence of the third impact

t1 D 1.0s. Figure 7 shows the convergence rate on L1 norm. Figure 8 shows the total energy of the

oscillator system.

As one can see from Figure 6, for all the three methods, double impacts are well accounted for.

During the free flight after the first double impacts, the system is oscillating with slight numerical

energy dissipation using the nonsmooth generalized-˛ method; however, the numerical energy dis-

sipation tends to be comparatively larger for the fully implicit Newmark and Moreau–Jean methods.

These findings can also be referred to Figure 1.

From the comparison to the exact solution, the nonsmooth generalized-˛ has better accuracy than

the other two methods with the same time step size. In [42], the authors demonstrated that decreas-

ing the step size for Moreau–Jean method, the energy dissipation gets smaller and the results tend

to be closer to the nonsmooth HHT method — a particular case of the nonsmooth generalized-˛
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Figure 6. Numerical results of the bottom ball of the bouncing oscillator: (a) position, (b) velocity.
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Figure 7. Relative errors on L1 norm for the bouncing oscillator: (a) position, (b) velocity.
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Figure 8. Numerical results for the total energy of the bouncing oscillator.

method. Similar analysis will also be shown in the following examples. Though the order of accu-

racy remains first order for all the three methods, the error of the nonsmooth generalized-˛ scheme

is smaller than the other two, Figure 7. Figure 8 further suggests that nonsmooth generalized-˛

method has better quality of global energy behaviour compared with the other two methods.

With the same computer hardware configuration, the relative central processing unit time needed

to compute the bouncing oscillator system model over the interval [0,4]s is compared in Table I. For

a given time step size, the computational effort is similar for the three methods. In Figure 7, it can be
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Table I. Relative CPU time of the time integration schemes for the bouncing oscillator.

NS generalized-˛ Moreau–Jean Fully implicit Newmark Moreau–Jean

(h D 5 � 10�4s) (h D 5 � 10�4s) (h D 5 � 10�4s) (h D 5 � 10�5s)

Rel. CPU time 1.02 1 1.01 10.42

observed that the nonsmooth generalized-˛ is almost 10 times more accurate than the Moreau–Jean

scheme. As it is difficult to set a specific relative error for each scheme, the Moreau–Jean scheme

with one-tenth of the step size is presented for comparison.

5.3. Bouncing of an elastic bar

This benchmark illustrates the behaviour of the algorithm when a closed contact occurs. The elastic

bar is placed above a rigid ground. It is dropped from an initial height of h0, with a uniform initial

velocity of v0 and bounces back against the ground. Before the impact, the bar is undeformed. Once

the bar reaches the ground, a shock wave is caused by the impact and travels from the bottom to

the top, and then again, travels back to the bottom. During the travelling of the shock wave, the bar

stays in contact with the ground because of its compression during a period of �t D 2L
p

�=E. As

soon as the wave reaches back to the bottom, the bar takes off and the contact is released.

An analytically-exact solution for this benchmark is detailed in [22]. For comparison, the same

parameters as in [22] are applied in this test example: Youngs Modulus E D 900Pa, density

� D 1kg=m3, undeformed initial length L D 10m, initial height from the ground to the bottom

of the bar h0 D 5m and initial velocity v0 D 10m=s. In this case, the bar stays in closed contact dur-

ing a period of �t D 2=3s. The gravity acceleration g is set to 0 so that only one close impact will

occur. It is worth noting that the restitution coefficient for the impact is chosen as e D 0. However,

this benchmark does not involve any impact between rigid bodies, and we observe in preliminary

tests that the numerical response tends to be insensitive with respect to the value of e 2 Œ0, 1/ when

the spatial and temporal discretization is refined.

This bouncing bar example is a one-dimensional problem. The bar is uniformly discretized in

space by 200 linear finite elements. Time step size can be chosen based on the evaluation of the

Courant number, a relevant ratio, which links the mesh size and the step size [22]. The step size

with this mesh discretization is then chosen as h D 2 � 10�3s. Other algorithmic parameters are as:

�1 D 0.8 for the nonsmooth generalized-˛ method; � D 1 for the Moreau–Jean method and 
 D 1

and ˇ D 0.5625 for the fully implicit Newmark method.

Figure 9 shows the position and the pressure on the bottom of the bar. Also, the total energy of

the bouncing elastic bar is analyzed, as shown in Figure 10. The numerical results of the posi-

tion response and the pressure are compared with the exact solution. As one can tell from the
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Figure 9. Comparison of the numerical results for the bouncing elastic bar: (a) position, (b) pressure.
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Figure 10. Numerical results for the total energy of the bouncing elastic bar.

figures, closed contact analysis is stable for all the three methods. Compared with Moreau–Jean

and fully implicit Newmark methods, the nonsmooth generalized-˛ method has better accuracy

for the position response and the pressure, in particular for the period near/after the take-off. An

energy performance analysis is carried out and finer step sizes (h D 2 � 10�4s and h D 2 � 10�5s) are

adjusted for the Moreau–Jean method in order to compare the energy dissipation. The analysis of

the Moreau–Jean scheme shows that the numerical solution tends to converge to a behaviour with-

out energy dissipation after impact. As can be seen from Figure 10, the nonsmooth generalized-˛

method has the least energy dissipation after the impact. One can thus conclude that the nonsmooth

generalized-˛ scheme has better quality of global energy behaviour, as already shown in Section 5.2.

5.4. Impact of a flexible rotating beam

The following example studies the impact of a flexible rotating beam. The beam works as a flexible

simple pendulum, that is, it is subjected to the gravity force and swings around a pivot point, as

shown in Figure 2(d). The beam is modelled using a geometrically exact, two-dimensional finite

element formulation, based on Timoshenko’s theory. The planar beam finite element is capable of

handling arbitrarily large finite rotations. It is a special case of the 3D model presented in [4]. It is of

interest to verify the nonsmooth time integration methods for such a highly nonlinear application.

The beam studied in this example has a square cross section. The parameters of the beam are as

follows: length l D 1m, width b D 0.01m, height d D 0.01m, cross-sectional area A D bd , cross-

sectional inertia I D bd 3=12, reduced cross-sectional area for shear A2 D 5=6A, Young’s modulus

E D 2.1 � 1011N=m2, Poisson ratio � D 0.3 and density � D 7800kg=m3. The acceleration of

gravity is g D 10m=s2.

In the beginning, the beam is placed horizontally with the tip pointing to the right. It is released

from rest and is restricted to planar motion under gravity. An obstacle is placed such that a unilateral

constraint is applied as follows:
p

2=2 6 x ? �u
> 0. Likewise, the complementarity condition is

expressed at the velocity level as in Equation (4). The coefficient of restitution is set as e D 0.8.

The beam is discretized into four finite elements. The model is first simulated with time step size

h D 5 � 10�4s. Because it is difficult to obtain the exact solution, a finer step size of h D 2 � 10�5s

is then chosen for the Moreau–Jean method in order to compare the accuracy. This makes sense

as the Moreau–Jean method is commonly known as a validated method and has been proven to

be convergent. Other numerical parameters are as: �1 D 0.8 for the nonsmooth generalized-˛

method, � D 1 for the Moreau–Jean method and 
 D 1 and ˇ D 0.5625 for the fully implicit

Newmark method.

Figure 11 shows the response of position and velocity at the tip of the beam in x-direction.

Comparatively, the nonsmooth generalized-˛ scheme tends to have results much closer to the

Moreau–Jean method with a smaller time step size. Higher numerical damping in the Moreau–Jean

and fully implicit Newmark methods leads to higher energy dissipation even during the smooth
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Figure 11. Numerical results for the impact of a flexible rotating beam: (a) position, (b) velocity.
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Figure 12. Numerical results for the total energy of the bouncing beam.

motion, as can be seen in the velocity response in Figure 11(b). However, higher numerical damp-

ing does not necessarily result in better stability performance. As a matter of fact, if one further

increase the time step size to 10�3s, the nonsmooth generalized-˛ scheme is still convergent in

Newton iteration, but the other two methods are not. If one chooses � D 1=2 for the Moreau–Jean

method, which is equivalent to the trapezoidal method in the free flight phases (i.e. no numerical

damping is present), the results become divergent. It indicates that controllable numerical damping

is necessary in this highly nonlinear case. Comparison in the overall scale can be seen in the energy

performance, as shown in Figure 12. The nonsmooth generalized-˛ method has the best energy

performance between impacts, where no physical dissipation is expected.

5.5. Impact of a rigid pendulum

This example studies the impact of a simple rigid pendulum with both unilateral and bilateral con-

straints. The purpose is to validate the proposed time integration methods in the regime of nonlinear,

bilaterally-constrained problems. The pendulum is constrained to swing around a pivot in the x-y

plane. It consists of a massless rod and a concentrated mass at the tip. The kinematics of the simple

pendulum is described in a redundant manner in terms of Cartesian coordinates by the DOFs: q D
Œx y ��T . The nonlinear bilateral constraints are expressed as: ˆ D Œx � l cos � y C l sin ��T .

The pendulum is subjected to the gravity acceleration g, and thus the vector of external forces reads:

fext D Œ0 � mg 0�T . The mass matrix is M D diag Œm m J �.

The physical parameters of the model are as: mass m D 1kg, moment of inertia J D 0.1kg � m2,

length l D 1m, gravity acceleration g D 10m=s2 and initial position q D Œ1 0 0�T . The pendu-

lum is released from rest and swings clockwise because of the gravity force. An obstacle is placed
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such that a unilateral constraint is enforced as
p

2=2 6 x ? �u
> 0, and is then expressed at velocity

level. The coefficient of restitution is chosen as e D 0.8.

In the numerical tests, the nominal time step size is 10�3s; �1 D 0.8 for the nonsmooth

generalized-˛ method, � D 1 for the Moreau–Jean time stepping method and 
 D 1 and ˇ D 0.5625

for the fully implicit Newmark method. The model is first simulated without coordinate projection

to deal with the drifting phenomena, and then, projection method is applied with the Moreau–Jean

method at every time step for comparison. The k � k2 norm is used for the projection method, as

min
qn

kqn � Nqnk2 s.t . ˆ.qn/ D 0, (43)

where Nqn and qn denote the vector of generalized coordinates before and after projection,

respectively.

Figure 13 shows the results of position and velocity at the tip of the pendulum in x-direction, and

also the drifting of the bilateral constraints. All the three methods have consistent results. However,

Moreau–Jean method without projection has larger drift-off effect than the other two methods, for

which the drifting of the bilateral constraints is less than 5 � 10�6m. Figure 14 shows the results of

the bilateral and unilateral constraints, which are expressed in terms of impulse. Figure 15 shows

the convergence rate on L1 norm. The time interval for the relative error analysis is chosen from the

beginning till t D 1s. Because the analytical solution for the bouncing pendulum example is diffi-

cult to obtain, it is reasonable to use as a reference solution the numerical results obtained using the

well-validated Moreau–Jean method with a tiny stepsize h D 10�7s. The order of accuracy remains

first order with larger errors with the Moreau–Jean method compared with the other two.

(a) (b) (c)

Figure 13. Comparison of the numerical results for the impact of a simple rigid pendulum: (a) position, (b)
pressure, (c) drifting of the bilateral constraints.

(a) (b)

Figure 14. Lagrangian multipliers of the nonsmooth generalized-˛ method: (a) bilateral, (b) unilateral.
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Figure 15. Relative errors on L1 norm for the bouncing pendulum: (a) position, (b) velocity.

5.6. Multiple impacts of a crank-slider mechanism

This section deals with the analysis of multiple impacts of a planar crank-slider mechanism with a

translational clearance joint. This mechanism consists of four bodies: the crank, the connecting rod,

the slider and the ground. These bodies are connected via three revolution joints and one translation

joint. The revolution joints are modelled as ideal constraints, whereas clearance is considered in

the translation joint, which implies four unilateral constraints on the four vertices and consequently

results in the impacts of the slider with the guide surfaces during the rotation of the crank. The

slider and the ground are modelled as rigid bodies. For the sake of comparison, the crank and the

connecting rod are firstly modelled as rigid bodies and then are modelled with flexibility using beam

elements as described in Section 5.4.

5.6.1. Rigid crank-slider mechanism. In this study, the four bodies of the crank-slider mechanism

are modelled as rigid bodies. Similar physical parameters are taken from [17, 43], where only rigid

multibody systems are taken into account. The geometrical parameters are: length of the crank

l1 D 0.153m, length of the connecting rod l2 D 0.306m, width of the slider 2a D 0.05m, length

of the slider 2b D 0.1m and distance between the guide surfaces d D 0.052m. Initial configuration

parameters are �1 D 0rad, �2 D 0rad, �3 D 0rad and both the upper and lower clearances between

the slider and the guide surfaces are c D 0.001m.

The mass and inertia of the crank: m1 D 0.038kg and J1 D 7.4 � 10�5kgm2; the connecting rod:

m2 D 0.038kg and J2 D 5.9 � 10�4kgm2; the slider: m3 D 0.076kg and J3 D 2.7 � 10�6kgm2.

The crank is released with an initial speed !1 D 150rad=s and the initial speed of the connecting

rod is set as !2 D �75rad=s. The gravity acceleration g D 10m2=s and the restitution coefficient

e D 0.4.

The model is first simulated with time step size h D 10�4s. In order to study the influence of the

step size, the Moreau–Jean method with a finer step size of h D 10�5s is also considered. Other

numerical parameters are as: �1 D 0.8 for the nonsmooth generalized-˛ method, � D 1 for the

Moreau–Jean method, and 
 D 1 and ˇ D 0.5625 for the fully implicit Newmark method.

Figure 16 shows the position of the corners of the slider over two crank revolutions. Multiple

impacts and closed contacts occur in all the four vertices with the guide surfaces, and are correctly

represented by the three algorithms. Figure 17 shows the crank speed and the position of the centre

of the crank. One can observe that the simulation results show a good match with [17, 43].

5.6.2. Flexible crank-slider mechanism. From an optimization point of view, structural flexibility

is usually taken into account in the real application of a crank-slider mechanism. In this study, the

configuration of the mechanism is the same as the previous example except that the crank and the

connecting rod are replaced by flexible beams instead of rigid bodies. The beam applied in this

example has the same material parameters as described in section 5.4. Both the crank and the con-

necting rod have a square cross section. In order to apply the same mass for the crank and the
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Figure 16. Slider corners’ position of the rigid crank-slider mechanism with different time integration
schemes.
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Figure 17. Simulation results with the nonsmooth generalized-˛ method: (a) crank speed, (b) position of
the center of the slider.

connecting rod as in the rigid crank-slider mechanism, the width and the height of the crank are

chosen as b1 D 0.0064m and d1 D 0.005m; the width and the height of the connecting rod are

b2 D 0.0032m and d2 D 0.005m.

The mechanism is released from rest in the beginning and is constrained in a planar motion

under the gravity force. Initial rotating speed of the crank and the connecting rod is enforced as

!1 D 150rad=s and !2 D �75rad=s respectively and a full initial velocity vector of each node is

calculated in a way assuming that it is a rigid mechanism. After the mechanism is released, impacts

occur between the four vertices of the crank and the guide surfaces, and therefore, cause vibration

on the flexible parts. The purpose of this analysis is to compare the numerical dissipation of different

time integration methods with a preference that the low-frequency vibration will be maintained so

that accuracy may be satisfactory.

Both the flexible crank and connecting rod are discretized into two finite elements. The model

is first simulated with time step size h D 10�4s, then a finer step size of h D 10�6s is chosen for

the Moreau–Jean method for comparison. Other numerical parameters are as: �1 D 0.8 for the

nonsmooth generalized-˛ method, � D 1 for the Moreau–Jean method and 
 D 1 and ˇ D 0.5625

for the fully implicit Newmark method.
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Figure 18. Slider corners’ position of the flexible crank-slider mechanism with different time integration
schemes : (a) slider corners’ position vs. crank revolutions and (b) slider corners’ position versus time.

Figure 18 shows the corner positions of the slider. Compared with the other two schemes with

the same step size, the results obtained from the nonsmooth generalized-˛ method match much

better with those from the Moreau–Jean scheme with a 100 times finer step size, especially for the

time-domain response, Figure 18(b). The main cause is that the nonsmooth generalized-˛ scheme

dissipates less of the vibration of the flexible crank and connecting rod after impacts, and conse-

quently attains better accuracy. Similar observation can be found in Figure 19 in terms of the crank

speed and energy behaviour. It further proves that the nonsmooth generalized-˛ method saves much

computation cost as the scale of step size is critical in the simulation time, in particular when it

comes to a complex flexible multibody system. The relative central processing unit time for the

computation of the flexible crank-slider mechanism is compared in Table II. For a given time step

size, the computational effort is similar for the three methods.
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Figure 19. Comparison of different time integration methods for the flexible crank-slider mechanism : (a)
crank speed and (b) total energy.

Table II. Relative central processing unit time of the time integration schemes for the flexible crank-slider
mechanism.

NS generalized-˛ Moreau–Jean Fully implicit Newmark Moreau–Jean

(h D 10�4s) (h D 10�4s) (h D 10�4s) (h D 10�6s)

Rel. CPU time 1.07 1 1.05 88.24

6. CONCLUSIONS

Considering that many mechanical systems are subjected to both bilateral constraints and unilat-

eral constraints, an extension of the generalized-˛ method is proposed to account for the non-

smooth phenomena induced by unilateral constraints. The method presented here is denoted as

the nonsmooth generalized-˛ method, and is expected to benefit from good qualitative properties

of the classical generalized-˛ and HHT methods in terms of accuracy, stability and controllable

numerical damping.

Numerical tests are studied and results show that the Moreau–Jean, the fully implicit Newmark

and the nonsmooth generalized-˛ methods are valid when unilateral constraints are expressed at

the velocity level. Unlike event-capturing schemes, these methods can be used in the presence of

accumulation phenomena. Based on the analysis of test examples including linear and nonlinear

problems, rigid and flexible system models, unilateral and bilateral constraints, the three methods

are stable and the presented nonsmooth generalized-˛ method has considerably better quality of

accuracy, especially for the description of vibrations in flexible system dynamics. The nonsmooth

generalized-˛ method allows the introduction of high-frequency numerical dissipation, which is

important for the solution of stiff numerical models while preserving a good energy behaviour in

the low-frequency range. Moreover, in the presence of holonomic bilateral constraints, one finds out
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that the nonsmooth generalized-˛ method has less drifting phenomena compared with the Moreau–

Jean method. Therefore, large time steps can be used to obtain a physically acceptable numerical

solution. Hence, we conclude that the nonsmooth generalized-˛ time integration method can sub-

stantially decrease the computational cost for high-fidelity models of flexible systems, such as wind

turbine systems, in which unilateral contacts might occur.

Because of the first order formulation of constraint forces as impulses, the accuracy is brought

back to first order in case of contact or in the presence of constraints. Future efforts can be put

in obtaining improved accuracy of the nonsmooth generalized-˛ method, for example, to maintain

second-order accuracy for bilaterally constrained systems in case of no contact. The extension of

the method to constrained systems with singular mass matrix may also be investigated.

APPENDIX A: ANALYTICAL SOLUTION OF BOUNCING BALL

Reference [10] presents an analytical solution of the bouncing ball example, which is a particular

case with the parameters g D 2m=s2 and e D 0.5. A general analytical solution of the bouncing ball

example is however derived in this section. With the aforementioned notations, the solution can be

written as:
´

q.t/ D �1
2
gt2 C h0

v.t/ D �gt
t 2

h
0,

q
2.h0�R/

g

�
,

´
q.t/ D �1

2
g.t � tn/2 � env�

1 .t � tn/ C R

v.t/ D �g.t � tn/ � env�

1

t 2 Œtn, tnC1/ ,

²
q.t/ D R

v.t/ D 0
t 2

h
1Ce
1�e

q
2.h0�R/

g
, C1

�
,

(A.1)

with

tn D

s
2.h0 � R/

g

�
2e

1 � en�1

1 � e
C 1

�
,

v�

1 D �
p

2g.h0 � R/,

where n denotes the n-th impact.

APPENDIX B: EXACT SOLUTION OF BOUNCING LINEAR OSCILLATOR

The solution of the oscillator example can be derived in the following way. Denote

Q D
�

q1 Pq1 q2 Pq2

�T
,

then the equations of motion can be written in the form of state equations as:

M PQ C KQ D F, (B.1)

where

M D

0
B@

1 0 0 0

0 m 0 0

0 0 1 0

0 0 0 m

1
CA , K D

0
B@

0 �1 0 0

k 0 �k 0

0 0 0 �1

�k 0 k 0

1
CA , F D

0
B@

0

�mg � kl

0

�mg C kl

1
CA .

The analytical solution can then be derived by the following equation:

Q D eA.t�t0/Q0 C
Z t

t0

eA.t�s/F.s/ds, (B.2)
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where A D �M�1K and Q0 denotes the initial condition at the instant t0. According to the

Cayley-Hamilton method, the matrix exponential eAt can be expressed in a standard polynomial

form as

eAt D
n�1X

iD0

˛i .t/A
i , (B.3)

where n is the dimension of A: n D 4 in this example. The coefficients ˛i .t/ are as follows:

˛0.t/ D 1,

˛1.t/ D t ,

˛2.t/ D m=.2k/
h
1 � cos

�
t
p

2k=m
�i

,

˛3.t/ D
�p

m=.2k/
�3 h

t
p

2k=m � sin
�
t
p

2k=m
�i

.

(B.4)

As both A and F are constant matrices, integration of the second term in Equation (B.2) is actu-

ally the integral of ˛i .t/, which are expressions in simple polynomials and trigonometric functions.

Therefore, Equation (B.2) can be analytically expressed of simple elementary functions. However,

the exact solution of Q computed from Equation (B.2) works only for the smooth situation. After

each discontinuity due to the impacts, Q0 and t0 should be updated. Here, the impact time instants

are numerically obtained by solving q1 D R using the Newton-Raphson recursive algorithm. With

the Newton impact law, the initial condition after impact can then be updated.

This method allows to compute the solution when the number of impacts is finite, but it cannot

be used to describe an accumulation phenomenon. In the example presented in Section 5.2, with

step size as h D 10�4s, the exact solution of the system is computed till t D 3.46s, just before the

accumulation and the closed contact situation.
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