ELASTIC MODULI

in which the average value is for the temperature dis-
tribution present when » was observed. Implicit in
expression (7) is the assumption that J/I is a constant
regardless of temperature. Actually the ratio varies
because of thermal expansion so that (7) implies a
redefinition of the modulus G at some temperature 7'
in terms of the dimensions at room temperature rather
than at the temperature 7. The matter is of little prac-
tical importance here because measurements of the
increase in length for the conditions of the experiment
showed that the maximum change in J/I was of the
order of one percent. Now let Go/Gr in which G, and
Gr are the values of the modulus at room temperature
and at a temperature 7, respectively, be represented
by a polynomial in powers of (T'—T,), adequate to
represent the data over a restricted interval. We then
have

Go/Gr=1+A4(T—To)+ Ao(T— To)?
+A(T~Tof+---, (8)
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with the coefficients 4, to be determined from the
experimental data. The determination is made by
solving a set of simultaneous equations involving the
A, A particular equation of the set is obtained by
substituting an experimentally observed value for
(wo/w)? in Eq. (7) and by substituting for (Go/G(2))a
the reciprocal of the rod length multiplied by the
integral of Eq. (8) over the length of the rod. The
integration is performed by using the temperature dis-
tribution which was observed for the value of (wo/w)?
selected. In actual practice the corrected curve was ob-
tained by determining three coefficients which matched
the integrated experimental results for three points at
1500°C and above and by determining three coefficients
which matched the results for three points at 1500°C
and below. The corrected curve for the high region and
that for the low region were observed to agree well in
an intermediate range, and the final corrected curve
was obtained by a smooth joining of the low tempera-
ture and the high temperature curves.
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A solution in successive approximations is presented for the heat diffusion across a spherical boundary
with radial motion. The approximation procedure converges rapidly provided the temperature variations
are appreciable only in a thin layer adjacent to the spherical boundary. An explicit solution for the tempera-
ture field is given in the zero order when the temperature at infinity and the temperature gradient at the
spherical boundary are specified. The first-order correction for the temperature field may also be found. It
may be noted that the requirements for rapid convergence of the approximate solution are satisfied for the
particular problem of the growth or collapse of a spherical vapor bubble in a liquid when the translational

motion of the bubble is neglected.

I. INTRODUCTION

PROBLEM of nonsteady heat diffusion is en-

countered if one considers the dynamics of a vapor
bubble in a liquid. As the size of the bubble changes,
heat flows across the moving liquid-vapor interface.
The liquid is assumed here to be nonviscous and in-
compressible, and the thermal conductivity &, density
p, and specific heat ¢ of the liquid are assumed to have
insignificant variation with temperature. The tempera-
ture T in the liquid then satisfies the equation

147 1t
AT=— —— . )
Dd k

Here D=Fk/pc is the thermal diffusivity of the liquid,
n=1(t) is the heat source per unit volume in the liquid
which is taken to be a function of time only, and d7/d¢

* This study was supported by the ONR.

denotes the particle derivative so that
dT/dt=9T/dt+v VT,

where v is the liquid velocity which in general varies
with position and time.

II. FORMULATION OF THE PROBLEM

It is advantageous to transform Eq. (1) from Eulerian
to Lagrangian coordinates. It will be assumed that the
motion possesses spherical symmetry; i.e., the vapor
bubble is spherical, and its radial motion is sufficiently
rapid that any translational motion may be neglected.
The Eulerian coordinates will be chosen as (r, ) with
origin r=0 at the center of the bubble. If R(}) is the
bubble radius at time ¢, Lagrange coordinates may be

defined by
h=1/3)[#—R)],
=1,

(2a)
(2b)
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and Eq. (1) can now be written as

a( oT\ 1T 1
—(r—=)=~——=s. 3
an\ on K )

D a k
If at =0, the temperature at r= o is T'y, then at a later
time ¢ the temperature at infinity is 7= T+ (D/E)n(2),
where 5(0)=0. It is convenient to introduce a function
U(h, t) such that

oU/dh=T—T,, @)

and Eq. (3) may then be written

] { #U 19U }
rL—

ol o Do

1
-
k
so that by integration

S L v ©)
P = — Y (8),
ot D 9t k77

where Y(¢) is an arbitrary function of time. From Eq. (4),
k
U= [ (r-Toditx0)
0

and the function x(¢) may be chosen so that ¥(¢)=0,
and also so that

U(h, 0)=0, (6)

if it is assumed that the temperature at t=01is T every-
where. Equation (5) now becomes

#U 10U  k
P = — g @)
a Do

In addition to Eq. (6), one has the boundary condition
at infinity

(9U/3h) pmew = (D/ B)1(8). (8

The further boundary condition required to fix the
temperature field may be given by the temperature
gradient at the bubble wall, r=R(?), as a function of
time. One then has

(PU/ k) mo= (1/RY(OT/01)mrr=F(). (9

The diffusion problem thus defined can be solved by
successive approximations, if the assumption is made
that U and T vary appreciably only in the region

hRY(D). (10)

Physically, for the vapor bubble problem, this assump-
tion is made plausible by the fact that not only is the
heat capacity much greater in the liquid state than in
the vapor state but the thermal diffusivity is also much
smaller.
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III. ZERO-ORDER SOLUTION

It is convenient to introduce in Eq. (7) a new time
variable 7 defined by

= f R

Equation (7) now becomes, to the first order in %/R?,

3?U 10U hdy 41 82U
—_— e —=—— 11
ok D 9r kdr R3 3n? (1
since
=~ R{(14-4h/R%)

to this order. By the usual procedure of successive
approximations, one sets

U=UU+---, T=THT'+---,

where the superscript denotes the order of the approxi-
mation in powers of the perturbation parameter 4/R°.
The zero-order approximation, U?, is thus determined by

*U°
on?

1 90°

D or

h dy
+_ —= 07

(12)

with the boundary conditions (6), (8), and (9).
The appropriate solution of Eq. (12) is readily found
by taking the Laplace transform on the variable . If

0

w(h, 5)= £{UOh, 7)) = f e+ Uh, 7)dr,

0

a(s)=2&{n(n,
f(s)=£{F(n)},

then
du s hs
———u=——a(5), (13)
i D k

where use has been made of Eq. (6) and the specification
that »(0)=0. One has further, from Egs. (8) and (9),

(du/dh)i—o= (D/ k)0 (s), (14)
(&u/dR) o= f(5). (15)
The required solution of Eq. (13) is
w=(D/s)(s) exp{—h(s/ D)} +h(D/k)a(s),
so that

d
;§= —(D/S)(s) exp{ ~h(s/ D)} +(D/B)o(s). (16)
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From Eq. (16), one finds
£ du/dh} = dU°/dh=TO(h, v)— T
T OF()
= @/in-wrmr [ —
h2
4D(1—¢)

Xexp{ 'd;. a7
If one sets

a(hy T) =T~— TO" (D/k)ﬂ(T) =T— Tw:

then
T F(9)
8%k, )= — (D/m)t
(h, 7)=—( )fo<f—;>*
(LI
Xexp —m’ ¢ (17

Thus, the difference between the temperature at the
spherical boundary, 79(0, 7), and the temperature at
infinity, T, is given by

F($)ds
(r=)F
One also has from Eq. (16) for =0

- 6°0, 7)=27{(D/s)H(s)},

so that the inverse Laplace transform of Eq. (16) may
be written in an alternative form as :

690, 7)= — (D/x)} f

" 69(0, ¢
69(h, 7)=[h/(4xD)"] f : _o)*
h2
eq%——————kp (19)
4D(r—¢)

In terms of the original time variable, one has, for
example, from Eq. (18)

%0, t)—To=(D/k)n(t)
—<D/7r>*f e

{ f t R“(y)dyr

If the variations in R(t) are sufficiently small, Eq. (20)
simplifies to

T°%0, §)—To=(D/k)n(t)

$(8T/07) rmr()
—(D/ w)*ﬁ m}—dx,

dx. (20)

1)

which represents the “plane approximation” obtained
if the curvature of the boundary r=R(¢) is completely
neglected.

It may be noted, when
T%(0, 7)—To~ (D/k)n(7)=6%0, )

is a monotonic function of =, that one obtains from
Eq. (19) the inequality

oo(h’ T)
6°(0, 7)
IV. FIRST-ORDER CORRECTION TO THE SOLUTION

<Lerfc{h/(4Dr)}}.

If one continues the procedure of successive approxi-
mation, the right side of Eq. (11) is now considered as
determined from the zero-order solution U° and the
first-order correction U’ is determined by

*U’ 4p 32U°
on?

19U’
D ar

=G(h, ). (22)

The boundary conditions for U’(%, 7) are
U'(h, 0)=(0U"/ 0k) o= (2U"/ 01%) 30=0. (23)

From Eq. (4), the first-order correction, 77, to the
temperature field is given by

T'=9U"/dh.

Denoting the Laplace transforms of U’(k, 1), G(k, 7) by
v(h, s), g(h, s), respectively, one has

v s
___7)=g(h7 S), (24)
an* D
with the boundary conditions
(dv/dh) hw = (d?0/ dH2) pmo=0. (25)

By Eq. (22), G(0, 7)=0, and the solution to Egs. (24)
and (25) is readily found to be

1/D\? o
o(h, s)= —‘—(——) ‘e"(“/m’f e~=IDig(x 5)dx
2\s Y

h

—{-e‘h("D”f e=(!Dg(x 5)dx
0

o0

_ p—h(s/D)} f e—z(s/b)ig(x, s)dx ,
[

so that

dv 1 *

= __{ eh(le)*f e—z(a/D)‘)g(x, s)dx
dh 2 1

h

— g—h(s/D)} f e*¢/D)ig(x, 5)dx
0

P f =D (x dx . (26)

[
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For 2=0, one has

d o
(‘—i—Z) =_f e~/Dig(x §)dx=L{T'(0, r)}. (27)

From Eq. (27), the first-order correction to the tem-
perature at the spherical boundary is

(0, )= —f: dxj: Gz, £)

x exp[——x2/4D(T—E)]d
[4xD(r—£)*
By Eq. (22) and the definition of §°
Ak 80%(h, 7)

G, r)=— ,
1) Ri¥(r) ok

(28)

so that Eq. (28) becomes
T 4 30%(x, )
R¥E) ow
exp[ —*/4D(r—~§)]
X d
[47D(r—§)*]t

and, if it is permissible to interchange the order of the
integrations, one gets

(0, )= f dx
0 0

’

¢ f‘” 06°(x, £)
0

o, =2
@) fo RYE)[xD(r—£)*]t dx
Xexp[ —#2/4D(r—£) Ja%dx. (29)

Differentiation of Eq. (19) gives

00 E) 1 fw"(o, K
ax (@D} Yy (b—)tox
X {x exp[ —2/AD(5— )]} d.

Substitution of this relation in Eq. (29) leads to the
result .

D\ pr dt
(0, )= 2(—)
m j; R3(%)

Co0, O Tt
X 1-3 d¢. (30
fo (r—o r—r] - G0

One may obtain the following inequalities from Eq. (30)
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when R is a monotonic increasing function of time:

e eprerens(5)

T 60, §)
x| ————d¢.
j; RO (=)}

(31)

When R is a monotonic decreasing function, the sense
of the inequalities should be reversed. It may be noted
in Eq. (31) that

D\! 700, ¢) .
—(—) ) a=0 [ Fit,
s 0 (7'_'§')i 0

where F({) is defined by the boundary condition of
Eq. (9). When R is a monotonic increasing function,
Eq. (31) thus gives

D T 4D
~ f PEE<T0, )<
R3J, 3R

[ Foa, @

0 [

where Ry=R(0). The upper bound in Eq. (32) repre-
sents, of course, a poorer estimate than that given in
Eq. (31).

V. CONCLUSION

The approximations developed here have been applied
by the authors to the problem of the growth of a vapor
bubble in a superheated liquid. For this specific problem,
one can examine in detail the validity of the assumption
of the thin “thermal boundary layer’” which has been
justified previously only in general physical terms. Such
an examination of the predicted temperature field shows
that the zero-order approximation, as given by Eq. (17)
or (177, is sufficient. Therefore, an explicit expression
for the first-order temperature correction at any point
in the liquid has not been given here, although it may
be found from Eq. (26). The first-order temperature
correction at the boundary r=R(¢) is given by a fairly
simple expression, and the given bounds upon it provide
a convenient estimate of the rapidity of the convergence
of the approximation theory.

The approximation procedure presented here is not
limited to heat diffusion across a spherical vapor bubble
in a liquid. The theory applies without alteration to
diffusion across any spherical boundary with radial
motion in a fluid, provided the thin “thermal boundary
layer” approximation is valid. It is to be emphasized
that effects of any translational motion of the spherical
boundary have not been considered. For the case of the
vapor bubble in a liquid, the solution is therefore
applicable only over time intervals so short that no
significant translation can take place.
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