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Abstract— Since the identification of long-range dependence in
network traffic ten years ago, its consistent appearance across
numerous measurement studies has largely discredited Poisson-
based models. However, since that original data set was collected,
both link speeds and the number of Internet-connected hosts have
increased by more than three orders of magnitude. Thus, we now
revisit the Poisson assumption, by studying a combination of his-
torical traces and new measurements obtained from a major back-
bone link belonging to a Tier 1 ISP. We show that unlike the older
data sets, current network traffic can be well represented by the
Poisson model for sub-second time scales. At multi-second scales,
we find a distinctive piecewise-linear non-stationarity, together
with evidence of long-range dependence. Combining our obser-
vations across both time scales leads to a time-dependent Poisson
characterization of network traffic that, when viewed across very
long time scales, exhibits the observed long-range dependence.
This traffic characterization reconciliates the seemingly contra-
dicting observations of Poisson and long-memory traffic charac-
teristics. It also seems to be in general agreement with recent the-
oretical models for large-scale traffic aggregation.

I. INTRODUCTION

Does the observed long-range dependence make Poisson-

based models obsolete? This is a key question for our work.

During the last decade, there has been ample evidence of

long-range dependence, scaling phenomena and heavy tailed

distributions in various aspects of network behavior. Specifi-

cally, it has been observed that packet interarrival times are de-

scribed by marginal distributions with heavier tail than that of

the exponential. Furthermore, networking series such as the ag-

gregate number of packets and bytes in time, have been shown

to exhibit correlations over large time scales (i.e., long-range

dependence) and self-similar scaling properties. These find-

ings resulted in invalidating the traditionally used assumptions

in modeling and simulations, namely that packet arrivals are

Poisson and packet sizes and interarrival times are mutually in-

dependent.

The first empirical evidence of self-similar characteristics

in local area network traffic were presented in the pioneer-

ing work in [28]. The authors performed a rigorous statis-

tical analysis of Ethernet traffic measurements and were able
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Inc., and DIMI matching fund DIM00-10071. and DARPA award FTN F30602-
01-2-0535

to establish its self-similar nature. Similar observations were

presented for wide area Internet traffic in [36], where it was

also shown that interarrival times are described by heavy tailed

distributions. The origins of self-similarity in Internet traffic

have been mainly attributed to heavy tail distributions of trans-

fer sizes [10] [44] [34]. Apart from long-range dependence, it

has been observed that Internet traffic presents complex scal-

ing and multifractal characteristics that were usually associated

with Round-Trip Time (RTT) delay [16] [41] [47] [37] [19]. In

addition, studies have argued whether or not TCP congestion

control contributes to the observed scaling [42] [43] [29].

We believe it is time to reexamine the Poisson traffic assump-

tion in relation to the traffic carried within the Internet core.

Long before the identification of self-similar characteristics in

Internet traffic, Poisson packet arrivals and the independence

assumption were widely used as the basis for network model-

ing and analysis [24]. Despite the tendency of the community

to discard Poisson models as being overly simplistic, they can

be used to represent the limiting behavior of an aggregate traf-

fic flow created by multiplexing large numbers of independent

sources [23] [39]. Thus, given the tremendous growth of the

Internet backbone in recent years, we anticipate that any pe-

culiarities due to individual flows might cancel out due to the

vast number of different multiplexed flows. Thus, we revisit the

Poisson assumption subject to the following caveats:

Aggregated traffic vs. individual flows: We consider the

combined packet arrival stream generated by all sources, rather

than focusing on the subset of packets generated by a single

source. Because of our focus on the highly-multiplexed Inter-

net core, such primary performance metrics as packet delays

and buffer occupancies should be insensitive to the details of an

individual flow.

Idle periods vs. back-to-back packets: It is well known that

the packet interarrival time distribution may deviate from the

Poisson model for very small values because of multiple-packet

deterministic sequences. In our case, the primary cause will be

“busy periods” at the upstream router, which transmits back-to-

back packets until it manages to empty the queue. In other stud-

ies, fixed delay transaction-oriented protocols like NFS, and

processing time bottlenecks in the hosts have been identified

as the causes for particular “spikes” appearing in the interar-

rival time distribution [18]. Such short-range artifacts can be



incorporated into the Poisson model as “packet trains” [20].

The effect of the scale of observation: For moderately

loaded network resources, the system will rapidly respond to

any short-range transients in the load. Thus, by measuring the

system’s behavior across larger time scales, individual transient

events become less significant relative to the long-term aver-

ages, allowing us to determine the steady-state behavior of the

system. Eventually, however, we may reach a point, where fur-

ther increases in the length of the measurement period can ac-

tually hurt us because of the presence of nonstationarity. More

specifically, long-term nonstationarity can interfere with vari-

ance calculations because the global average across very large

time scales may drift very far away from the short-term aver-

age. To see why such discrepancies might make things obscure,

rather than just different, we offer the following analogy.

Consider the problem of determining correlation between the

motions of two insects wandering randomly around a small gar-

den. To an observer in the garden who watches the two bugs,

their motions might appear completely independent and uncor-

related. However, to an observer watching the two bugs from

outer space, the motions of the two bugs appear almost perfectly

correlated, since they are never more than a few inches apart as

they traverse a daily rotation of the earth around its axis, which

is itself embedded in an annual orbit of the earth around the

sun. Clearly, estimating the motions of the two bugs relative to

some “average” derived from celestial-scale measurements is

not appropriate for solving this problem! Similarly, we should

not try to normalize all network measurements relative to some

far away global long-term average value that the system may

never reach within the time scales relevant to the calculation of

its primary performance metrics.

In this paper, we show and explain the coexistence of Pois-

son distributions and long-range dependence in traces from

the MFN and WIDE backbones. Traffic can be viewed from

two different perspectives: Multifractal scaling as described

in [16] [15] [47] or nonstationary Poisson modeling. More

specifically, our findings can be summarized in the following

points:

• Packet arrivals appear Poisson at sub-second time

scales: The packet interarrivals follow an exponential dis-

tribution. In addition, packet sizes and interarrival times

appear uncorrelated. These observations agree with tradi-

tional modeling of network arrivals as Poisson processes.

• Internet traffic appears nonstationary at multi-second

time scales: We demonstrate that traffic oscillates around

a global mean, in a piecewise linear manner.

• Internet traffic exhibits long-range dependence (LRD)

at scales of seconds and above: In agreement with previ-

ous findings, we observe that Internet traffic exhibits LRD

properties at large time-scales.

Our work in perspective. Our work attempts to reconciliate

the seemingly contradictory observed phenomena of LRD and

Poisson packet arrivals. Our study does not contradict the ob-

servations of previous studies. For example, we confirm both

the identification of LRD behavior at large time-scales and the

different scaling behavior of traffic at smaller time-scales.

In addition, the issue of LRD modeling versus nonstation-

arity was also raised in earlier network studies1 regarding the

famous Bellcore traces [11] [12] [14]. However, in the Bellcore

traces, the arrival process clearly deviates from Poisson, which

is not the case in our backbone traces. Given this difference in

the behavior, we find important to revisit this issue.

Finally, what do our observations mean to a practitioner? Our

traces suggest that Poisson models should not be abandoned es-

pecially in the Internet core with high speeds, and high levels

of traffic multiplexing. For example, simulations may get suffi-

ciently accurate results by varying the arrival rate of a Poisson

process.

The rest of this paper is structured as follows: Section II

gives a brief description of self-similarity and long-range de-

pendence. Section III describes our traces. Sections IV and V

demonstrate the Poisson and nonstationary nature of Internet

traffic. Section VI presents the scaling behavior of backbone

traffic. Section VII concludes the paper.

II. DEFINITIONS

This section briefly presents concepts that will be used in

the paper and a brief description of long-range dependence and

self-similarity.

We extensively use the complementary cumulative distribu-

tion function (CCDF) throughout this paper. The CCDF is de-

fined as, F c(t) = 1 − F (t), where F (t) is the cumulative dis-

tribution function (CDF). The CCDF of the exponential distri-

bution with mean 1/λ is

F c(t) = e−λt, t ≥ 0.

Long-range dependence measures the memory of a process.

Intuitively, distant events in time are correlated. This corre-

lation is captured by the autocorrelation function (ACF), ρ(k),
which measures the similarity between a series Xt, and a shifted

version of itself, Xt+k:

ρ(k) =
E[(Xt − µ)(Xt+k − µ)]

σ2

where µ, σ are the sample mean and standard deviation respec-

tively. If a stationary process has nonsummable autocorrelation

function [4], that is
∑

∞

k=1 ρ(k) = ∞, then this process is long-

range dependent. Intuitively, there is non-zero correlation even

for infinitely large k. On the contrary, short-range dependence

is characterized by quickly decaying correlations (e.g., ARMA

processes).

Self-similarity describes the phenomenon where certain

properties are preserved irrespective of scaling in space or time.

A stochastic process X(t) is self-similar if X(at) = aHX(t),

1The same question also appears in all disciplines where LRD modeling is
applied, such as finance [25].



TABLE I

OC48 TRACES ANALYZED.

August 2002, 14 (11:00 - 11:20) January 2003, 15 (10:00 - 10:10) April 2003, 24 (00:00-00:20)

Direction 0 Direction 1 Direction 0 Direction 1 Direction 0 Direction 1

Bytes 58.2G 92G 21G 24G 14.8G 17.4G

Packets 140.8M 145M 41.2M 34.6M 28.8M 42.5M

Mean Rate 333Mbps 612Mbps 318Mbps 278Mbps 98Mbps 116Mbps

Mean Flows/sec 18,590 19,118 16,193 18,783 8,712 9,494

% TCP bytes (packets) 89.7 (58.7) 97.2 (92.6) 91.4 (88.8) 96.1(91.1) 96.7 (91) 95(86.6

% UDP bytes (packets) 9.8 (40.6) 2.2 (6.7) 4.9 (8.1) 3.2 (6.9) 3.1 (8) 4 (12.7)

where H is the self-similarity parameter, namely the Hurst ex-

ponent.

In time-series, second-order self-similarity describes the

property that the correlation structure (ACF) of a time-series is

preserved irrespective of time aggregation. Simply put, the au-

tocorrelation function of a second-order self-similar time-series

is the same in either coarse or fine time scales. The aggregated

process X(m)(k) is defined as follows:

X(m)(k) =
1

m

km
∑

i=(k−1)m+1

Xi, k = 1, 2, ..., [
N

m
].

A stationary process Xt is asymptotically second-order self-

similar [35], if

lim
k→∞

ρ(k) =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H ].

Second-order self-similar processes are characterized by a

hyperbolically decaying autocorrelation function and are exten-

sively used to model long-range dependent processes.

The notion of stationarity refers to the stability of the behav-

ior. Most traffic models assume, explicitly or implicitly, a stable

behavior over a period of time. The stationarity assumption is

critical when self-similar behavior is studied, since nonstation-

arity can lead to misidentification of self-similarity. Further-

more, all Hurst exponent estimation methodologies assume a

stationary time-series and their estimates are quite sensitive to

the existence of nonstationarities.

While the concepts of self-similarity and long-range depen-

dence are often used interchangeably in the literature, they are

not equivalent. Although second-order self-similarity usually

implies long-range dependence (i.e., nonsummable ACF), the

reverse is not necessarily true. In addition not all self-similar

processes are long-range dependent (e.g., Brownian motion).

III. DATA DESCRIPTION

We use three types of traces for our study: a) Internet back-

bone traces from an OC48 link, b) traces from the WIDE back-

bone maintained by the MAWI Working Group Traffic Archive

and the WIDE project [2] [9], and c) the “well-known” BC-

pAug89 and LBL-PKT-4 traces [1] which were analyzed in [28]

and [36] respectively.

The WIDE backbone traces were captured in a trans-Pacific

100Mbps link. They are 15 minute traces taken daily at 14:00

local time (JST). We use traces from June 2003. The BC-

pAug89 trace was taken at 11:25 (EDT) on August 29, 1989

on an Ethernet at the Bellcore Morristown Research and Engi-

neering facility. It consists of 1,000,000 packets (approximately

3142.82 seconds). Finally, the LBL-PKT-4 was captured on

January 21, 1994, 14:00-15:00 (PST) at Lawrence Berkeley

Laboratory (approximately 1.3M packets).

Our primary focus in this work is on the OC48 backbone

traces. These were taken on CAIDA monitor located at a

SONET OC48 (2.5 Gbps) link that belongs to MFN, a US Tier

1 Internet Service Provider (ISP).

The traces were collected by Linux-based monitor with Dag

4.11 network cards and packet capture software originally de-

veloped at the University of Waikato [31] and currently pro-

duced by Endace [13]. The nominal resolution of the Dag 4.11

card timestamp is 15ns. A number of technological factors pre-

vent Dag from reaching corresponding precision. The largest

source of uncertainty is Sonet overhead that makes interpreta-

tion of time differences under 1µs problematic [31]. The traf-

fic is monitored in both directions. The captured packet traces

contain 44 bytes of each packet, enough to include the IP and

TCP/UDP headers.

We analyze three different backbone traces captured in Au-

gust 2002, January 2003 and April 2003. Table I shows the spe-

cific dates these traces were collected, the mean rate in Mbps,

the average number of flows per second, as well as the total

number of packets and bytes for each trace. In general, the link

in question is overprovisioned. With the exception of direction

1 of the August trace that has average utilization of approxi-

mately 24%, the utilization for the rest of the traces is rarely

over 15%. The number of active flows per second varies be-

tween 15,000 - 20,000 for the January and August traces, and

between 8,000 - 12,000 for the April traces.

TCP accounts for the vast majority of the traffic. Approxi-

mately 95% of the bytes and 90% of the packets are transfered

with TCP. However, UDP represents a significant portion of the

total traffic for direction 0 of the August dataset. In this trace,

there is a UDP flood which significantly increases the percent-

age of UDP packets.

Overall, the traffic on this measured backbone link multi-

plexes a wide variety of diverse sources, since the Tier 1 ISP
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Fig. 1. CCDF of packet interarrival times for OC48 link traces, for aggregate (total), TCP and UDP traffic. The distributions can be well
approximated by an exponential distribution.
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Fig. 2. Distributions of packet interarrival times for the WIDE, LBL and BC traces.

has rich infrastructure in Asia and Europe.

Throughout the paper, we will use these traces interchange-

ably. Although we will be presenting figures for some of the

traces in each case, the results presented apply to all described

traces irrespective of the direction of the link, unless otherwise

specified.

IV. TRAFFIC APPEARS POISSON AT SUB-SECOND TIME

SCALES

In this section, we show that the distribution of packet inter-

arrival times of backbone traffic can be well described by an

exponential distribution. Furthermore, packet sizes and interar-

rival times appear independent.

A. Distribution of Packet Interarrival Times

We study the interarrival distributions of all the backbone

traces described in section III. We find that the packet inter-

arrival time distribution is well approximated by an exponential

distribution both for the OC48 traces, as well as for the WIDE

backbone traces.

An interarrival time distribution consists of two portions [5].

One that can contain back-to-back packets and another for

packets that are guaranteed to be separated by idle time. For

heavily utilized links, interarrival times are function of packet

sizes since many packets are sent back-to-back. For links that

are overprovisioned, the distribution tends to contain most prob-

ability in the “idle” portion.

For the link in question, packet interarrival times can be

closely approximated by an exponential distribution. The

packet interarrival distributions for one of the MFN traces, for

the aggregate (total), TCP and UDP traffic is shown in Fig. 1.

The CCDF of packet interarrival times is a straight line when

the Y axis is plotted in log scale, which corresponds to expo-

nential distribution.

A closer look at the CCDF reveals that there is a trivial de-

viation from the exponential line at two points: the tail of the
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Fig. 3. Autocorrelation function of packet interarrival times and packet sizes and sample cross correlation. All the correlation coefficients are
within the 95% confidence intervals except for a small number of coefficients for small lags.

distribution and for small interarrival times. The tail represents

a minimum portion of the distribution (less than 10−6). On

the other hand, the shape of the distribution for small values of

interarrival times (less than 6µs) is the effect of back-to-back

packets and Layer 2 technologies. However, linear least squares

fitting shows that the CCDF is well described by an exponen-

tial with confidence 99.99%. Similar observations hold for the

interarrival time distribution of specific packet sizes (i.e., inter-

arrival distribution of 1500-byte packets); interarrival times are

exponentially distributed.

Nevertheless, exponential distribution for packet interarrival

times is not specific only to our OC48 traces. Fig.2(a) shows the

packet interarrival CCDF for a WIDE backbone trace (June 16,

2003). The distribution is qualitatively similar to the distribu-

tions of the OC48 traces. With 99.89% confidence the distribu-

tion is well described by the exponential distribution. Note that

the bandwidth of the WIDE link is 100Mbps and despite the

huge bandwidth difference with the OC48 link (2.5Gbps), both

links are characterized by exponentially distributed interarrival

times.

To highlight the differences between current backbone traces

and past Ethernet-link traces, Fig. 2(b) and 2(c) show the CCDF

and histogram of interarrival times for the LBL and BC traces.

We present the CCDF of one of the traces and the histogram of

the other, since both traces have similar characteristics. Their

shapes are in agreement with distributions that have been ob-

served in Ethernet traffic [18], [20] in the mid ’80s and early

’90s, before the identification of self-similarity. The spikes seen

in the histogram (caused mostly by request-response protocols)

result in the deviation of the CCDF at the early values of the

distribution. Furthermore, the tail of the distribution is heav-

ier than that of an exponential distribution indicating the effects

of individual flow characteristics in these limited Ethernet links

(10Mbps).

B. Independence

We separately examine and show independence of packet

sizes and interarrival times of the OC48 link traces. The inde-

pendence is validated using various tests: a) the autocorrelation

(ACF) and cross-correlation (XCF) functions, b) the Box-Ljung

statistic, c) the visual inspection of consecutive arrivals, and d)

the conditional probabilities.

Correlation functions: Fig. 3 presents the autocorrela-

tion and cross-correlation functions calculated for 200 lags for

40,000 consecutive packet arrivals for the packet sizes and in-

terarrivals series. The sizes series consists of the actual packet

sizes as individual packets arrive; the interarrivals series con-

sists of the timestamp differences between consecutive packets.

Apart from some limited correlation at small time lags, sizes

and interarrivals are not correlated. The trivial correlation at

small time lags close to zero indicated by correlation coeffi-

cients that are just outside the 95% confidence interval of zero

(straight lines just above and below zero), is the effect of back-

to-back packets and phenomena that cause the interarrival dis-

tribution to deviate from the exponential for interarrival times

less than 6µs.

Increasing the number of lags or the size of the series (num-

ber of packet arrivals in this case) does not have any effect on

the ACF or XCF. However, nonstationarity can interfere with

variance calculations (see sections V, VI) when the correlation

is estimated across nonstationary time intervals. This is an ar-

tifact of the way the ACF and XCF functions are estimated. A

change in the mean of the series will result in distant events in

time to seem correlated according to the ACF or XCF, while

they are not (recall the bug analogy from the introduction).

Box-Ljung statistic: The Box-Ljung statistic [30] Qk is de-

fined as:

Qk = n(n + 2)

k
∑

i=1

r2
i

n − i
,

where ri is the autocorrelation coefficient for lags 1 ≤ i ≤ k



and n is the length of the series. The Qk statistic is compared

with χ2 distribution with k degrees of freedom in order to test

the null hypothesis. For large values of k the following approx-

imation for the χ2 distribution with k degrees of freedom can

be used [27]:

χ2
k,1−a ≈ k(1 −

2

9k
+ z1−a

√

2/(9k))3,

where z1−a is the upper percentile of the N(0, 1) distribution.

We applied the test for lags 1 up to 200, for varying numbers

of consecutive packet arrivals for both the interarrival times and

packet sizes. The Box-Ljung statistic shows that both variables

can be considered i.i.d with 95% confidence for up to a certain

number of consecutive packet arrivals. Increasing the lag pro-

duces similar results. Furthermore, independence is valid for a

large number of consecutive arrivals. The point where depen-

dence appears differs with the trace and time within the trace.

For interarrival times, independence holds for 20,000 consecu-

tive packet arrivals on the average according to the test. For the

packet sizes series the average is approximately 16,000 consec-

utive packet arrivals.

Consecutive arrivals: We visually examine size and inter-

arrival time scatter plots of consecutive packet arrivals similar

to Fig. 4. Although this type of figures does not prove inde-

pendence, it can reveal dependencies in the dataset. The X axis

shows the size of packet arrival k, while the Y axis shows the

size of packet arrival k + 1. Fig. 4 demonstrates that the plot is

symmetric and no specific trends can be seen. At the end of X

and Y axes of the figure, we plot the histogram of packet sizes

for reference.

Conditional probabilities: Examining the conditional prob-

abilities of sizes and interarrivals also points to independence.

We study the probabilities of sizes and interarrival times condi-

tioned on the value of the previous size or interarrival time re-

spectively. For example, each straight line in Fig. 5 presents the

CCDF of packet interarrival times conditioned on the previous

interarrival time being within seven different bins. Because the

exponential distribution falls off rapidly with increasing time,

the bin sizes increase with powers of 2 (i.e., 0-2µs, 2-4µs...64-

128µs). If the interarrival times were independent, the lines

would fall on top of each other, as is the case for Fig. 5.

C. Burst Sizes

To stress-test the claim for the memoryless properties of

Poisson arrivals and independence, we studied bursts of pack-

ets. A burst describes successive packet arrivals with interar-

rival times less than a default value, which is considered to be

the idle period. However, in our traces the idle period cannot

be identified by the interarrival distribution. Thus, in order to

define bursts, we use different values of interarrival time. If the

arrival process is memoryless, the characteristics of the burst

should remain the same irrespective of the interarrival time that

defines the idle period. We find that the distributions of the du-

ration of the busy/idle period, as well as the number of packets

Fig. 4. Scatter plot for sizes of 1,000,000 consecutive packet arrivals.
The figure is symmetric and does not show any patterns that would be
indicative of dependence between sizes.
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Fig. 5. CCDFs for interarrival times conditioned on the previous inter-
arrival being in seven different bins based on powers of two.

or bytes in a busy period are well approximated by exponential

distributions. This is irrespective of the interarrival time that is

used as the boundary for distinguishing between idle and busy

periods.

V. TRAFFIC APPEARS SURPRISINGLY SMOOTH, BUT

NONSTATIONARY, AT MULTI-SECOND TIME SCALES

In this section, we demonstrate that Internet traffic is nonsta-

tionary. Furthermore, we discuss a number of possible causes

leading to nonstationarity and characterize the behavior.
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Fig. 7. The cumulative number of packet arrivals can be seen to change
in an approximately piecewise-linear manner. The figure shows 2sec
worth of traffic.

A. Traffic has become smoother over time.

Fig. 6 displays approximately 6 minutes of data from the

well-known BC-pAug89 packet trace dataset [1], [28] in terms

of both the familiar image of chaotically-varying byte counts

per 10 msec. interval, as well as a cumulative display of total

bytes sent as a function of time without using any data aggre-

gation or smoothing. The smoothness of the cumulative graph

(Fig. 6, right) is striking, in comparison to the more familiar

chaotically varying appearance of the per-interval graph (Fig. 6,

left). In particular, we see that despite the burstiness of individ-

ual packet arrivals, the slope of the cumulative traffic curve is

well defined for time scales on the order of seconds. Although

the slope may remain relatively constant for several minutes at

a time, it is clearly a time-varying function.

Fig. 7 shows that current Internet backbone traffic exhibits

similar nonstationarity. In Fig. 7 we show the cumulative num-

ber of packets sent over a 2 second interval from the Au-

gust 2002 dataset. Notice that the total number of individual

data points in each curve is approximately the same, since the

changes in link speed (2.5 Gbps vs. 10Mbps) and measurement

period (2 sec. vs. 6min.) between these two figures are comple-

mentary. However, the slope of the new dataset is significantly

smoother than the earlier graph, and shows a distinctive pattern

of piecewise linear segments separated by well-defined corners.

The spikes shown near the bottom of Fig. 7 highlight the

points at which the rate changes. The height and direction of

each spike represents the relative magnitude of change in the

slope. In order to find the change points, a one-dimensional

version of the Canny Edge Detector algorithm is applied [6].

The algorithm is often used in image processing to reveal ob-

ject boundaries. The algorithm works as follows: first, Gaus-

sian filtering is applied to the time-series to filter out high fre-

quency noise. Then, the point where the gradient (i.e., deriva-

tive) reaches a peak value (i.e., a “ridge line”) is found. The

ridge lines are finally refined by setting to zero all points that

are on the sloping edges leading up to the peak, but not actually

there.

B. Possible causes for nonstationarity.

Among the overwhelming number of studies documenting

self-similarity and long-range dependence in Internet traffic, a

few authors have identified various examples of nonstationarity.

In [45] [46], for example, the authors examine different notions

of stationarity for various end-to-end performance parameters

of network traffic. It is suggested that the notion of stationar-

ity depends on the scale of observation. Moreover, the authors

show that many processes (e.g., loss episodes) can be well mod-

eled as i.i.d within change free regions, where stationarity is as-

sumed. This concept of describing the overall network behav-

ior as a series of piecewise-stationary intervals seems equally

applicable to our traffic data. Thus, in the remainder of this sec-

tion, we speculate on several possible mechanisms that could be

responsible for creating the piecewise-stationary traffic patterns

we have observed in the data.

Clearly, the simplest possible explanation for nonstationarity

is the variation of the number of active sources over time. This
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Fig. 8. Variation of Hurst exponent with time and index of dispersion (IDI)

is obviously responsible for (large) diurnal traffic variations,

and the authors in [7] [8] suggest that it may also be a signifi-

cant factor over much shorter time periods until the number of

multiplexed sources becomes large enough to drive the arrival

process to Poisson and sizes to independent. Although this ex-

planation could certainly apply to links that support a relatively

small number of multiplexed sources (e.g., LAN segments sim-

ilar to the well-known BC-pAug89 trace), it seems far less rea-

sonable as a possible explanation for the piecewise-linear vari-

ations we found in our OC-48 traces because the number of

individual flows that were both large and fast enough to create

visible rate changes at these scales was extremely small.

Another obvious possibility is to consider self-similarity in

the traffic generation process. In this case, we must try to dis-

tinguish between nonstationarity and long-range dependence,

since it is well known that LRD estimators can be fooled by

nonstationary behavior (such as trends or periodicity). For this

reason, the authors in [28] suggest partitioning the time-series

into disjoint segments and separately calculating the value of

the Hurst exponent for each segment. We applied the same pro-

cedure to our OC48 traces by partitioning one of the 20 minute

traces to form 60 disjoint time-series, each containing approx-

imately 2 million samples from 20 sec intervals. The results

of our analysis are shown in Fig. 8(a), which shows that the

Hurst exponent value varies significantly over time, oscillating

between 0.5-0.7 for small scales. Similar observations hold for

the case of larger scales where the Hurst exponent value varies

between 0.65-0.9. This suggests that our current Internet core

traces are nonstationary, at least for time scales on the order of

approximately one hour.

We also considered the possibility that routing changes might

be responsible for the variations in the piecewise linear traf-

fic rates. Note that a routing change could affect the measured

traffic on our link either directly, by inserting or removing our

measurement link from the paths followed by a (set of) active

flow(s), or indirectly, by inserting or removing other traffic from

a distant link and hence triggering a change in rate for the ac-

tive flow(s) that use both links. This would be especially true

for highly reactive TCP streams that suddenly see more bitrate

available [38]. According to the routing persistence results re-

ported in [46], approximately 10% of the commercial Internet

routes had lifetimes of a few hours or less. Moreover, their cu-

mulative distribution function for route lifetimes (based on sam-

pling more than 36,000 host-pairs) was very flat across short

time scales. Thus, since routing update protocols are specifi-

cally designed to avoid synchronization in the update times, and

since the entire Internet contains a huge number of routers, we

cannot reject the possibility that the mean time between routing

updates of both types visible to our measurement point is below

one second. This hypothesis will be left as the subject of further

study.

However, perhaps the most convincing explanation for this

type of nonstationary behavior comes from [39], where the au-

thors carefully develop a methodology for quantifying the de-

viation from the Poisson limit of an aggregated arrival pro-

cess composed of large numbers of highly-variable individ-

ual streams, when viewed over a wide range of different time

scales. In particular, they show how aggregation of sources

can “transfer” variability (which originated from the stationary,

high-variance packet interarrival time distribution representing

a single source) to the aggregate arrival process (which quickly

takes on the characteristics of an almost-perfect Poisson pro-

cess with a time-dependent mean arrival rate). Consequently,

they show how the aggregate arrival process can behave like

Poisson process in conjunction with small buffer sizes, but not

with large buffer sizes, because of the cumulative variability

caused by large numbers of small long-term covariance terms.

In other words, these many small deviations from the Poisson

limit may occasionally align themselves in peculiar ways to cre-

ate artifacts that are visible across large time scales, similar to
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the beats produced by two tuning forks set to nearly identical

frequencies.

Such deviations can be visualized using the index of disper-

sion for intervals (IDI) [39], which is defined as the sequence

{c2
k}, k ≥ 1, where:

c2
k =

kV ar(Sk)

[E(Sk)]2

and the random variable Sk is the sum of k consecutive interar-

rival times.2 Notice that if the arrival process is an ideal Poisson

process, then we should have c2
k ≡ 1 for every k. However, if

the arrival process has higher variance at some time scale, then

ck will tend to increase as a function of k.

Fig. 8(b) shows how c2
k varies as a function of k for a vari-

ety of trace datasets. Similar to Fig. 4 from [39], we expect the

Poisson assumption to be quite effective over short ranges (so

that c2
k ≈ 1 for small values of k), but to gradually degrade as

k increases. For example, the authors in [39] found that when

aggregating 60 voice sources (each having a squared coefficient

of variation of 18.1), the Poisson assumption was very good

for arrival sequences of length less than approximately 50, be-

yond which c2
k began to increase almost linearly. Notice that

the well-known BC-pAug89 trace is a very poor fit to the Pois-

son distribution, but the recent traces obtained from both our

OC-48 link and the 100 Mbps trans-Pacific link monitored by

the WIDE project show a remarkably good fit, even for large

block sizes. Except for the April 2003 trace, all of our recent

traces fit the Poisson assumption very well even when we in-

crease the arrival sequence lengths into the thousands. Note

2[39] includes the following remark about the IDI. “This technique applies
much more broadly, and we believe that it can greatly help understand other
complex arrival processes in queueing systems (and elsewhere).” We agree,
and would further like to emphasize its advantage of normalizing the autoco-
variances across the interarrival time sequence, {Xi}, with respect to E[X]
rather to V ar(X). Hence the magnitude of c2

k
is a meaningful quantity, which

allows us to determine the actual significance of the correlations across a dis-
tance of k steps. In contrast, the autocorrelation function, ρ(k), is normalized
by the standard deviation, σ ≡ ρ(0), so we can only compare the relative sig-
nificance of correlations across different distances — without knowing whether
any of these deviations are significantly greater than zero.

that, c2
k does not depend on the specific part of the trace but it

does depend on the length of the series used. That is, its value

remains approximately the same when estimated at any disjoint

piece of the trace with the same number of points. However,

when the number of samples in the series is increased past the

point where more than 5-10 seconds are represented (e.g., more

than 500, 000 − 2, 000, 000 consecutive arrivals depending on

the OC48 traces), it increases due to the piecewise nonstation-

arity. For Fig. 8(b), we used 500,000 arrivals to estimate IDI.

C. Characterizing the nonstationarity.

To quantify the behavior of the aggregate traffic process over

longer time scales, we studied both the magnitude of the rate

change events that separate each interval (i.e., the height of the

“spikes” in Fig. 7) and the durations of the piecewise-linear

change free intervals between each “spike”. Our results are

shown in Fig. 9. We found that the magnitude of the rate change

events appears to be uncorrelated beyond a significant negative

correlation at distance one. This negative correlation at lag one

implies that an increase in rate is followed by a decrease. This

is also evident from the alternation of direction of changes in

Fig.7. However, the remainder of the ACF is very flat and falls

within the 95% confidence interval of zero. We also found that

the durations of the change free intervals follow the exponen-

tial distribution. Although we do not show it here because of

space limitations, the ACF for the durations of the change free

intervals fell within the 95% confidence interval of zero.

These results are consistent with theoretical results on the

aggregation of large numbers of independent renewal streams

under the intermediate connection rate model in [17], where

we increase the number of active sources in proportion to the

available service rate to maintain a constant normalized load.

They show that the variability of the aggregate arrival process

converges to a non-stable, non-Gaussian process with a zero

mean and stationary increments3. Thus, by combining our ob-

3In [17], they also show that the limit process is continuous, has finite mo-
ments of all orders, is second-order self-similar, but not self-similar.



6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
8

10

12

14

16

18

20

22

24

26

scales

lo
g2

(E
ne

rg
y)

Energy vs Scale
MFN OC−48 2003−01−15, 10:00, dir. 1

Aggregate Traffic 

UDP Traffic

TCP Traffic 

(a) The Hurst exponent is approximately 0.6 at small scales and 0.8 at larger
scales for the aggregate and TCP traffic.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

5

10

15

20

25

30

scales

lo
g2

(E
ne

rg
y)

Aggregate Traffic

Aggregate Traffic smoothed

(Gaussian window, 300msec, sigma 30msec)

Aggregate Traffic smoothed

(Gaussian window, 3sec, sigma 1sec)

Energy vs Scale
MFN OC−48 2003−01−15, 10:00, dir. 1

(b) The scaling behavior of the original and smoothed aggregate traffic. At
large scales the behavior is the same.

Fig. 10. Wavelet (Haar) energy versus scale for byte counts. (time = 2scale ∗ 10µs.)

TABLE II

SCALE OF CHANGE FOR THE HURST EXPONENT VALUE.

August 2002 January 2003 April 2003

Dir. 0 650 msec 40 - 80 msec 320 msec

Dir. 1 80 - 320 msec 160 -320 msec 320 msec
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based on a Gaussian window. Correlation coefficients drop to zero
after first lags when local nonstationarities are removed with moving
average.

servations with these theoretical results, we conjecture that the

nonstationarity of the Poisson traffic rate may be well described

by a Markovian random walk model.

VI. TRAFFIC APPEARS LRD AT LARGE TIME SCALES

In this section, we study the scaling behavior of the backbone

traffic using the same set of OC48-link traces from which we

showed nonstationary Poisson behavior at multi-second time

scales. Our observations across large time scales show that

backbone traffic demonstrates long-range dependence as mea-

sured by the Hurst exponent estimators. The scaling behavior is

characterized by a dichotomy between small and large scales.

To analyze the scaling behavior, we study the series of byte

and packet counts with smallest aggregation level at 10µs. To

overcome accuracy related problems of the Hurst exponent es-

timators [26] [32] [22] [40], all common estimators [4] [40] [3]

are applied to each series.

Our analysis shows that backbone traffic is characterized by

long-range dependence. However, the intensity of correlation

depends on the scale of observation. Specifically, in all traces

analyzed we observe a dichotomy in the scaling in agreement

with previous studies [16] [15] [47]. The point of change is

within the millisecond scales, albeit different for each case.

However, the pattern is the same: At scales below the point

of change the Hurst exponent is just above 0.6, while at larger

scales it varies between 0.7 and 0.85 depending on the trace and

the estimator used 4. Table II summarizes the points of change

for the value of Hurst exponent. Similar observations hold for

the packet counts case.

Fig. 10(a) presents the scaling behavior of byte counts us-

ing the wavelet estimator for the aggregate, TCP and UDP traf-

fic. The base wavelet used is the Haar wavelet for scales 6-25

(640µs-5min). Because of the dominance of the TCP traffic

(Table I), the energy line for the UDP traffic appears lower in

both figures. Fig. 10(a) demonstrates that the scaling behavior

of the aggregate traffic is highly correlated with the behavior

of TCP traffic. Both show the change in the value of the Hurst

from 0.62 to 0.8 at the same scale (16). On the contrary, UDP

scaling behavior does not follow the pattern of the aggregate

traffic or TCP traffic.

In order to highlight the thin line between long-range depen-

dence and nonstationarity, we offer the following example mo-

tivated by our observations in the previous sections. We cal-

culated the ACF coefficients for 400 lags using two different

ways: a) The regular ACF function described in section II and

4Figures showing the result of the Hurst exponent estimators for our traces
have been omitted due to space limitations. However all show with 99% confi-
dence similar dichotomy and Hurst exponent values.



b) replacing the global average used in the ACF, by a moving

average (calculated using a Gaussian window), thus removing

local nonstationarities from the calculation of the autocorrela-

tion function. Fig. 11 shows the effect of removing “nonsta-

tionarity” from the January OC48 trace on the autocorrelation

function. The correlations fall within the 95% confidence inter-

val of zero, after 1msec when the moving average is used. The

magnitude of the correlation depends mostly on the standard

deviation (sigma) of the Gaussian window, and also on its size.

On the other hand, when the Hurst exponent estimators

are applied to the Gaussian moving average function, we find

that the smoothed function has the same Hurst exponent (ap-

proximately 0.8) as the original series at large enough scales.

Fig. 10(b) presents the scaling behavior for the aggregate traffic

after the Gaussian smoothing. Because high frequency noise

has been removed, the smoothed curves have lower energy at

small scales. On the other hand, high frequency noise is present

in Fig. 11, where there are only deviations from the local av-

erage. At larger scales, the scaling behavior is the same as the

original aggregate traffic (Fig. 10(b), beyond scale 13).

However, since this same Gaussian moving average func-

tion can also be thought of as an approximation to the piece-

wise linear rate function described in the section V with its cor-

ners rounded off, we now have two different perspectives of the

same nonstationarity: exponentially distributed, stationary un-

correlated increments and long-term correlations5. While this

description of the rates series is in agreement with fractional

Gaussian noise theory, this is clearly a question for further study

in the future!

VII. CONCLUSIONS

In this paper, we revisit the validity of the Poisson assump-

tion by examining a number of current and historical traces of

Internet traffic. We find that at sub-second time scales, back-

bone traffic appears to be well described by Poisson packet ar-

rivals. Our study provides evidence for how the ongoing pattern

of Internet evolution may potentially affect the future charac-

teristics of its traffic, as shown by our traces. We conjecture

that the particular way in which this increase in scale is unfold-

ing seems to be pushing the Internet in the general direction of

easier-to-understand and better-behaved traffic models (i.e., the

Poisson assumption) – or at least not in the direction of sophis-

ticated traffic models!

More specifically based on traces from the MFN and WIDE

backbones, we found that up to sub-second time scales traf-

fic is well characterized by a stationary Poisson model. This

is important because it covers the relevant time scales for the

delivery of a single packet (i.e., the Round-Trip Time). Be-

yond that point, the traffic seems to take on a distinctive form

of nonstationary behavior, which consists of short intervals of

“change free regions” punctuated by sudden change events. The

5Note that in section V we examined the rate changes, while the Gaussian
moving average function corresponds to the series of the rates themselves.

durations of the change free intervals were found to be expo-

nentially distributed and uncorrelated, while the change events

themselves appeared to be stationary with only a trivial one-

step (negative) correlation in the increments. We note that these

observations are also consistent with the theoretical results for

large-scale aggregations of renewal processes which have been

derived under the assumption of scaling the number of sources

and network capacity together to keep the normalized offered

load fixed. We also show that this type of traffic model (i.e.,

Poisson with nonstationarity at multi-second time scales) is

consistent with the kind of long-range dependence that is com-

monly observed in network data over larger time scales.

It would be interesting to analyze more data traces from: a)

other backbone links, and b) links towards the periphery of the

network. It could very well turn out that different links exhibit

different behavior especially at small time scales as suggested

by some interesting recent studies [21] [47]. Scaling phenom-

ena especially at small time scales may be sensitive to the traffic

mix in terms of applications and the idiosyncrasies of low level

protocols.

Our work has also left a number of interesting questions

unanswered, which remain as subjects for further study. Most

importantly, is the type of nonstationary behavior we see at

multi-second time scales sufficient to explain everything, or

are there even-larger scale effects remaining to be discovered?

Another important open issue is finding the mechanism that is

responsible for the distinctive piecewise-linear variation in the

rate.

Finally, we found that focusing on the proper time scale

turned out to be a recurring theme in our work as well as in

many of the references cited. Just as the analogy of the two

bugs in the garden shows it is important to avoid excessively

large scales, we must also be careful not to focus on too small

a time scale. Although Whitt pointed out that the right time

scale must be an increasing function of load placed on a net-

work resource [39], Norros [33] has observed that network traf-

fic sources have the flexibility and intelligence to adapt their

transmission policies to the resources currently available in the

network. Thus, we conjecture that the traffic characteristics for

the Internet backbone may continue to grow even better be-

haved in the future.
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