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A Non-Uniform Sampler for Wideband

Spectrally-Sparse Environments
Michael Wakin, Stephen Becker, Eric Nakamura, Michael Grant, Emilio Sovero,

Daniel Ching, Juhwan Yoo, Justin Romberg, Azita Emami-Neyestanak, Emmanuel Candès

Abstract—We present the first custom integrated circuit imple-
mentation of the compressed sensing based non-uniform sampler
(NUS). By sampling signals non-uniformly, the average sample
rate can be more than a magnitude lower than the Nyquist rate,
provided that these signals have a relatively low information
content as measured by the sparsity of their spectrum. The
hardware design combines a wideband Indium-Phosphide (InP)
heterojunction bipolar transistor (HBT) sample-and-hold with
a commercial off-the-shelf (COTS) analog-to-digital converter
(ADC) to digitize an 800 MHz to 2 GHz band (having 100 MHz
of non-contiguous spectral content) at an average sample rate of
236 Msps. Signal reconstruction is performed via a non-linear
compressed sensing algorithm, and an efficient GPU implemen-
tation is discussed. Measured bit-error-rate (BER) data for a
GSM channel is presented, and comparisons to a conventional
wideband 4.4 Gsps ADC are made.

Index Terms—Non-uniform sampler, compressed sensing,
wideband ADC, indium-phosphide HBT, sample-and-hold.

I. INTRODUCTION

In such far-ranging fields as radio, telephony, radar, image,

audio and seismic acquisition, most analysis techniques follow

the same pattern: (1) digitize an analog signal, (2) perform

DSP, and, optionally, (3) convert back to the analog domain.

The common piece of hardware in this chain is the analog-

to-digital converter (ADC). The current trend in systems is

wider bandwidths and larger dynamic ranges, and designing a

single ADC to meet both of these requirements simultaneously

is difficult. To get around this, systems typically use time-

interleaved ADCs or channelize the band and digitize each

channel separately. However, these approaches do nothing to

reduce the output data rate and can require prohibitively high

power.
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A. A new paradigm

The effective instantaneous bandwidth (EIBW) of an ADC

is the total bandwidth of the spectrum that can be unambigu-

ously recovered. Although it is generally desirable to design

receivers with high EIBW—say, for applications involving

cognitive radio or communications intelligence—it may also

often be the case that, at any given time instant, much of

the spectrum within this bandwidth is unoccupied. One can

define the information bandwidth of such signals to be the

actual amount of occupied spectrum. In this paper, we present

a receiver design intended for signals with high EIBW but low

information bandwidth. We do so by adopting concepts from

the field of compressed sensing (CS).

The theory of CS [7], [14] suggests that randomized low-

rate sampling may provide an efficient alternative to high-rate

uniform sampling. For a survey of the modern CS literature,

the reader is referred to [8].

To put CS on a concrete footing, we give an explicit (but

for the moment, discrete-time) example. Let x be a length-N
signal, and suppose the Discrete Fourier Transform (DFT) of

x, denoted X , is K-sparse, meaning that it has only K ≪ N
nonzero entries.

Now, collect only a subset Ω of all the entries of x. Suppose

the sample locations Ω are chosen uniformly at random, and

let M be the size of Ω. Because M < N ,1 it is generally not

possible to recover x using a linear method. The remarkable

fact of CS is that if M is merely proportional to K logN , then

with very high probability (which can be made precise [7]), it

is possible to exactly recovery x by solving the linear program

min
x′

‖X ′‖1 subject to ∀k ∈ Ω, x′(k) = x(k).

Here, ‖X‖1 =
∑N

k=1 |X(k)|. There are related approaches,

such as greedy methods, that offer similar guarantees; see [25]

for a survey.

This result itself has limited application to signal processing

since (1) it is unlikely that a digital signal has an exactly

sparse DFT, and (2) the model does not account for noise.

Fortunately, there are robust versions of the above statement,

which allow signals to be only approximately sparse, and

which allow noise [6]. In this case, exact recovery is not

possible, but the recovered signal agrees with the true signal

up to the noise level.

This finite dimensional model does not fully cover the

continuous case since an analog signal, unless it is bandlimited

1In our implementation, M is approximately 19× smaller than N .
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Fig. 1: Conceptually, the NUS takes Nyquist-rate samples of the
input signal and then randomly discards most of the samples. The
implemented version uses a clock rate of 4.4 GHz and effectively
keeps only one of every 19 samples (on average) for a mean output
sample rate of 236 MHz.

and periodic, must be treated in an infinite dimensional setting.

The infinite dimensional setting may be attacked directly,

and there is recent theory [2], [13] that connects the finite

and infinite dimensional problems. On a practical side, some

non-periodic (also known as multi-coset) sampling results for

multi-band signals [17] have recently been extended to multi-

band signals when the band locations are unknown [18]. The

approach in [18], [19] is a hybrid finite-infinite approach that

solves a finite dimensional problem to determine the band

locations and then processes the samples directly in analog.

The approach taken in this paper deals with the infinite

dimensional problem indirectly. Through extensive numerical

simulation, and by using standard signal processing techniques

such as windowing, it is shown that the error incurred by using

a large but finite number of samples is insignificant compared

to circuit non-idealities. Numerical simulations are required

regardless since CS theories rely on possibly conservative

constants and also on signal-dependent parameters, such as

the sparsity of the signal.

B. Approach

1) Overview: The CS example suggests that signals with

high EIBW but low information bandwidth can be efficiently

captured using non-uniform samples. Our implementation is

such a non-uniform sampling (NUS) approach, which we

describe here and treat in more detail in Section II. The

key ideas are to leverage the high resolution that can be

achieved with lower-rate ADCs and to exploit the fact that

the electromagnetic spectrum in our bandwidth is typically

not full.

There are two sets of signal restrictions for the NUS.

The first is a familiar restriction requiring the EIBW to

be less than half the equivalent Nyquist sampling rate. The

second restriction is an algorithmic one: CS theory dictates

that the input signal should have spectral sparsity in order

to achieve accurate reconstruction. Roughly speaking, in our

implementation the information bandwidth may be up to 10%
of the EIBW.

The idea behind the NUS is explained in Figure 1. For our

setup, the maximum EIBW is 2.2 GHz because of an under-

lying “Nyquist rate” clock with a frequency of fs = 4.4 GHz.

For the sake of explanation, assume there is a Nyquist rate

ADC which samples the input signal—the actual implemen-

tation does not use a Nyquist rate ADC, since the point of

the NUS is to avoid a high-rate ADC. A pseudo-random

bit sequence (PRBS), generated off-chip, controls which of

these samples are collected and which samples are ignored.

Of every 8192 Nyquist-rate samples, only 440 are collected.

Note that our method of “on grid” non-uniform sampling is

very different from allowing arbitrarily spaced samples that

are not integer multiples of the underlying Nyquist rate, since

the latter approach would be nearly impossible to calibrate.

The actual implementation, shown in Figure 2, replaces

the theoretical sub-sampled Nyquist-rate ADC with a non-

uniformly clocked sample-and-hold (S/H). The sample times

of the S/H are controlled by the PRBS sequence, and the same

sequence controls a single low-rate ADC which performs the

final quantization step. The custom S/H is necessary because

the ADC is not designed for 2.2 GHz bandwidth signals.

Reconstruction—that is, interpolation of the omitted

Nyquist-rate samples—is performed on a desktop personal

computer using a block algorithm described in Section III.

In addition to delay due to processing, there is a small latency

while the whole block is acquired. Each block is composed of

N = 65536 Nyquist-rate samples, which corresponds to a time

interval of length T = 14.9 µs. When calculating the occupied

bandwidth, the entire time interval must be considered, so the

algorithm-based restriction is that at most 10% of the length-N
DFT of the sample block should be non-negligible. Extremely

short duration signals are automatically excluded from the

signal model since they have a broad frequency spectrum

which ruins the sparsity. Our block-by-block reconstruction

strategy allows for the capture of frequency hopping signals,

although for the specific tests reported in Section IV we require

some stationarity of the spectrum (over, say, a period of 2 ms)

to allow the spectral support to be identified.

2) Hardware specifications: The NUS IC is designed in an

InP HBT technology. A TI ADS5474 14-bit 400 Msps ADC

(10.9 ENOB at 230 MHz) is used to digitize the samples, and

the data is transferred to a computer for processing.

The specifications of the NUS are described in Table I.

Power consumption is relatively high because the front-end

is designed for wide bandwidth and high dynamic range.

However, lower system power is possible for applications that

require data transmission, since the NUS produces 19× fewer

samples.

Comparing the NUS to a Nyquist ADC is difficult since

recovery error depends on spectral sparsity. To measure the

resolution of the samples, the NUS can be operated in a

uniform sampling mode. This measurement shows that the

NUS has 8.8 ENOB performance across the frequency band

from 800 MHz to 2 GHz. It is important to note that this

measurement does not assess the reconstruction accuracy and

does not directly relate to ADC ENOB. Instead of a direct

comparison, the results in Section IV show promising GSM

bit error rate (BER) performance.

C. Related work in compressed sensing

1) Non-uniform samplers: To the best of our knowledge,

there have been no IC implementations of the NUS that fully

reconstruct the signal. The interesting work [3] on optical sub-

Nyquist sampling is similar in spirit, but it works in the optical

domain with COTS components and uses a least-squares fit

to reconstruct pure tones rather than a CS-based recovery
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Bandwidth Occupied spectrum Power consumption Resolution of samples

NUS 2.0 GHz 100 MHz 5.8 W 8.8 ENOB, 55 dB SNDR

TABLE I: NUS specifications at a glance. The power includes the commercial ADC, but not the clock or the PRBS pattern generation. The
chip allows up to 2.2 GHz of bandwidth though we do not have SNDR measurements for this range. The amount of occupied spectrum is
conservatively estimated, and furthermore the amount of occupied spectrum can be increased when lower-fidelity recovery is acceptable.

algorithm to reconstruct an information-carrying modulated

signal.

2) Other CS devices: The random modulation pre-

integrator (RMPI), a type of random demodulator (RD), is

a CS receiver and digitizer which has recently been im-

plemented in [26]; see also [26] for references and related

approaches. The RMPI uses a far more powerful CS approach

that takes nearly random linear combinations of samples, akin

to multiplying the digital vector x by a random matrix. The

theory predicts that such an approach is optimal for nearly all

types of sparse signals, not just signals that are sparse in the

Fourier domain. The cost of this generality is that the RMPI

is more difficult to implement, the signal processing is less

straightforward, there is nontrivial calibration, and recovery is

slower than for the NUS. The NUS also allows simple post-

processing windowing techniques.

3) Xampling: The modulated wideband converter (MWC)

[20], which follows the principles of xampling [19], works

directly in the analog domain when possible. The approach

requires signals that have a few dense bands of spectrum, such

as three or four bands. The digital step is a continuous-to-finite

(CTF) block that finds the location of the bands and must be

run every time the band structure changes. However, the MWC

does not naturally handle our sparse spectral model since the

signals may not be easy to group into contiguous blocks. The

hardware prototype in [20] has yet to be extended to an IC

implementation.

In summary, these other CS and xampling approaches all

have their own merits, but for the sparse spectral sensing model

defined in the preceding subsection, we believe that the NUS

is the best candidate.

D. Outline

In Section II, the implementation of our approach is de-

scribed. Because signal recovery is non-standard, Section III

covers the recovery process in detail, describing the general

CS recovery method as well as the necessary changes and

improvements for our specific architecture. Experimental hard-

ware results are presented in Section IV, and the results of the

prototype compare with previous state-of-the-art ADCs. The

paper concludes in Section V with some learned wisdom and

with a discussion of future challenges.

II. HARDWARE IMPLEMENTATION

A simplified block diagram of the non-uniform sampler

(NUS) receiver is shown in Figure 2. The low-jitter 4.4 GHz

clock is used to re-clock the non-uniform pattern to accurately

set the sampling instances. For flexibility in testing, the NUS

pattern is set by a repeating pseudo-random bit sequence (8192

bits in length) provided by an external pattern generator. A

Fig. 2: Simplified block diagram of non-uniform sampler (NUS)
receiver. The NUS sampler IC (left block) was implemented with the
Northrop Grumman Aerospace Systems (NGAS) InP HBT process.

commercial 400 Msps ADC (TI ADS5474 [23]) is used to

digitize the samples which are captured by a logic analyzer.

In order to recover the signal, the samples must be aligned to

the NUS pattern; this is accomplished with a synchronization

pulse from the pattern generator.

The main building blocks of the NUS receiver are the master

and slave sample-and-hold circuits, the timing generator, and

the output buffer. In order to achieve the full bandwidth

required, the master sample-and-hold circuit was designed

with a 2.4 GHz bandwidth. The function of the NUS timing

generator is to re-clock the NUS pattern (NIN) with the

Nyquist clock (CIN). The output of the master-slave sample-

and-hold is then buffered and amplified so that the signal

can drive the external ADC. The output buffer bandwidth

determines the settling time of the step-and-settle interface.

The chip is designed for a full-scale input amplitude of 0.8 Vp-

p differential and a 2.2 Vp-p differential at the output. The

NUS IC is designed to perform a sample-and-hold function

at a period as long as 6.1 ns and as short as 2.7 ns between

consecutive samples, which is under the 400 MHz sampling

limit of the ADC.

A. Circuit description

The main function of the timing generator, shown in Fig-

ure 3, is to generate timing signals for the master and slave

sample-and-holds. This is accomplished by using a low-jitter

clock to re-time and delay the NUS pattern input in a chain

of flip-flops. Four flip-flops delays are used to delay the ADC

clock to give adequate time for sampled signal to settle.

The master and slave sample-and-hold bridge circuits both

use diode sampling bridges but have different power consump-

tion based on bandwidth/spur requirements. Figure 4 shows the

basic design of the sampling element. The circuit is controlled

by the re-timed NUS pattern coming from the timing generator

to switch the bridge on or off. The schematic shown is only

for one of the two pseudo-differential circuits.
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Fig. 3: Schematic of Timing Generator (TG) circuit.

Fig. 4: Sample-and-hold circuit. The Master sample-and-hold (MSH)
and Slave (SSH) are functionally identical. All signal paths and
circuits are differential with the exception of the diode bridges. The
diode bridges are implemented as two single-ended bridges. The
graph shows the output at the transition from the tracking to the
holding state (at the MSH output).

The analog input/output interface of the NUS IC was

carefully designed to optimize performance. Figure 5(a) shows

the NUS IC input receiver, which acts as a 50 Ohm load

termination for the analog input signal and provides a low

impedance drive to the subsequent sampling bridge. The

analog output driver (Figure 5(b)) is a differential quartet

design [10]; this was chosen because it offered the required

performance while satisfying our finite power consumption

goal. The driver was optimized for a large dynamic range and

designed to be DC coupled to the TI ADS5474. The gain of the

buffer is 2× (6dB), and it was designed to have a SFDR better

than 70 dB and 500 MHz bandwidth. To increase simulation

accuracy, a detailed interconnect model was used on the step-

and-settle ADC interface. This model included bondwires and

pallet traces for the NUS packaging, transmission line models

for PCB traces, a termination network, and the equivalent

loading model from the ADC datasheet.

The overall timing relationship between the NUS circuit

and the external ADC is shown in the left panel of Figure 6.

Also displayed in the right panel of Figure 6 is a simulation

showing the NUS operation with a 1.6 GHz input sine wave

and the resulting NUS samples.

Fig. 5: NUS IC input/output interface circuits. (a) The analog input
receiver is a differential 50 Ohm terminated emitter follower. This is
a simplified version of the circuit called EF BUF shown in the MSH
circuit in Figure 4. (b) The output buffer is a differential quartet
design.

B. Circuit fabrication

The NUS IC is fabricated in Northrop Grumman Aerospace

Systems’ (NGAS) 0.45 µm InP HBT technology featuring

fT and fmax > 300 GHz, 4-layer metal stack and pre-

cision TFR and MIM caps [16]. A die photograph of the

4.0 mm × 2.6 mm NUS IC is shown in Figure 7. The NUS

die is larger than it needs to be to allow the dicing of other

die on the wafer. Pictured in Figure 8 is the NUS test fixture

containing the NUS IC and TI ADS5474 along with various

signal and power connectors. The PCB draws a total of 5.8 W:

3.2 W for the NUS IC and 2.6 W for the ADC.

C. Non-uniform sample pattern

The NUS sampling pattern is a pulse train with non-uniform

spacing between pulses. It is selected to meet a list of certain

criteria. First, the pattern is clocked at 4.4 GHz, and recon-

struction produces the equivalent of Nyquist samples taken at

this rate. Second, the pulse widths and spacings must satisfy

the clocking requirements of the ADS5474. Specifically, the

minimum pulse width is 6 clock cycles, the minimum spacing

(Tmin) between pulses is 12 clock cycles, and the maximum

spacing (Tmax) between pulses is 27 clock cycles. An example

pattern illustrating these specifications is shown in Figure 9. In

effect, as the sample spacings vary between 12 and 27 clock

cycles, the instantaneous sampling rate of the NUS receiver

varies between 163 MHz and 367 MHz, which is within the

range of the 400 MHz ADC.

We designed the NUS pattern to repeat every 8192 Nyquist

samples, during which time there are 440 pulses which set the

sampling locations. This corresponds to an average sample rate

of 236 MHz. We evaluate the quality of our pattern using a

third criterion: the Fourier transform of favorable patterns will

tend to have a flat, noise-like spectrum. Figure 10 compares

two NUS patterns with different inter-sample spacings. The

pattern shown in the top plots has strong resonances across

the Nyquist band. In contrast, the pattern shown in the bottom

plots, which has undergone a randomization of its sample
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Fig. 6: NUS IC sampling timing and waveforms. Left panel: Interface timing between NUS die and ADC. Right panel: Simulated waveforms
before and after being sampled by NIN. Horizontal scale is in ns.

Fig. 7: NUS IC die photo. Die size is 4.0× 2.6 mm.

Fig. 8: NUS test fixture. The NUS IC is mounted on a custom pallet.
Also shown is the 14-bit ADC as well as various test equipment
connector interfaces.

locations, has a much whiter spectrum. The flat spectrum is

preferred since then all signals have equal gain.

III. DATA PROCESSING

In this section, we describe our computational techniques for

recovering a Nyquist-rate signal from the NUS data by filling

in the missing samples. Sections III-A–III-D describe our

procedures for windowing the NUS data and recovering the

missing samples. Section III-E then briefly discusses additional

practical concerns such as a GPU implementation to facilitate

these computations.

A. Windowing

While the NUS produces an arbitrarily long sequence of

samples, the recovery algorithm can only deal with a finite

number of them at any given time. It is, therefore, necessary

to segment the data stream, and we achieve this by windowing

the signal. An effective windowing process must guard against

edge effects as well as the well-known spectral spreading

effect, which would destroy the very Fourier sparsity we seek

to exploit. Fortunately, the concept of a perfect reconstruction

filter bank (PRFB) [22] can be readily adapted to our purposes.

A windowing procedure breaks the infinite signal into a

series of (possibly overlapping) vectors by using an analysis

window. After signal processing, the infinite length signal can

be recovered by stitching together the finite series using the

analysis window. Using windows from a PRFB ensures that

the windowing process itself does not introduce any errors.

An example of a PRFB is a rectangular analysis and synthesis

window with no overlap, but of course this causes spectral

spreading.

Figure 11 provides a filter bank representation of our

processing chain. We let y denote the raw stream of NUS

data, i.e., the discrete-time stream of samples coming from

the non-uniformly clocked ADC. The processing begins by

inserting zeros into y to produce a Nyquist-rate sample stream

y; the zeros are inserted at all locations where the NUS did

not sample. A delay and downsampling chain then partitions
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Fig. 9: NUS pattern example. High pulses have a width of 6 clock cycles. The minimum pulse spacing Tmin is 12 clock cycles, and the
maximum pulse spacing Tmax is 27 clock cycles.
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Fig. 10: Comparison of a non-optimized NUS pattern (top plots) and a properly randomized pattern (bottom plots). (a) Sample patterns in
the time domain. (b) Spectral plots. (c) Histograms of inter-sample spacings.

Fig. 11: A filter bank representation of the windowed recovery signal chain.

y into overlapping windows of length N and multiplies them

by an analysis window function w1. The result is a stream of

N -point signals y
j
∈ R

N :

y
j
(i) = w1(i)y(i+ jN/2), i = 0, 1, . . . , N − 1.

Here, y
j
(i) denotes sample position i in the jth windowed

signal. Because these windows are overlapping, each sample

y(k) maps to two different entries (i, j):

k → (k mod N/2+N/2, ⌈2k/N⌉−1), (k mod N/2, ⌈2k/N⌉).
The signals y

j
are delivered to the sparse recovery engine,

which produces a stream of estimates x̂j ∈ R
N . The upsam-

pler delay chain stitches these estimates together using an N -

point synthesis window function w2 to yield the reconstructed

Nyquist-rate sample stream x̂: for each integer j and each

i ∈ {0, 1, . . . , N − 1},

x̂(i+ jN/2+ d) = w2(i)x̂j(i)+w2(i+N/2)x̂j−1(i+N/2).

Here d is the total system delay. The downsample and up-

sample chains introduce a combined delay of N − 1 Nyquist

samples, so d = N − 1.

The perfect reconstruction criterion requires that the window

functions w1 and w2 must satisfy

w1(i)w2(i) + w1(i+N/2)w2(i+N/2) = 1

for i = 0, 1, 2, . . . , N/2 − 1. With this criterion satisfied, we

can ensure that the performance of the system is limited by

our precise choices of N , w1, and w2, and by the fidelity of
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our windowed sparse recovery algorithm. The design of the

analysis window w1 is critical, because it directly affects the

spectrum of the estimated signals x̂j . To minimize the effect of

spectral spreading, we must choose an analysis window func-

tion w1 whose spectral sidelobes are well below the system

noise floor (high dynamic range), and a main lobe that is as

narrow as possible (high sensitivity). We found experimentally

that the square of a Kaiser-Bessel derived (KBD) window

used in audio coding produces excellent results. Furthermore,

this choice leads to a rectangular synthesis window (i.e.,

w2(i) ≡ 1) [22], which is not only convenient but ensures

that our reconstruction errors are weighted equally in time. We

use N = 65536 and KBD parameter πα = 8, for which the

amplitude of the analysis window (in the frequency domain)

falls below our system noise floor within 6 bins. This means

that a windowed sinusoid will deliver non-trivial signal energy

to no more than 11 DFT bins (of 32768 total bins). It is

possible to improve upon this result by designing a window

using convex optimization methods, but the KBD window is

sufficient for our purposes.

While the PRFB-inspired architecture has proven useful for

verifying the fidelity of our system design, our actual imple-

mentation differs in important practical respects. In particular,

we choose NUS sampling patterns such that each half-window

contains an identical number of NUS samples. This allows us

to eliminate the zero-padding step altogether: the NUS samples

can be partitioned into overlapping windows of M points

each, and these windows can by multiplied by appropriately

sampled versions of the analysis window function. The result

is a more practical arrangement of processing steps depicted

in Figure 12. The key notational difference from Figure 11 is

that the zero-padded and windowed N -point signal y
j

is now

replaced with yj , a windowed (but not zero-padded) M -point

NUS signal.

With this architecture in place, we can treat each window

separately if we choose—although we can (and do) take

advantage of the spectral similarity between adjacent windows

to improve performance. From this point forward, therefore,

we shall focus solely on the generation of estimates x̂j ∈ R
N

of signals xj ∈ R
N , given non-uniform sample sets yj ∈ R

M

and exact knowledge of the sampling pattern. When it is clear

from context that we are dealing with a single window, we

will drop the j subscript altogether.

B. Frequency domain representation

The natural initial choice to compute the frequency domain

representation of an N -point signal x is the discrete Fourier

transform (DFT). For real signals, the DFT exhibits real

symmetry, but the DC and Nyquist component are real-valued;

for a more elegant treatment, we define a slight variant of the

DFT that shifts the computed frequency bins by one half:

Xshift(k) =
1√
N

N−1∑

i=0

e−2πi(k+1/2)/Nx(i)

for k = 0, 1, 2, . . . , N − 1. This modified DFT remains or-

thonormal and preserves the sparsity behavior of compressible

signals, but for real signals it exhibits a simpler symmetry:

Xshift(k) = Xshift(N − 1− k). Thus the frequency domain

behavior is captured in N/2 complex values. If we preserve

only the first N/2 frequencies and scale by
√
2 to preserve

orthonormality, the result is what we call the half-bin FFT

(HBFFT):

X(k) =

√
2

N

N−1∑

i=0

e−2πi(k+1/2)/Nx(i)

for k = 0, 1, 2, . . . , N/2− 1. Let F : RN → C
N/2 denote the

real-to-complex HBFFT operation, so X = F(x). Because F
is orthonormal, we have x = F∗(X), where F∗ denotes the

complex-to-real adjoint of F .

It turns out that the HBFFT F can be computed as the

composition of a single custom butterfly, a standard N/2-point

complex DFT, and a simple reshuffling. This is because the

computation of the even entries of Xshift can be written as

follows:

Xshift(2ℓ) =
1√
N

N/2−1∑

i=0

e
−πi
N (x(i)− x(i+N/2)) e

−2πℓi
N/2

for ℓ = 0, 1, 2, . . . , N/2 − 1. Then we simply have

X(k) =
√
2 · Xshift(k) when k is even, and X(k) =

√
2 ·

Xshift(N − 1− k) when k is odd. To perform the inverse

operation, we recover the quantities Xshift(2ℓ) by reversing

the reshuffling step, and compute an intermediate quantity z(i)
using a standard complex inverse FFT followed by a complex

scaling:

z(i) =

√
2

N
eπi/N

N/2−1∑

ℓ=0

e2πℓi/(N/2)Xshift(2ℓ)

for i = 0, 1, 2, . . . , N/2− 1. Then we can extract x from the

real and imaginary parts of z:

x(i) =

{
ℜ(z(i)) i = 0, 1, 2, . . . , N/2− 1

−ℑ(z(i−N/2)) i = N/2, N/2 + 1, . . . , N − 1.

The tight relationship between the HBFFT and the standard

complex FFT allows us to achieve high performance with

standard FFT libraries.

C. Reprojection on estimated support

If the support of the signal is known—that is, if we know

which frequency bins contain active signal content—and is

sufficiently sparse, then we can reduce the reconstruction pro-

cess to a standard least-squares problem we now introduce. Let

x ∈ R
N represent the Nyquist-rate signal we wish to estimate,

and let y ∈ R
M be the NUS samples. Those samples are

selected from indices IT ⊆ {0, 1, 2, . . . , N − 1}, |IT | = M .

Thus, x and y satisfy y = ETx, where ET ∈ R
M×N is

assembled from rows i ∈ IT of the N × N identity matrix.

Our task is to construct an estimate x̂ ∈ R
N of x given these

samples y. Using the real-to-complex HBFFT operator defined

in Section III-B, we let X = F(x) and X̂ = F(x̂) denote the

frequency domain representations of x and x̂, respectively.

Let IF ⊆ {0, 1, 2, . . . , N/2−1}, |IF | = P ≤ M/2, denote

the support of the signal. We can write our estimate as X̂ =
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Fig. 12: A block diagram of the practical processing steps.

E∗

FZ, where Z ∈ C
P is a set of nonzero coefficients to be

determined below, and EF ∈ R
P×N/2 is a frequency sampling

matrix assembled from rows i ∈ IF of the N/2×N/2 identity

matrix.

With these definitions in place, the reprojection problem can

be cast as

x̂ = F∗(E∗

FZ), Z , argmin
Z

‖ET F∗(E∗

FZ)− y‖2.

To help explain the above notation, let us note that

ET F∗(E∗

FZ) is computed from Z by constructing a length-N2
vector containing the P entries of Z in the positions indexed

by IF , computing the complex-to-real inverse HBFFT of this

vector, and extracting from the result the M values in the

positions indexed by IT . The minimization on Z is a least-

squares problem and can be expressed as normal equations

EF F(E∗

TET F∗(E∗

FZ)) = EF F(E∗

T y).

The linear operation Z → EF F(E∗

TET F∗(E∗

FZ)) is positive

definite, but it cannot be expressed as a complex matrix

due to the presence of the complex-to-real operation F∗.

However, we have chosen to solve this form using conjugate

gradients, which allows us to utilize the HBFFT and sampling

operators directly. Furthermore, CS theory shows that the

linear operator is well-conditioned, so conjugate gradients will

converge rapidly.

D. Spectral occupancy estimation

The problem of recovering a signal from NUS samples can

be partitioned into two subproblems: (1) first estimate the

support of the unknown signal in the frequency domain (we

refer to this step as spectral occupancy estimation), and then

(2) reproject to estimate the signal given this estimated sup-

port. We have developed a customized algorithm for spectral

occupancy estimation that is inspired by existing techniques

in CS but adapted to the specific nuances of our problem.

The most unique aspects of our problem that we seek to

exploit are as follows: (1) The nonzero HBFFT coefficients for

a given window—while few in number—also tend to cluster

into an even smaller number of contiguous groups. In the CS

literature, this is known as a structured sparsity model [4]. Our

algorithm is inspired by existing ones in the model-based CS

literature designed to exploit block-sparse [15] and clustered-

sparse [11] models. (2) Although our data are partitioned into

finite windows (as described in Section III-A), the spectral

occupancy is often stationary over the duration of multiple

windows. In cases like this—where multiple sparse signals

share the same support—the signals are said to obey a joint

sparsity model. Like others in the distributed CS literature [5],

our algorithm processes the data from multiple windows

jointly in order to better identify the support.

Our spectral occupancy estimation algorithm is greedy: we

first run a few iterations of a greedy selection rule that builds

an estimate of the support, and we then perform a pruning

procedure to remove false positives. The greedy selection

procedure (step 1 below) is iterative because it is difficult to

identify all of the active frequencies at once; at each iteration,

only the largest frequencies can be accurately estimated, since

artifacts from these large signals will hide smaller signals. As

illustrated in Figure 13, however, once some blocks of active

frequencies have been identified, a reprojection step removes

their influence from the measurements, and weaker active

frequencies can then be identified. We find the subsequent

pruning (step 2 below) to be helpful because setting the

thresholds in step 1 low enough to detect weak signals tends

to also introduce a number of false positives. Overall, our

algorithm most closely resembles the well-known OMP and

CoSaMP algorithms in CS [21], [24], although we have also

experimented with reweighted ℓ1 minimization [9] and believe

that, with appropriate modifications, it could be competitive as

well.

To describe our algorithm, let us set the following notation.

Let xj ∈ R
N represent the unknown Nyquist-rate samples

from window number j, and let yj ∈ R
M represent the NUS

samples. Those samples are selected from indices IT,j ⊆
{0, 1, 2, . . . , N−1}, |ITj | = M , and so following the notation

defined in Section III-C, yj = ET,jxj , where ET,j ∈ R
M×N .

From yj we would like to estimate the positions IF of the

non-negligible entries of Xj = F(xj). We accomplish this by

considering an ensemble of windows j ∈ {0, 1, . . . , J − 1}
simultaneously and exploiting the assumption of stationarity

(i.e., we assume that IF does not change from window to

window). Our algorithm consists of the following steps:

1) Preliminary support estimation

a) Set the iteration count ℓ = 1, and for each window

j, define a residual vector rj = yj . Set the

initial support estimate to be empty: ÎF := ∅.

Set the maximum allowable size for the support

estimate Pmax ≈ 0.8M
2 . Set hold(i) = 0 for each

i ∈ {0, 1, . . . , N/2− 1}.

b) For each window j, compute the correlation statis-

tics hj = F(E∗

T,jrj). Then, square and sum

the correlation statistics over multiple windows:

for each i ∈ {0, 1, . . . , N/2 − 1}, compute the

aggregate statistic hagg(i) =
∑J−1

j=0 |hj(i)|2.

c) Identify a set Γ of possible active frequencies. We

add an index i ∈ {0, 1, . . . , N/2 − 1} to Γ if

|hj(i)| is frequently among the largest entries of

hj across multiple windows j, or if |hagg(i)| is

among the largest entries of hagg. We also include

all entries of the previous support estimate ÎF .
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Fig. 13: Three iterations of the greedy selection procedure for preliminary support estimation. In each iteration, blocks of indices with high
aggregate energy estimates hagg(i) are identified (top row). A reprojection step then removes their influence from the measurements so that
additional active blocks can be identified in subsequent iterations. (The aggregate statistics hagg(i) are plotted before being reset with hold(i)
in step 1c of our algorithm below.) Plots in the bottom row show, for one of J windows used in the estimation, the reprojected spectrum

estimate |X̂j(i)| using the current support estimate.

For the purpose of computations below, we then

set hagg(i) = hold(i) for each i ∈ ÎF and reset

ÎF = ∅.

d) Pad the set Γ with some number p of indices on

both sides of each index in Γ. For example, if

p = 1 and Γ = {2, 3, 4, 6, 18, 19}, update Γ to

{1, 2, 3, 4, 5, 6, 7, 17, 18, 19, 20}.

e) Identify contiguous blocks of indices in Γ, and

compute the estimated energy of each block. For

example, for the updated Γ given above, two blocks

are identified, and their corresponding energies are

hagg(1)+· · ·+hagg(7) and hagg(17)+· · ·+hagg(20).

f) Populate the new support estimate ÎF with all of

the indices from the highest energy blocks, such

that |ÎF | does not exceed ℓ
10Pmax. This increasing

threshold allows slightly larger support estimates

at each iteration.

g) On each window, use a reprojection step to project

the observations yj orthogonal to the chosen sup-

port ÎF , and let rj denote the resulting residual.

h) Store the aggregate energy estimates for use in

future iterations, setting hold(i) = hagg(i) for all i.
Then, increment the iteration counter ℓ. Stop when

ℓ = 10 or the energy in the residual vectors rj
is sufficiently small. Otherwise, repeat steps (1b)

through (1g).

2) Final pruning

a) Set the iteration count ℓ = 1.

b) Reproject each set of samples yj onto the estimated

support ÎF to obtain an estimate X̂j for the HBFFT

coefficients. Square and sum these estimates: for

each i ∈ {0, 1, . . . , N/2 − 1}, compute X̂(i) =∑J−1
j=0 |X̂j(i)|2.

c) For each contiguous block of indices in

ÎF , compute the largest value of X̂ ,

e.g., if ÎF = {2, 3, 4, 6, 18, 19}, compute

max{X̂(2), X̂(3), X̂(4)}, X̂(6), and

max{X̂(18), X̂(19)}.

d) Remove blocks from ÎF whose maximum X̂ value

does not exceed some threshold designed to elimi-

nate false positives. Increment the iteration counter

ℓ.
e) Repeat steps (2b) through (2d) for a small number

of iterations.

f) Following the same procedure as in step 1d, pad

the support estimate ÎF with some number p of

indices on each side of each estimated block. (This

procedure operates only so long as |ÎF | ≤ Pmax.)

After running the entire support estimation algorithm on

an ensemble of J windows, one can re-run the algorithm on

one or more subsequent ensembles of J windows, either for

cross-validation purposes or to detect changes in the spectral

occupancy.

E. Additional implementation concerns

1) Model violations: Our system is designed to support

signals with up to 100 MHz of information bandwidth. There

are a number of strategies that one could use to confirm that

the input signal obeys this model assumption. For example,

in step 1 of the support estimation algorithm described in

Section III-D, the energy of the residual vectors rj should

decrease substantially as the number of iterations increases.

If significant energy remains in the residual vectors after the

maximum number of iterations, this means that the estimated

support is not sufficient to fully capture the structure in the

input signal. A second possible strategy for detecting model

violations could be cross validation. For example, 95% of

the NUS samples could be used for support estimation and

recovery, and the remaining 5% of the NUS samples could

be checked against the reconstructed estimates. A close match

suggests that the information bandwidth is well captured in

the estimated support.

In cases where small model violations are detected, CS

theory guarantees that the reconstruction on the estimated

support will be relatively accurate, although the small signal

components away from this support will of course not be

reconstructed. In cases where substantial model violations are

detected, reconstruction on the estimated support will not

be accurate. There is research into additional analog (pre-

processing) and digital (post-processing) safeguards that could
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Number of C2050 GPUs 1 3 6

Performance, Gflops/sec 145 426 808
Linearity N/A 98% 93%
GPUs for real time 83 84 89

TABLE II: Performance of our best GPU cluster in the reprojection
benchmark.

be added to our system to protect against such situations. If

the model is violated too frequently, then the NUS is simply

not the correct device for the task.

2) Computation: Because our system is designed to have a

high EIBW, the calculations described in Sections III-C-III-D

can be expensive. To quantify these costs, suppose we solve

the reprojection problem by applying conjugate gradients (CG)

to the normal equations. The cost of doing so is dominated

by the FFTs, each of which requires 2.5N log2 N flops.

Two FFTs are required per CG iteration, and one each for

initialization and finalization. Because the windows overlap

by 50%, reconstruction occurs at a rate of of N/2 samples

per window. Therefore, the throughput required to perform

real-time reprojection is

C = fr · (2I + 2) · 2.5N log2 N / (N/2)

= 10fr(I + 1) log2 N flops/sec,

where I is the number of CG iterations and fr is the re-

constructed sample rate. Although we omit the details here,

in some problems where the EIBW is less than half of

the device Nyquist rate fs we can envision using digital

downconversion to reconstruct at a rate fr equal to just

twice the EIBW. When we are interested in the 800 MHz–

2 GHz band, for example, it is possible to reconstruct at

a rate of just fr = 2.4 Gsps.2 Taking this number as an

example, with (N, I, fr) = (65536, 30, 2.4Gsps) we estimate

that reconstruction would require C ≈ 12 Tflops/sec. No

single processor achieves this type of performance; parallelism

must certainly be exploited.

Is this level of performance possible? While we have

not yet achieved it, we have conducted a variety of tests

to demonstrate the feasibility of using graphics processing

units (GPUs) to accelerate the key computations. Benchmarks

provided by NVIDIA suggest that a single C2050 Tesla GPU

can achieve a throughput of 175 Gflops/sec when performing

complex FFTs of our required length [1]. Under optimistic

assumptions of linear parallelism and no performance losses

in our algorithm, we can predict that real-time performance

would require at least 69 GPUs.

Using MATLAB, C++, and NVIDIA’s CUDA computa-

tional libraries, we have constructed a multiple-GPU imple-

mentation of our reprojection algorithm. This code is executed

on a system employing a single CPU and 6 Tesla C2050 GPUs.

To minimize losses due to GPU pipelining and CPU/GPU

2This would require using a device Nyquist rate of 4.8 Gsps, which is
part of our future specification for the system. In addition, we note that a
system using downconversion would more realistically output complex-valued
samples at 1.2 Gsps rather than real-valued samples at 2.4 Gsps, although
the cost is the same.

communication, each GPU processes 2048 windows simulta-

neously. Our measurements of the performance of this system

are summarized in Table II. Our performance is about 17%

lower on a single GPU than the NVIDIA FFT benchmark,

but a high degree of linearity is maintained for 6 GPUs.

Extrapolating from the 6-GPU results suggests that real-time

performance would require approximately 89 GPUs.

An important question is whether linearity can be preserved

for such a large number of GPUs. We believe that this would

be the case for for two reasons. First, the parallelism is coarse-

grained: each GPU processes a separate block of data, inde-

pendently of the others. Second, the communication require-

ments are determined primarily by the signal environment—

the NUS rate, the Nyquist rate, and the respective word sizes—

and not by the number of GPUs. Thus while a real-time system

would certainly be expensive, we are optimistic that it could

be built.

We have not yet discussed the costs of support identi-

fication. The bulk of the effort for estimating the spectral

occupancy is consumed by the reprojections, and about 16 of

these are performed in a typical run. Performing full support

identification on every window, then, would multiply the

computational burden by approximately 16. However, support

identification need not be performed on every window if the

signal environment is relatively stationary; the results from

one window can be used in many subsequent reprojections.

More work is needed to understand the tradeoff between the

computational costs and the ability to track a dynamic signal

environment.

IV. TESTING AND VALIDATION

A. Experimental setup

In order to test our complete NUS architecture in a represen-

tative environment, we conducted a series of experiments using

realistic GSM data. Signals were generated by an arbitrary

waveform generator (AWG) and a vector signal generator

(VSG).

For each experiment, we construct a 270.833 kbps GSM

signal that has a bandwidth of ∼1 MHz (at −50 dBc) and is

located at a center frequency of 1.595 GHz. For measurements

the GSM signal power is scaled anywhere from −20 dBFS

down to −80 dBFS. To the scaled GSM signal, we add various

levels of “clutter” to the spectrum consisting of narrowband

RF signals having random amplitudes and centered at random

frequencies between 800 MHz and 2 GHz. Clutter signals

with bandwidths of 20 MHz, 50 MHz, or 100 MHz are used,

and two different cases were generated for each bandwidth.

The clutter is used to increase the information bandwidth of

the signal, even though the clutter itself is not of interest.

Figure 14 shows example signals, including the GSM signal

and the clutter. It is important to note that our measure of the

clutter bandwidth includes spectral “tails” down to −90 dBFS

(measured after windowing); as the experiments illustrate,

however, it is possible to reconstruct the signal with high

accuracy while omitting these tails and thus requiring less

overall bandwidth.

After measurement, the NUS data are arranged into blocks

of size M = 3520 (each corresponding to N = 65 536
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Fig. 14: Example GSM test spectra with 20 MHz clutter (left) and 100 MHz clutter (right). Spectra are plotted from 700 MHz–2.1 GHz.
The GSM signal is located at 1.595 GHz and is indicated with a green marker.

Fig. 15: NUS test setup. The GSM signal is produced by the
E4438, clutter is produced by the AWG7122, and the NUS pattern
is produced by the 81250. ADC data is captured via the 16702 and
then downloaded and processed by the GPU.

Nyquist rate samples) and run through the spectral occupancy

estimation algorithm (Section III-D) using J = 31 overlapping

windows (these span a total of 1 048 576 Nyquist-rate sam-

ples). As a means of cross validation, the support estimation

procedure is repeated 10 times (each on a fresh set of J = 31
overlapping windows). A frequency bin is included in the

final support estimate if it appears in at least 2 out of the

10 preliminary estimates.

With the estimated support, we reproject the NUS data

on each window to recover an estimate of the Nyquist-rate

signal samples. The windowed samples are then recombined

as described in Section III-A. These estimated Nyquist-rate

samples are then passed through a GSM decoder (that has

a priori knowledge of the center frequency of 1.595 GHz)

to measure the BER. Note that input powers in the range of

−55 to −75 dBFS yield measurable BER. Above −55 dBFS

the BER drops to a rate that makes collecting and processing

an adequate number of samples difficult. Very low power

inputs yield high BERs and make synchronization of the

decoder difficult; the GSM signal will only be present in our
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Fig. 16: BER of the decoded GSM signal as a function of input
power. Circular markers indicate the performance of the uniform
ADC for each of two randomly generated signals (denoted (1) or
(2)) at each of three levels of clutter (20, 50 and 100 MHz). Square
markers indicate the performance of the NUS on the same signals.
The solid and dashed lines correspond to separate trials.

reprojected samples if the band around 1.595 GHz is correctly

identified as part of the support, and this becomes less likely

when the input power is very low.

A simplified diagram of the NUS test setup used in the

experiment is shown in Figure 15. Not shown are the controller

connections, differential lines, filtering, and power supplies.

For the sake of comparison, we also sampled the test signals

using an NGAS developed 5 Gsps 8-bit Nyquist ADC that

uses the same InP technology. A description of an earlier

version of this ADC chip can be found in [12]. This ADC uses

folding-interpolating architecture, has a greater than 7 ENOB

performance, and draws 9.6 W. Because the uniform ADC

automatically produces Nyquist samples, its output can be

passed directly to the GSM decoder. Testing was done using

a 4.4 GHz clock and the output was sub-sampled by four

because of equipment limitations.
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Fig. 17: Dynamic range of the uniform ADC and the NUS as a
function of the information bandwidth. The information bandwidth
plotted for the NUS curve indicates the total amount of bandwidth
identified by the spectral occupancy estimation algorithm. For the
signal with 100 MHz of clutter, it is possible to achieve high dynamic
range while identifying less than 80 MHz of occupied bandwidth; this
is because only the small tails of the clutter signal are omitted.

B. Experimental results

Figure 16 plots the BER as the input power of the GSM

signal is reduced. Circular markers indicate the performance

of the uniform ADC for each of two randomly generated envi-

ronments (distinguished by solid and dashed lines) at each of

three levels of clutter (distinguished by color). Square markers

indicate the performance of the NUS on the same signals. With

the uniform ADC, we see relatively little variation in BER

across the various signals. That is, the performance of the

uniform ADC does not depend on the information bandwidth

of the input signal.

With the NUS, in contrast, for signals with higher levels of

information bandwidth (more clutter), we do see an increase

in the BER. This is to be expected, since the difficulty of

accurately estimating the spectral occupancy increases, and

the accuracy of the reprojected signal will degrade slightly.

Figure 17 captures this trend more clearly by plotting the

dynamic range of the two systems as a function of the informa-

tion bandwidth. For this graph, dynamic range is defined as the

minimum input power (dBFS) that yields a BER of 10−2. For

all levels of the information bandwidth, the uniform ADC has

a higher dynamic range, but this is not surprising because the

uniform ADC collects more samples in total (approximately

4.7× more than the NUS in this case).

As a separate experiment, we operate our NUS architecture

in a 300 MHz uniform sampling mode: samples are not spaced

according to the PRBS but rather occur in equispaced intervals.

This allows the system to be treated like a low-rate ADC and

characterized without the need for reconstruction. Figure 18

compares the SINAD and SFDR (as a function of input

frequency) of the Nyquist ADC and the NUS. The difference

in sampling rates between the ADC and the NUS is not a

problem since it does not affect the measurements, only the

amount of folding that occurs. The plots show the NUS has a

10 dB advantage in both SINAD and SFDR while consuming

about half the power. The SINAD advantage partially offsets

the noise penalty of undersampling. Because of the wideband

nature of the GSM+clutter signals, the SFDR advantage of

the NUS was not obvious. Other measurements (not shown)

done with only multi-carrier GSM signals present do hint at
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Fig. 18: Comparison of the SINAD and SFDR versus frequency of
the Nyquist ADC and the NUS in uniform sampling mode.

the performance advantage of the NUS.

V. CONCLUSIONS

In summary, we have presented a custom monolithic imple-

mentation of a non-uniform sampler that uses the principles

of compressed sensing to entirely reconstruct the input signal.

While the NUS can be similar in function to an ADC, we

emphasize that it is not a drop-in replacement for an ADC.

Rather, it is a powerful tool in the signal processing toolkit that

is useful when the signal is supported on a small (unknown)

bandwidth inside a large frequency range.

Our results show that the hardware and algorithms are

performing as expected and that the custom S/H is not a

bottleneck of the system. Thus, by using a faster off-the-shelf

ADC, the NUS could be scaled to even higher bandwidths. The

remaining limitations are the processing speed and power, and

the assumption of sparsity. Our current research addresses the

former issue with our custom hybrid reconstruction algorithm

and a custom GPU implementation, and future work will be

on improving this further to achieve real-time recovery. The

assumption of sparsity is more fundamental. The underlying

issue is that the signal information rate cannot exceed the sam-

pling rate, and spectral sparsity is a convenient proxy for the

information rate. For specific applications that have a tighter

signal model (for example, a known form of modulation) it

may be possible to devise improved recovery algorithms that

have a more relaxed sparsity assumption; such ideas are being

studied under the name of model-based compressed sensing,

and we leave the application of these ideas to the NUS for

future work.
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