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This paper presents a nonspatial operationalization of the Krumhansl (1978, 1982) distance- 
density model of similarity. This model assumes that the similarity between two objects i and 
j is a function of both the interpoint distance between i andj  and the density of other stimulus 
points in the regions surrounding i and j .  We review this conceptual model and associated 
empirical evidence for such a specification. A nonspatial, tree-fitting methodology is described 
which is sutt~ciently flexible to fit a number of competing hypotheses of similarity formation. A 
sequential, unconstrained minimization algorithm is technically presented together with various 
program options. Three applications are provided which demonstrate the flexibility of the 
methodology. Finally, extensions to spatial models, three-way analyses, and hybrid models are 
discussed. 
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1. Introduction 

The notion of proximity (i.e., similarity or dissimilarity) has played a central role 
in several theoretical, methodological, and empirical areas of psychological investiga- 
tion. Cognitive psychologists have collected proximity judgments from subjects in var- 
ious experimental contexts in order to measure the underlying structure of designated 
stimuli. Several different models have been typically employed to summarize the data 
and display the relationships between stimuli. (We shall restrict our attention to two- 
way, one-mode proximity data, i.e., a single, square matrix of proximities reflecting the 
degree of association between all pairs of objects or stimuli.) Unfortunately, the vast 
majority of these procedures are based on the metric axioms which are often found to 
conflict with empirically observed proximities. We therefore propose a new class of 
models which, as will be discussed, can accommodate such axiom violations via the 
incorporation of Krumhansl's (1978, 1982) model of distance-density. 

According to Carroll, Clark, and DeSarbo (1984) and Carroll and Arabie (1980), 
models for the analysis of proximity data can be categorized into one of three major 
classes. 
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Spatial Models 

Continuous spatial models of the type typically associated with multidimensional 
scaling (MDS) usually embed the objects or stimuli of interest in some coordinate space 
so that a specified measure of distance (e.g., Euclidean) between the points in the space 
represents the observed proximities among the respective objects. Thus, a metric space 
is assumed to underlie the proximity data. Distances in the derived space are specified 
to be related to the corresponding proximities in some simple way (e.g., linearly or 
monotonically). Thus, 

8 U --- f (du) ,  

d o = (xit - -  X j t )  P , 

t = l  

summarizes the typical spatial/continuous MDS model, where 6/j is the empirical, 
symmetric dissimilarity between stimuli i and j ,  d U is the distance computed in the 
derived MDS space between coordinate locations for stimuli i and j ,  xit is the tth 
coordinate for stimulus i, f i s  some function (e.g., linear, monotone), and P - 1 defines 
the specific form of the Minkowski metric (usually P = 2). The problem here is, given 
the two-way proximity data 6U and a specification of f and P, to construct an estimate 
of the underlying stimulus coordinates xit. This estimation is typically done to optimize 
some goodness (badness) of fit index between the actual and predicted proximities 
(Kruskal 1964a, 1964b; Shepard 1962a, 1962b; Torgerson 1958). 

Nonspatial models 

The most common nonspatial or network model is a tree, which represents each 
stimulus as a terminal node in a connected graph without cycles. Each pair of nodes is 
joined by a unique path so that the relationships between the terminal nodes in the 
graph reflect the observed proximity relations among the stimuli. A tree structure lends 
itself to a natural interpretation as a hierarchical clustering scheme (Johnson 1967). 
Hartigan (1967) was the first to develop an explicit algorithm to optimize a least-squares 
criterion for fitting an ultrametric tree structure to proximity data. An ultrametric tree 
structure is obtained by enforcing the ultrametric inequality which implies that given 
two disjoint clusters, all intra-cluster distances are smaller than all inter-cluster dis- 
tances, and that all the inter-cluster distances are equal for any given pair of  clusters. 
In fact, several researchers such as Jardine, Jardine, and Sibson (1967), Johnson, and 
Hartigan independently demonstrated that the hierarchical tree metric is governed by 
the ultrametric inequality: 

d U - max (din, dnj), 

which requires that all "triangles" formed by the distances of all triples of points have 
their two equal sides longer than the third side. Several psychometricians generalized 
the ultrametric tree representation to additive or free tree representations (Carroll, 
1976; Carroll & Chang 1973; Cunningham 1978; Sattath & Tversky 1977). An additive 
tree is a tree in which the distance between any two nodes is given by the sum of the 
lengths of the links in the unique path between those nodes, An additive tree directly 
implies the four-point additivity condition: 

din + dj~ <- max ((din + dik), (dkn + du)}. 
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An additive tree has N external nodes for N stimuli, and the lengths of all connecting 
links are then estimated to minimize a least-squares measure. Basically these methods 
are metric in that they treat the data as linearly related to the underlying path-length 
distance. Note that an ultrametric tree is a special case of an additive tree with a 
distinguished node (named the root) which is equidistant from all external nodes. Car- 
roll and Pruzansky (1975) have shown that an additive tree can be decomposed into an 
ultrametric tree plus a "bush"  or star graph. They have also extended the concept of 
estimating a least-squares tree from two-way proximity data to the fitting of multiple 
tree structures (see also Appendix II of Carroll, Clark, & DeSarbo, 1984). 

Hybrid Models 

Carroll (1976) and Carroll and Pruzansky (1980) have introduced a newer class of 
models to fit two-way symmetric proximity data. Hybrid models combine the fitting of 
both tree structure(s) and continuous spatial components so that for a given two-way 
proximity data set, say, one might fit two tree structures and a two-dimensional Eu- 
clidean space. This hybrid model concept was demonstrated with the Rosenberg and 
Kim (1975) data in Carroll (1976) and Carroll and Pruzansky (1980). 

Tversky (1977) challenged the adequacy of these traditional approaches on both 
theoretical and empirical grounds. He raised doubts about the metric properties of the 
distance measure as well as the dimensional structure of many spatial models of prox- 
imity. Tversky argued that if similarity or dissimilarity could be represented by metric 
distance via these models, as is the case in these three approaches, then the three 
axioms of a metric distance function ought to follow, namely: 

1. Minimality: t~ ab ~ t~ aa = O. 

2. Symmetry: 6ab = ~ba. 

3. Triangle Inequality: ~ab -b ~bc ~ ~ac. 

However,  Tversky (1977), Sjfberg (1972), Parducci (1965), Birnbaum (1974), and 
others have provided empirical evidence and several intuitive examples demonstrating 
that some measures of similarity (e.g., identification probabilities in recognition exper- 
iments, errors of substitutions, and directional ratings of pairs of objects) violate one or 
more of these metric axioms. Tversky proposed an alternative set-theoretic approach, 
called the contrast model. Here the similarity between two objects is expressed as a 
linear combination of the measures of the common and distinctive features of the two 
objects. When additional assumptions are made concerning the parameters of the 
model, the contrast model can be shown to account for asymmetric similarity mea- 
sures, certain effects of stimulus context on similarity, and discrepancies between 
similarity and difference judgments. 

Krumhansl (1978) later introduced the distance-density model of similarity which, 
as she demonstrated, can also account for many violations of these axioms of proxim- 
ity. The goal of this research paper is to operationalize the Krumhansl distance-density 
hypothesis with a methodology for the nonspatial analysis of proximity data. We first 
present the Krumhansl conceptual distance-density theory of similarity and cite em- 
pirical support for her theory. Next, a model is constructed to accommodate various 
hypotheses about proximity judgment formation. The algorithm and program options 
are technically described. Three applications of the methodology are presented dem- 
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An illustration o f  K r u m h a n s l ' s  d is tance-densi ty  model  in one  dimension.  

onstrating the flexibility of the approach. Finally, a discussion of model extensions to 
spatial models, three-way analyses, and hybrid models are provided. 

2. Krumhansl's Distance-Density Model 

Krumhansl (I978) suggested that some of the objections to traditional, geometric 
models raised by Tversky (I977) may be met if the conventional geometric model is 
augmented by the assumption that the proximity between stimuli is a function of both 
(a) the interobject distance in a metric space, and (b) the spatial density of stimuli 
represented as points in some geometric configuration. The specific conceptual model 
form suggested by Krumhansl is: 

where 

Sxy = f-l(dxy) (1) 

a~y = dxy + an(x) + b , (y) .  (2) 

In the above distance-density model, the similarity between objects x and y, Sxy, is a 
monotonic decreasing function of modified distance dxy. Equation (2) defines the mod- 
ified distance using ordinary distance dxy and two density terms ~(x) and ~(y) defined 
as the densities or concentrations of objects/stimuli surrounding objects x and y, re- 
spectively. In (2), a and b are (non-negative) parameters in this model, and d,:y is the 
traditional distance defined by spatial or nonspatial methods. To illustrate this model, 
Figure 1 presents a one-dimensional spatial representation of some five stimuli: a, b, c, 
d, and e. The theory implies that within dense subregions of a stimulus range, finer 
discriminations are made than within relatively less dense subregions. Two points in a 
relatively dense region of a stimulus space would thus have a smaller similarity measure 
than two points of  equal interpoint distance located in a less dense region of the space. 
Thus, distances between the stimulus pairs would have to be augmented with an ad- 
ditional "penalty" (or increment to distance) term reflecting the fact that objects a, b, 
and c are close together in a concentrated subregion. 

Note that the modified distance function in (2), dxy, need not satisfy the metric 
axioms previously discussed. The distance between an object and itself, ~txx = (a + 
b)~(x), will in general be greater than zero and will depend on the density of points 
surrounding object x, so that the minimality axiom will not hold in general unless a = 
b = 0 or ~/(x) = 0. The symmetry axiom also need not hold. Here, dxy and dyx are equal 
if and only ff a = b or ~/(x) -- ~(y). According to Tversky (1977), in a directional 
similarity task, greater emphasis may be placed on one member of the object pair than 
the other. This emphasis can be reflected in the a and b weights, with the spatial density 
surrounding one object affecting the modified distance measure a~y more than the 
density surrounding the second object. If a > b, then a~y > dyz when ~(x) >- ~(y). 
However, assuming a and b are non-negative, the triangle inequality axiom must hold 
for dxy. Since the modified distance function dxy is assumed to be a linear combination 
of interpoint distance and spatial density, axy + dyz >- clxz, Krumhansl (1978, 1982) 
presents a list of studies reporting experimental data which violate these axioms. 

Krumhansl (1978) and Appelman and Mayzner (1982) define a variety of density 
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measures (typically in the context of multidimensional scaling). One suggested measure 
of density is: 

1 

i E R  d~ 
i~x  

where R stands for the stimulus set and dix is the distance between stimulus i and 
stimulus x in the metric space. Another definition of density provided by Krumhansl is 
based on the number of objects within a fixed radius of a particular object. Here, 

7/(x) = ~ n/x, 
i E R  

where, 

(~  if dix <- r 
n/x = if dix > r, 

i is a member of stimulus set R, and r is a radius constant about x. Density is therefore 
a monotonic increasing function of the number of stimuli within the fixed radius. Un- 
fortunately, this definition is not sensitive to the particular distribution of stimuli within 
this radius. 

3. Methodology 

There has been no known methodological development or operationalization of 
Krumhansl's (1978) conceptual model of distance-density in a proximity modeling con- 
text. Saito (1986) has proposed a metric MDS procedure for modeling two-way, one- 
mode asymmetric proximities by estimating a set of object constants and a configura- 
tion of points ( X i t )  in T dimensions. The author claims that by restricting these object 
constants to be nonpositive, one can interpret them as density constants. Unfortu- 
nately, even with nonpositivity restrictions, it is not clear how one can interpret these 
object constants in a distance-density context, given that they are otherwise free to 
vary and are not explicitly related to the density of stimulus points in the derived 
configuration. Our immediate goal, therefore, is to operationalize Krumhansl's concep- 
tual model of distance-density vis-a-vis a new nonspatial methodology. Later, mention 
will be made of further extending this methodology to a spatial context. 

The Model(s) 

Our nonspatial Krumhansl methodology is developed as follows. Let: 

i, j = 1 . . . . .  N objects in the set R; 
~ / =  the empirical/observed dissimilarity between objects i and j;  
z~ = ((SU)) where 8~ ~ ~ji and ~ii ~ 0 in general; 

d U = the predicted ultrametric tree distance between objects i and j ,  where d U = 
d j i  and d i i  = O. 

Then, we can write the "full" Krumhansl model as: 

where 

8ij = do + airl(i) + bj~7(j) + eij, 

n(h) = p~ XIYph = a  measure of the density of objects around object h; 
p#h  

~ph = m a x  (0,  r h - d p h )  = ( r  h - d p h )  + ; 

(3) 
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r h = a threshold value for object h; 
ai, bj = multiplicative constants; 

e U = error. 

Note that this is one of  many ways of modeling density. We specified ~Jlph a s  such to be 
congruent with Krumhansl's notion of density as the "number of points within a fixed 
radius." In addition, the ~ph definition above models the particular concentration or 
distribution of  the stimuli within the radiuswan aspect missing from one of Krum- 
hansl's initial density notions previously mentioned. The methodology can accommo- 
date other specifications of density as well. 

From a substantive perspective, the categorization literature suggests that there 
may be discontinuities or thresholds in similarity judgments. As context objects move 
away from (i.e., become less similar to) the pair of objects being judged, at some point 
they may not be noticed by the respondent or may not be considered relevant to that 
judgment. This threshold point may be related to the boundaries of basic level concepts 
for categorization (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; Tversky & 
Hemenway 1984). Objects tend to be spontaneously grouped at this level and subse- 
quent discrimination tends to be easier than at other levels. Categories at the basic level 
maximize within-category similarity relative to between-category similarity (Mervis & 
Rosch 1981). Evidence suggests that the basic level categories are defined primarily by 
concrete perceptual attributes (Murphy & Smith 1982). The threshold values r h might 
be interpreted as the distances between these basic level categories. 

Est imat ion  

We wish to estimate a i, bj, r h , and d U, given A, where dij satisfies the ultrametric 
inequality, in order to minimize: 

N N 

2 
Z(ai ,  bj, rh, dij) = E E  [ao. - ~ij] 2 = EE eij 

i j  i j  

(4) 

s.t.: 

d/j -< max (dik, djk) V i, j ,  k (5) 

where 

~o = du + airl(i) + bjrl(j).  (6) 

Note that Carroll (1976) and Carroll and Pruzansky (1980) have utilized an exterior 
penalty function (a constrained optimization procedure that converts a difficult nonlin- 
ear constrained problem into a sequence of unconstrained problems initially utilizing 
parameter estimates that do not satisfy all of the constraints) and mathematical pro- 
gramming methods to minimize (4) subject to (5) for fitting ultrametric trees to ordinary 
two-way (one mode, symmetric) proximity data. However,  in our metric methodology, 
there are additional parameters to estimate including a i, bj,  and r h . Note the ~(h) must 
be greater than zero in order for these parameters to be estimable (e.g., the derivatives 
of Z with respect to r(h) are undefined otherwise). We therefore utilize a sequential 
unconstrained minimization technique (Fiacco & McCormick, 1968) which combines 
aspects of exterior and interior or barrier penalty functions. In general terms, we now 
transform the estimation problem: 

Min • = Z(ai ,  bj, rh, dij) + AP(d0") - tzG(rh,  dij), (7) 
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where the first term on the right-hand side of  (7) relates to (4) allowing for the recovery 
of  the 6ij, the second term on the right-hand side of (7) is to insure that the dr/sat isfy 
the ultrametric inequality, and the third term on the right hand side of (7) insures that 
~(h) > 0 so that the respective parameter derivatives exist. This is equivalent to a strict 
enforcement of the distance-density hypothesis for all stimuli, that is, r/(h) > 0 for all 
h. That is, 

N 

Z(ai, bj, rh, do')= E E  e 2 
i j 

N - I N N  

e ( a u )  = w  (au - 2 
i j k  
i< j  

j~i,k 

W~/'k = [10 i fdik<-min(du'djk) else 

G(rh, dij) = ~'~ log ( N -  1)rh -- dph + e 
1=1 

A > 0, A --> ~ during iterations 

~, > 0, ~ --* 0 during iterations 

e = a small positive constant (0.001). 

(8) 

(9) 

(10) 

(1i) 

or, to accommodate the inequality constraint (~/(h) -> 0) in the SUMT estimation pro- 
cedure: 

( N -  1)rh -- ~ dph + e >--O, 
p E R  
p#h 

where e is the small positive constant defined earlier. One can see how the "barr ier  
funct ion"  in (11) performs to satisfy these constraints. If  the expression above becomes 
zero or negative, taking the log makes the expression --~ - o0 which makes the objective 

o r  

( N -  1)rh-- ~ dph >0, 
p E R  
p#h 

density in (3): 

n(h)  = 
p E R  
p#h 

= E (rh -- dph) + ,  
p E R  
p#h 

for ~(h) > 0, then, expanding, one obtains: 

rh - ~ dph > 0  
p E R  p E R  
p#h p#h 

Note how (11) operates to insure ~/(h) -> 0. Given the particular operating definition of 
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function qb in (7) unusually large. Thus, in the terms of Rao (1984), a "barrier" is 
constructed in order to avoid a search over the infeasible parameter space. 

Some important numerical issues must be noted at this point. First, P(do.) must be 
normalized to prevent the solution of dij = O, Vi,  j ,  which trivially satisfies the ultra- 
metric inequality and minimizes Z. It is interesting to note that the discontinuities 
introduced in enforcing (9) (given the fact that w[k is not a continuous argument as seen 
in (10)) do not appear to disrupt the gradient based procedure (Carroll & Pruzansky, 
1980) as does the problem associated with the threshold constants. Second, it is a good 
idea to normalize all three parts of the right side in (7) so that, in addition to preventing 
degenerate solutions, the three parts vary in roughly the same range, although this is 
not nearly as important an issue for the third part of(11). As mentioned, the second part 
of (7) must be suitably normalized in order to prevent the procedure of  setting all d~/= 
0. The third part of (7) requires no normalization since its purpose is to go to infinity if 
the threshold constants do not satisfy the constraints. Third, one must obtain feasible 
starting values for rh and d~/with respect to (11), since it is an interior penalty method. 
U s u a l l y  r h = maxp dph + e will suffice. Fourth, there are an excessive number of 
parameters to estimate if we attempt to solve for a i ,  bj ,  r h , and d U given ~/. As we will 
discuss in the next section, constraints are typically placed on either a i ,  b j ,  and/or r h 

to reduce the number of parameters to be estimated. For example, we will set a i = a, 

bj = b, and r h = r and reduce the total number of parameters to be estimated given the 
small data sets discussed. Finally, one could justifiably argue for redundancy in the 
model in (2) since one could increase the contribution of the density part of the model 
by either increasing a i and bj or by increasing r h. To simplify this discussion, we 
assume r h = r > dij, Vi,  j ,  a i = 1, and b j  = b in the asymmetric Krumhansl model. 
Suppose one enlarges the threshold constant, r, by a positive constant, c. How must the 
a and b parameters change to maintain the same density contribution? That is, what are 
the values of a and /3 below that result in the same contribution of density to the 
modified distance in expression (2)? Thus: 

an( i )  = a n * ( i )  

p~R 
p~i 

= I)c  + ,7(0].  

So, for the above equality to hold, 

an(/) 
c ( N -  1) + n(i)' 

and in a similar fashion for br/~) ~/3~7"(j), 

3 --- 
b n ( j )  

c ( N -  1) + nq)" 

Thus, the contribution by the density parts of the modified distance in (2) can be 
increased by either increasing r and/or enlarging a and b. Similar arguments can be 
made concerning the absolute magnitude of the estimated ultrametric distances and r, 

a, and b. 
With these issues aside, we can reformulate the objective function: 
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Min ~ = 
Z(ai, bj, rh, dij) A ITp(dq) 

F 
y 0 

tz lrG(rh, dij), (12) 

where: 

N 

i j  

I N 

6 . .  = N-" 5 E E  ~,j 
t j 

N 

o = Z E  (do - d. . )2 

i<j 

d.. = 

2 N 

X X  d,j 
N ( N -  l) i<j 

,)tiT+ 1 = cA IT, C = 10 

ixlr+ 1 = StIIT, S = .01 (Rao, 1984) 

IT  = iteration counter. 

The method of conjugate gradients (Rao, 1984) is utilized as the search procedure. The 
set of partial derivatives are: 

~ m  

Oa 

N 

- 2  ~ ' ~  (6 0 - ~0)" ~(i) 
i j  

Y 
(13) 

Oai 

N 

- 2  ~ ,  (8 0 - ~U)" ~(i) 

---7-=1 

Y 
(I4) 

Ob 

N 

- 2  EY~ (~j - ~:). , ( j )  
i j  

Y 
(15) 

04, 

N 

--2 ~ (60" - -  ~ij)" ~7(J) 
i ~ l  

(16) 
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~cb 

Or 

- 2  ~i ~j (~0 - *ij) " a k # i  ~ tik + b h#j ~ thj 

3' 

0~  

Orh 

where: 

- 2  Z ( 6 h j - - 6 h j ) ' a  ~ thp 
p E R  

j > h p#h  

Y 

2 (ahh --  ~hh )  ° [athh + b t h h ]  

N /.~(N- 1) 

-5 = I ( N _ I )  r _  ~" d p ~ + e  
p E R  
p~v  

2 ~, (8~h -- &h)" b ~, t~h 
i < h  p E R  

p#h  

Y 

~ ( N -  1) 

- i N  = 1)rh -- Z + 
p E R  
p~h 

Y 

I 
tmn = 0 

Od U 

+ 

if rm - dnm > 0 

else 

-2 (60  - ~U) " [1 - at 0 - btji] 

Y 

N 

i 20A ~, [(u4k + w#)dij --  < k d j  k __ Wjkdiki ] 
k 

k > i  
k~id 

02 

i < k  
j# i ,  k 

02 

(17) 

(I8) 

+ ........... (19) 
+ ( N -  1)ri - '~_~ dpi + e ( N -  1 ) r j -  ~_~ dpj + e" 

p E R  p E R  
p# i  p # j  

Figure 2 presents a summary flowchart of the sequential unconstrained minimization 
technique utilized for this problem. 

Various computer analyses with synthetic data were performed to examine the 
performance of the algorithm. In the first series of analyses, synthetic dissimilarities 
were constructed from randomly generated a, b, r, and ultrametric d~/values for each 
of three major types of models: (1) the ultrametric only model where a = b = 0, (2) the 
symmetric Krumhansl model with a = b, and (3) the asymmetric Krumhansl model with 
a # b. Such analyses were performed for N = 8, 10, and 12 data sets where a, b, and 
r were limited to single values given degrees of freedom limitations with such small 
synthetic data sets. In the cases run, perfect recovery of A was recorded in all but one 
case. In the second stage of the analysis, error was introduced at two different levels: 
N(0,.  lv) and N(0, .2v), where v is the standard deviation of the 6,j input dissimilarities. 
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GENERATE STARTING VALUES 

SET: ;k = .001 

# = 10000 

I T = 0  

LI: 

L2: 

START MAJOR ITERATION 

IT = IT + 1 

~IT = 10 xIT-1 

,u, IT = .01 #IT-1 

MIT = 0 

1 
START MINOR ITERATION 

MIT =MIT + 1 

CALCULATE DERIVATIVES ~ 

CALCULATE SEARCH DIRECTION VIA 

CONJUGATE GRADIENT METHOD AND 

CALCULATE STEP SIZE 

UPDATE PARAMETERS IF ~MIT < 

GO TO 1_2 IF MIT < MIT* AND/OR 

~MIT-1 _~MIT  > 7"= .001; 

~MIT-1; 

GO TO LI IF IT < IT* 

1 
OUTPUT 

FIGURE 2 
Flowchart of the sequential unconstrained minimization algorithm. 
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Subsequent ANOVA results indicated that these error levels did not significantly de- 
tract from recovery parameter. 

P r o g r a m  O p t i o n s  

As was previously mentioned, there are a number of options the user can employ 
to estimate a variety of models and/or reduce the number of estimated parameters. For 
example, one could set a i = b j  = r h = O, V i, j ,  h ,  and solely estimate d( / for  the 
ultrametric-only model with no density contribution. Or, one could constrain a i = b j  

and estimate a symmetric version of the Krumhansl model. (We also allow a i and b j  to 
be unconstrained with respect to sign.) The program allows the user either to estimate 
d( /or  input them and have them held fixed. This external/internal feature is a useful 
feature for testing nested models where one might wish to hold the ultrametric part 
fixed. For the threshold parameters, a variety of options are possible including setting 
r h = O, r h = r,  have r h o1" r given and held fixed (e.g., r = max ~(/+ e), or estimate rh .  

Similar options hold for a i and bj. 

A note should be made at this point to contrast the present work with the ultra- 
metric and additive tree fitting methods presented in Carroll (1976) and Carroll and 
Pruzansky (1980). As mentioned, enforcing the a i = b j  = r h = 0 constraints in our 
methodology is equivalent to merely estimating a "best-fitting" (in a least-squares 
sense) ultrametric tree as performed by Carroll and Pruzansky. However, the specific 
density options that are available distinguish these sets of procedures. Given the result 
that an additive tree can be decomposed into an ultrametric tree and a set of constants, 
our constrained symmetric model with a i = bj  can be viewed as a type of "restricted" 
additive tree--restricted in the sense that the constants (which typically form a star or 
bush in the additive tree case) in our Krumhansl methodology are driven by the notions 
of density as defined in (3) and are not free to vary as in Carroll and Pruzansky's 
additive tree model (this is a similar argument discussed earlier with respect to the work 
of Saito, 1986). Carroll and Pruzansky's additive tree conceptualization can be adapted 
to accommodate asymmetric proximities by estimating two disparate sets of constants-- 
one set for the row stimuli and one set for the column stimuli. The result would be a 
restricted two-class additive tree (De Soete, DeSarbo, Furnas, & Carroll, 1984) where the 
i-th row and i-th column stimulus were constrained to link to the same internal node of the 
tree, but where the length of that linkage would vary by row or column stimulus. Our 
symmetric Krurnhansl model could be viewed as a restricted or constrained version of this 
adaptation where, again, the two sets of constants, a i # b j ,  would reflect the density 
considerations discussed earlier and not be entirely free to vary. 

This distance-density specification is also quite different from the tree-unfolding 
model proposed by De Soete et al. (1984). In the tree unfolding model, two sets of 
terminal nodes are estimated---one set for the row stimuli and the other for the column 
stimuli. Predicted distances are computed, in the ultrametric case, as the height of a 
common ancestor node for a row (i) and a column (j) pair of stimuli. While the De 
Soete et al. approach accommodates asymmetry, there is no explicit modeling of the 
notion of density. Also, in our operationalization of Krumhansl's (1978, 1982) theory, 
only one set of terminal nodes is estimated. 

4. Applications 

We present three different applications to illustrate the variety of models that can 
be fit with this methodology. In particular, we choose to focus upon three types of 
models: (i) the ultrametric-only model with no density contribution (e.g., aij  = di j ) ,  (ii) 
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the symmetric model with a = b = c and r h = r, and (iii) the asymmetric model (here 
a ~ b, but a i = a ,  b j  = b and r h = r V i, j ,  and h because of the small data sets and 
subsequent degrees of freedom). In all three applications, we first estimate the ultra- 
metric-only model. We then perform external analyses holding the initial ultrametric 
tree fixed for estimation of the symmetric and nonsymmetric Krumhansl models, as 
well as for other competing discrete models. This sequential estimation (external anal- 
ysis) allows a direct comparison of different (nested) models. (We also perform internal 
analyses for the particular solution discussed to examine if the derived tree structure 
dramatically changes.) 

The R o t h k o p f  (1957) M o r s e  Code  Da ta  

Rothkopf (1957) collected a set of confusions among 36 auditory Morse code sig- 
nals. Each signal consisted of a sequence of dots and dashes. Subjects who were not 
familiar with Morse code listened to a pair of signals constructed mechanically and 
separated by a pause of approximately 1.4 seconds. Each subject was required to state 
whether the two signals presented were the same or different. Table 1 reproduces a 
portion of this well-known data for only the numerical digits 0-9. Each number in the 
table is the percentage of roughly 150 respondents who responded "same"  to the row 
signal followed by the column signal. We have also provided the Morse code dash/dot 
equivalents (signals) in the Table. Note that these numbers were subtracted from 100 to 
convert them into dissimilarities for the analyses that follow. Following Gower's (1977) 
procedure for decomposing an asymmetric matrix into orthogonal symmetric and skew- 
symmetric parts, for this data set, the symmetric portion accounts for 92.2% of the 
variance while the skew-symmetric portion accounts for only 7.8%. 

The ultrametric-only, symmetric density, and asymmetric density models were fit 
to these dissimilarities, and Table 2 presents the resulting goodness of fit statistics for 
the three versions of the model. While we have no formal statistical theory to test 
nested models and subsequent improvement in fit, for this application it is obvious that 
the distance-density terms add little explained variance over the ultrametric-only model. 
The Carroll and lh-uzansky (1980) additive tree model produced a variance accounted for 
statistic (VAF) of .721. The adaptation of Carroll and Pruzansky (1980) to asymmetric 
proximities with different row and column constants produced a VAF = .752. Each of 
these was estimated by holding constant the present ultrametric tree and merely estimating 
the relevant set of constants in order to keep the basis of comparison fixed. As can be seen 
from the previous decomposition and Table 1, the data do appear to be fairly symmetric 
with consistently large main diagonal elements that exhibit minor fluctuations. As one 
reviewer aptly noted, Tversky (1977) found that large asymmetries were found for stimuli 
differing in the number of components. Here, the subset of digits considered all have the 
same number of components (five). In addition, Krumhansl (1982) noted that large asym- 
metries were typically found for pairs where one stimulus is at the boundary flow density) 
and the other stimulus is in the interior (high density). The digit stimuli considered in this 
application are all at the boundary of the multidimensional scaling solution (Shepard, 1%3) 
and thus do not appear to differ greatly in terms of density. 

Figure 3 presents the ultrametric tree representation estimated for this data set. As 
can easily be seen, the terminal nodes can be permuted to be nearly perfectly ordered 
in terms of number of dots/dashes, where, with the exception of 6 and 7, one can, going 
left to right, encounter increasing (decreasing) numbers of dashes (dots) in the signals. 
Confusability appears highest with consecutive digit signals, with a few interesting 
exceptions. For example, 6 is not grouped with 5 and, as Table 1 indicates, is not 
oftentimes confused with 5 perhaps because t he f i r s t  component of the signal for 5 and 
6 differ. That is, it may be the case that subjects weigh the first component of the signal 
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Table i 

ROTHKOPF (1957) MORSE CODE CONFUSIONS DATA 

Signal presented second 

Digit 

Stimulus i 2 3 4 5 6 7 8 9 0 

i 84 63 13 8 I0 8 19 32 57 55 

2 62 89 54 20 5 14 20 21 16 Ii 

3 18 64 86 31 23 41 16 17 8 i0 

Signal 4 5 26 44 89 42 44 32 I0 3 3 

presented 

first 5 14 I0 30 69 90 42 24 I0 6 5 

6 15 14 26 24 17 86 69 14 5 14 

7 22 29 18 15 12 61 85 70 20 13 

8 42 29 16 16 9 30 60 89 61 26 

9 57 39 9 12 4 ii 42 56 91 78 

0 50 26 9 ii 5 22 17 52 81 94 

* Percentage of repondents identifying the row signal same as column signal 

Stimulus Morse Code 

Digit Signal 

2 °.--~ 

3 .°°-- 

4 .°..- 

5 ..... 

6 -o... 

7 --... 

8 ---.. 

9 .... . 

0 ..... 

more highly in attempting to discriminate between digits. However, the grouping of 1 with 
9 and 10 does not support this argument, which may indicate an interesting "interaction" 
effect. Note that the two major groups formed in Figure 3 separate those digits whose 
signals start with dots from those starting with dashes, with the sole exception of the 1 digit. 



WAYNE S. DESARBO ET AL. 

Table 2 

MODEL RESULTS FOR THE MORSE CODE DATA 

243 

Error 

Model Sums of Suuares 

Ultrametrie 23489.2 .713 

Symmetric 20178.5 .718 

Asymmetric 20163.8 .719 

Thus the ultrametric tree representation presented in Figure 3 appears to render a 
parsimonious description of the confusions data in Table 1. The additional explained 
variance obtained through the application of more complicated models employing dif- 
ferent versions of Krumhansl's distance-density notion is small because the data are 
somewhat symmetric (Kruskal & Wish 1978; Shepard, 1963) with consistently large 
main diagonal elements. 

Soft Drink Brand Switching Data 

Bass, Pessemier, and Lehmann (1972) conducted an experiment with 280 students 
and secretaries involving the consumption of various brands of soft drinks. The sub- 
jects were requested to select a 12-ounce can of soft drink four days a week for three 
weeks from among the then popular major brands: Coke ®, 7-Up ®, Tab ®, Like ®, Pepsi ®, 
Sprite ®, Diet Pepsi ®, and Fresca ®. These brands were selected according to a 2 (cola- 
noncola) × 2 (diet-nondiet) design as shown in Figure 4. 

Note that some brands (e.g., Like ® ) have altered their position in this design since 
1972 via ingredient changes. Table 3 presents the derived brand switching matrix for 
these eight brands of soft drinks. Here the i, j element reflects the probability of 
switching from soft drink brand i in period t to soft drink brand j in period t + 1. The 
main diagonal elements reflect differential brand loyalty (i.e., absence of switching). 
Prior to analysis, the matrix was normalized by dividing each cell by the product of  the 
respective row and column mean--a preprocessing step recommended in DeSarbo 
(1982) and Rao, Sabavala, and Langfeld (1977) to dampen the effects of differences in 
market share. In addition, the resulting scale was reversed so as to make the data 
resemble dissimilarities. Here, the symmetric portion accounts for 68.2% of the vari- 
ance while the skew-symmetric part accounts for 31.8%. 

Table 4 presents the comparative results for the three models. As shown, there is 
an appreciable drop in the sums of squares in moving from the ultrametric-only tree to 
the symmetric Krumhansl representation. However, there is little difference between 
the Krumhansl symmetric and asymmetric models. This small difference is due to the 
small amounts of asymmetry relative to the high variance across diagonal elements in 
the proximity matrix. The Carroll and Pruzansky (I980) additive tree procedure yielded 
a VAF = .751 and the modification for asymmetry produced a VAF = .804. The middle 
portion of Table 4 presents the estimated a = b and threshold parameters, as well as the 
density constants (~(h)). The lower portion of the table lists the predicted ultrametric 
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2 6 7 9 

o ~ o o - -  e o e - - ~  o e  . . . .  e o e e  - - ~ e o e  _ _ - - - - e o  • . . . . . . . .  • 

FIGURE 3 
Ultrametric tree representation for the Rothkopf (1975) confusion data for the ten digit stimuli. 

distances (d U) which can be compared to r to examine subsequent density contributions 
(note that r > du). In particular, note how Tab and Like have a small predicted ultra- 
metric distance producing a high density contribution. Note that an internal analysis for 
the symmetric Krumhansl model produced congruent results, where the correlation 
between the two sets of ultrametric distances was 0.989. Figure 5 depicts the estimated 
ultrametric tree. As can be seen, the diet drinks appear to form a fairly compact group. 
To the left of this group is the nondiet, lemon-lime group with 7-Up ® and Sprite ®. And, 
to its left is the nondiet, cola group with Coke ® and Pepsi ®. This indicates that switching 
tends to occur within these three major groups. That is, these consumers are most likely 
to switch between Coke ® and Pepsi ®, between 7-Up ® and Sprite ®, and between the four 
diet drinks: Fresca ®, Like ®, Tab ®, and Diet Pepsi ®. The estimated density constants 
(r/(h)) presented in Table 4 also reveal some interesting aspects of the brand switching 
data. The largest values are for the four diet sodas, while the smallest values are for 
Coke ® and Pepsi ® . These density constants can, in this context, be interpreted as 
"penalties" for not achieving a distinctive market position. (They are also strongly 
negatively correlated with the main diagonals of the data matrix in Table 3.) That is, 
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Diet 

Non-diet 

Tab 

Diet Pepsi 

Coke 

Pepsi 

Fresca 

Like 

7-up 

Sprite 

FIGURE 4 
2 X 2 design for soft drinks. 

brands with higher density constants are more likely to have brand share taken away 
from them by other brands. Note that the two market leaders, Coke ® and Pepsi ® , suffer 
the least here due to their dominant market position attained as a result of strong 
advertising and promotional activity. 7-Up ® and Sprite ® have intermediate values in- 
dicating that their market position is considerably stronger than the diet drinks, but not 

Table 3 

BRAND SWITCHING MATRIX (UNNORMALIZED) FOR EIGHT 

BRANDS OF SOFT DRINKS 

Period t + i 

Period 

t 

Coke 7-UP Tab Like Pepsi Sprite 

Coke .612 .107 .010 .033 .134 .055 

7-Up .186 .448 .005 .064 .140 .099 

Tab .080 .120 .160 .360 .080 .040 

Like .087 .152 .087 .152 .239 .043 

Pepsi .177 .132 .008 .030 .515 .075 

Sprite .114 .185 .029 .071 .157 .329 

Diet Pepsi .093 .047 .186 .093 .116 .093 

Fresea .226 .093 .053 .107 .147 .107 

Diet Pepsi Fresca 

.013 .036 

.012 .046 

.080 .080 

.131 .109 

.026 .037 

.029 .086 

.256 .116 

.067 .200 
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Table 4 

MODEL RESULTS FOR THE SOFT DRINK DATA 

Model 

E~ror 

Sum of Squares V,A,F. 

Ultrametrle 1186.2 .739 

Symmetric 924.8 .764 

Asymmetric 874.3 .780 

a - b - 0 . 0 3 4  

r - 2 3 . 6 0 4  

Density Constants: 

.(h) 

Symmetri c Model Results 

Coke: 1.96 

7UP: 17.05 

Tab: 45.40 

Like: 45.43 

Pepsi: 1.99 

Sprite: 17.05 

Diet Pepsi: 33.98 

Fresca: 26.48 

Predicted Ultrametrie Tree Distances 

Soft Drink: Coke 7-Up Tab Like Pepsi Sprite 

Coke 0 

7-UP 2 3 . 4 8  0 

Tab 2 3 . 4 8  2 0 . 7 9  0 

L i k e  2 3 . 4 8  2 0 . 7 9  1 . 5 6  0 

P e p s i  2 2 . 3 7  2 3 . 4 8  2 3 . 4 8  2 3 . 4 8  

Sprite 23.48 18.07 20.79 20.79 

Diet Pepsi 23.48 20.79 12.99 12.99 

Fresca 23.48 20.79 16.74 16.74 

Diet 

Pepsi 

0 

2 3 . 4 8  0 

2 3 . 4 8  2 0 . 7 9  0 

2 3 . 4 8  2 0 . 7 9  1 6 . 7 4  

Fresca 

as dominant as Coke ® and Pepsi ® . It is interesting to note the close grouping of Tab ® 

and Like ® which, at the time of the study, were targeted primarily to a female audience 

(as were most other diet drinks). These two brands also possess the highest density 

constants indicating that they (as well as the other two diet drinks to a lesser extent) 

have not obtained a dominant, unique positioning in the market place. Consumers 

evidently must have perceived these four brands of diet drinks similarly (i.e., as diet 

drinks) and switched freely between them. Perhaps consumers were variety seeking 

within a restricted set of brands that were perceived to have the same dominant char- 

acteristic (diet) and/or satisfy the same set of needs. 
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Coke Pepsi 7UP Sprite Fresca Like Tab 

Fmue~ 5 
Ultmmetric tree representation for the Bass et al. (1972) soft drink brand switching data. 

Dlet Pepst 

Shampoo Word Associations 

Green and Tull (1978, p. 261) present a rectangular array of free-association re- 
sponses from a marketing study on shampoo benefits. The purpose of the free-associ- 
ation section of the questionnaire was to examine what semantic associations were 
conjured by various words or phrases that were originally believed to be related to the 
central benefit of "body" .  Table 5 presents the frequencies for eight words used as both 
initial stimuli and evoked responses for the N = 84 subjects. (Note that the original data 
consisted of the 8 × 8 matrix plus another 8 × 11 subsection which included additional 
evoked response words (e.g., soft, alive, curly, etc.) which were not utilized in this 
illustration since we are primarily focusing on two-way, one mode asymmetric data.) 
The main diagonal elements in Table 4 were not collected and are assumed to be equal 
to the sample size (84). These similarities were subtracted from 84 prior to analysis to 
convert them into dissimilarities. Here, the symmetric portion accounts for 58.7% of 
the variance while the skew-symmetric portion accounts for 41.3%. 

Table 6 presents the goodness of fit measures for the three models. The Carroll and 
Pruzansky (1980) additive tree procedure produced a VAF = .930 and the modification 
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Table 5 

SHAMPOO WORD ASSOCIATION FREQUENCIES 

Evoked Response 

Stimulus 

Word: 

1 2 3 4 5 6 7 8 Total 

I. Body 44 5 23 1 19 1 3 96 

2. Fullness 22 - 5 3 1 9 1 2 43 

3. Holds Set 17 21 - 5 O 17 0 5 65 

4. Bouncy 15 12 3 1 5 0 14 50 

5. Not limp 28 27 4 18 4 1 7 89 

6. Manageable 17 13 ii 2 0 0 3 46 

7. Zesty 7 9 2 2 0 4 - 13 57 

8. Natural 4 9 1 2 0 7 1 24 

Total Ii0 135 31 75 3 65 4 47 

for asymmetric proximities produced a VAF = .954. The asymmetric model appears to 
give the most parsimonious explanation of the data's structure based on the much lower 
sums of squares value. The lower part of the Table presents the predicted ultrametric 
tree distances (d U < r) which can be compared to r = 82.525 for investigating specific 
density estimates between pairs of stimuli. Note, in particular, the small d U value 
between body and fullness and the respectively higher contribution to density there. 
Again, an internal analysis of this asymmetric Krumhansl model also produced con- 
gruent results, where the correlation between the two sets of ultrametric distances was 
0.996. Figure 6 presents the resulting ultrametric tree associated with this asymmetric 
model. Here, "body"  and "fullness" group together at a small height or predicted 
distance of the tree, as do "holds set" and "manageable",  and "bouncy"  and "natu- 
ral". The derived tree indicates that "fullness" is most associated with "body" .  Next 
are the control aspects of hair including "holds set" and "manageability". Finally are 
the liveliness aspects of hair including "zes ty" ,  "bouncy" ,  and "natural".  Table 6 also 
presents the a, b, r and density constants for these words. Note that the discrepancy 
between a and b values indicates a relatively high degree of asymmetry. In particular, 
b is negative while a is positive indicating opposite row and column contributions to 
predicted distance. This suggests that higher density increases distance for the stimu- 
lus, but reduces distance for the response. Also, note the density constants in the table. 
There, body and fullness possess the highest ~7(h) suggesting that the regions around 
them are quite concentrated with other words. These results suggest that the stimuli 
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MODEL RESULTS FOR THE 

SHAMPOO WORD ASSOCIATIONS DATA 

Model 

Ultrametrlc - Only 

Symmetric 

Asymmetric 

Err o~ 

Sum of Souares 

4432.73 
3979.73 
3132.38 

V,A,F, 

0.914 

0.916 

0.935 

a = .137 

b = -.225 

r - 82.525 

Density Constants: 

( y ( h ) )  

As~et~icModel Results 

Body 48.39 

Fullness 48.36 

Holds Se t  19.10 

Bouncy 26.01 

Not limp 4.05 

Manageable 19.06 

Zesty 20.24 

Natural 26.05 

Full- Holds Not Manage- 

Adiective Body ness Set Bouncy Limp able Zesty Natural 

Body o 
Fullness 40.60 0 

Holds Set 80.95 80.95 0 

Bouncy 81.07 81.07 81.07 0 

Not Limp 81.66 81.66 81.66 81.66 0 
Manageable 80.95 80.95 69.87 81.07 81.66 

Zesty 81.07 81.07 81.07 74.80 81.66 

Natural 81.07 81.07 81.07 68.99 81.66 

0 
81 .07  0 
81.07 74 .75  

used in this study vary both in terms of their likelihood of being recalled and in their 
ability to cue the recall of other stimuli. Words that have high spatial densities are 
closely associated with a large number of other words, presumably as a result of past 
advertising and promotion. These associations provide many retrieval paths, facilitat- 
ing recall. For example, the commonly used stimuli--fullness, body, and bouncy--are  
most often recalled. However, the more distinctive (i.e., low density) words (e.g., not 
limp, holds set, and zesty) are very difficult to recall, but are the most effective cues for 
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Holds Set 

Manageable 

Zesty 

Bouncy 

Natural 

FIGURE 6 
Ultrametric tree representation for the Green and TuU (1978) shampoo word association data. 

triggering the recall of related stimuli. These cues allow memory access to a number of 

distant associates. 

5. Discussion 

Other Applications 

The distance-density model is most applicable in cases where a directional measure 
of the association between a set of objects or attributes is available, and this measure 
is a function of both the distance (dissimilarity) between pairs of stimuli and the dis- 

tance between these items and other stimuli in the judgment set. The model allows the 

researcher to estimate the psychological distances, removing this contextual distortion. 
Context effects have been empirically demonstrated for a number of measures of 
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item association. Measures involving memory for objects (e.g., cued recall, item iden- 
tification, free recall) are especially susceptible. Non-distinctive items (i.e., high spatial 
density) are often found to be easier to recall than distinctive items since there are a 
number of  closely-associated stimuli which can trigger their remembrance (Gregg 
1976). On the other hand, distinctive items (i.e., low spatial density) have been shown 
to be more effective than non-distinctive items as memory cues (Tulving 1974; Watkins 
1979). 

Choice judgments are also susceptible to context effects. The likelihood of choos- 
ing one alternative other the other has been found to depend on the proximity of these 
stimuli to the remaining items in the stimulus set (e.g., Debreu 1960; Tversky & Russo 
1969). This has implications for the analysis of brand-switching data. For example, 
consumers may be less likely to switch between two brands if the spatial density of one 
brand increases. Instead, consumers may split their purchases between this brand and 
the local (substitutable) context brands (Currim 1982). Increased spatial density might 
also i n c r e a s e  switching between two brands in cases where the target brand dominates 
the local context brands (Huber, Payne, & Puto, 1982). Here, the context serves as a 
"decoy" ,  increasing the target brand's apparent attractiveness. 

Of course, the distance-density model may provide an improved fit over 
the ultrametric-only model in cases where spatial density is unrelated to the dependent 
measure, but where, for other reasons, the data matrix has unequal diagonal elements 
and/or asymmetry. This is more likely to occur when the stimulus densities and dis- 
tances are estimated simultaneously rather than when independent estimates of stim- 
ulus density are used. We therefore recommend that researchers first conduct experi- 
mental research to establish an empirical relationship between density and the measure 
of  association. For example, Corter (1987) reports that spatial density has a significant 
effect on item identification judgments, but not item discrimination or direct ratings of 
similarity (see also Corter, 1988; Krumhansl, 1988). The distance-density model could 
then be applied in cases where this relationship is confirmed. 

F u t u r e  R e s e a r c h  

We have presented an alternative methodology for the analysis of proximities that 
may not obey the traditional metric axioms. There are clearly other avenues for meth- 
odological research that are available for investigation. One general area for research 
concerns the specific methodology employed. Because of the noted discontinuities 
implied by the enforcement of the ultrametric inequality and the specification of  the 
radius-threshold constants, the authors are currently investigating subgradient search 
routines to replace the conjugate gradient scheme. Other estimation algorithms such as 
STEPIT (Chandler, 1969) might also be explored for potential computational etticien- 
cies. Also, other specifications of density are to be investigated. One reviewer sug- 
gested consideration o f~eh  -- (r h - dph )~  , with q -> 0 a parameter to be estimated. The 
authors are currently in the process of ge-neralizing this methodology to spatial models 
where a Euclidean metric replaces the ultrametric in (12) and a dimensional space 
replaces the ultrametric tree. Here, other algebraic expressions for density are accom- 
modated. Another related area for future research concerns the development of corre- 
sponding hybrid models which may contain both a tree, a T dimensional Euclidean 
MDS space, and the density constants with a, b, and r. Similarly, fitting multiple trees 
is a logical extension of this as mentioned in Carroll and Pruzansky (1980). Finally, one 
could extend this approach to the analysis of three-way proximities as Carroll, Clark 
and DeSarbo (1984) extend Carroll (I976). 

Another direction for future research concerns the empirical investigation of the 
relationship between stimulus context and similarity judgments. We are not prosely- 
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tizing for the Krumhansl distance-density hypothesis. We only operationalize it in 

terms of providing a non-spatial methodology. Experimental studies and analyses such 

as those performed by Corter (1987, 1988) and Krumhansl (1988) should be conducted 

to examine the extent to which, or the situations where, Krumhansl's conceptual model 

is indeed appropriate. 
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