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A NORMAL DISTRIBUTION OR A WEIBULL DISTRlBUTION FOR FATIGUE LIVES

Abstract: The results of six series of 18 to 30 similar fatigue tests on three
types of specimens are used to check the applicability of the normal
distribution function and the three-parameter Weibull distribution function.
A least-square procedure is adopted to obtain the three parameters of the
Weibull function. Comments are made on the results obtained. ‘

INTRODUCTION

The results of a number of similar fatigue tests can be. described by fitting a statistical
distribution function to the data. Usually, the statistical variable adopted is the 10-logarithm of
the fatigue life N. ' '

v=IogN e

Two statistical distribution functions frequently considered in the literature for fatigue lives are:
() normal distribution function (Gauss) -
(ii) 3-parameter Weibull distribution function. ,
The normal distribution function is fully described by two characteristic parameters, wﬁich can
be estimated by a simple calculation. For the 3-parameter Weibull distribution a more elaborate
procedure is necessary. In this document the two distribution functions are applied to six test
series of 18 to 30 similar fatigue tests. A survey of the test series is given in the table below.

The results of the test series are compiled in Appendix A. |

specimen test 2024-T3 Alclad, | stress (MPa) | Number of
' series | thickness (mm) | - specimens
- R | Smax R =O) :
Unnotched 1 2.0 | o2 20
K, =115 2 157 ) 18
| | Sax R =0)
Edge notched 3 5.0 ’ 103 _ 20
K= 2.85 4 64 1 30
| Sa S
Riveted | 5 08 | 8 71 20
lap joint' -6 ‘ 88 31 20

"Two rows with 8 rivets each, diameter 3.1 mm, specimeh‘ width 160 mm. '
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The purpose of the present document is to examine whether the test results can be fitted by the
two distribution functions. A least square procedure is described to obtain the three parameters
of the Weibull distribution function. Some comments are made on the comparison of the two

distribution functions and on tﬁ_e statistical evaluation of laboratory test series.
THE NORMAL DISTRIBUTION FUNCTION

The equation of the normal distribution function of a variable v is:

pd = —— o 2+ oy @
o\/ﬁ-m '

where p is the mean value and ¢ the standard deviation. P(x) is the probability to find values

v < X.
The data sets to be studied consist of n'values x; = log N; (i = 1 to n). The estimates for p and

o are obtained as:

p=( X )in , 3

o = IM - (4)
n-1 - B '

The probability P; to be associated with each value x; is approximated by:

1-905 , (5)
n

p. =

The results of six test series have been plotted in Figures 1a to 1f. The vertical scale of this
figure corresponds to the normal probability scale. It implies that a normal distribution will

become a straight line, see Appendix B.
WEIBULL DISTRIBUTION FUNCTION

The 3;parameter Weibull distribution function is written as:

_(x-x,,)» | | (6)
Px)=1-e ' ?
In this equation x, is the location parameter (lower values of x are impossible, it is a lower

limit), ’a’ is the scale parameter, and b is the shape parameter. Value;s ofb = 3.23 givea shapé _
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which is somewhat similar to the normal distribution function. Sometimes Eq.(6) is writen as:

P(x)=1_e_(z:::_)b - S

That does not change the equation, it only changes the value of a with an amount X,. Here we

will use Equation (6). The equation can be rewfinen as:
x = x,+al-In(1 =Py~ (8

For the P-values:

L | | (9)
p=1-% (i-1ton) |

n
we can calculate x _ahd the deviation betv;feen x; and X, "
dev. = x,+a {~in(1-P) 1P - *i (‘10)
The sum of squared deviations is: - | H
S = Z(dev)? . (11)

The criterion selected to find a, b and x, is to minimize the sum S, i.e. a least squares criterion

is adopted. It implies:

g6
°

'dS ds :
=0, — =0, (12)
- dx, - da
Combining equétions (10) to (12) leads to three equations:’
nx, - 2(x) + aZ{-n(d -P)® =0 . . . (13

X, Z{(=In(1 - P)I® + aZ{-In(1 - P)#¥ - Zx{-In(1 - PP =0 (14)
X, 2{-In(1 - P,)}"®In{-In(1 - P,)} +a Z{-In(1 —Pi)}z’bln{-ln(1 -Pi)}‘_-

- Ex{-In( - P)}™In{-In(1 - P,)} = 0 (15)

The equations do notéllow an explicit solution of x,, a and b. However, with (13)-and '(14)’ ’a’
and x, can be expressed as a function of b. Substitution in (15) then leads to an equation, from

which b can be obtained by a simple'iter'ation procedute, see Appendix C.
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" The results of five of the six test series have been plotted in Figures 2a to 2f. The vertical scale
is calculated in such a wéy that the Weibull distribution function of the particular test series
becomes a straight line. The three constants a, b, X, have to be used in that calculation, see
Appendix C. For test series 3 the calculation did not lead to a minimum of T(dev.)?. For this

test series the Weibull distribution function could not bé fitted to the test data.

"The root mean square (r.m.s.) value of the deviations in Eq.(11) is obtained as:

rmsdev, = | 2oV - (16)

n-1
It is a kind of a standard deviation for the plots in Figure 2. A smaller r.m.s.dev. indicates a
better fit of the distribution function to the test data. Similarly, the r.m.s.dev. has been
calculated for the normal distribution functions in Figure 1, in order to examine the fit between

this function and the data.
DISCUSSION

The results are recapitulated in the table below. It shows fhe well-known trend of higher g, §
for a longer life. The trend is further illustrated by Figuré 3. Here, a more interesting factor
is the r.m.s.dev., which is much smaller (3 to 10 times) than 0,4 5. This should obviously be
expected, because the r‘.m.s.dev. indicates scatter around a fitted function, whereas g),; N
measures scatter around the mean value. The r.ni..s.dev. is primariiy adopted here to indicate
how well the data can be fitted by a distribution function. Also for the r.m.s.dev., the table
shows higher values for higher N-values. It suggests that a satisfactory fit is more easily
obtained for a shorter life. ' |

Some noteworthy observations can be made when considering r.m.s.dev. values for the
two distribution functions in relation to the graphs in figures 1 and 2. On ihe average, the
r.m.s.dev. . for the Weibull distribution function is similar or smaller than for the normal
distribution function. It suggésts that the Weibull distribution function on the average gives a
better fit than the normal distribution function. However, a noteworthy exception is found for
test series 3, where a Weibull distribution function could not be fitted to the data with the least
square approach. This is not a surprise if the data of test series 3 in Fig.1c are considered. The
dotted curve in this graph indicates a trend. which neither suggests a lower life limit, nor an
-inﬁnite upper limit, which both are characteristic for the Weibull distribution. It should be noted

that the normal distribution function in Fig.1¢ also disagrees with the trend of the data. In this
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respect, test series 4 is another noteworthy data set. As'shown by Fig.1d, the data exhibit the
characteristic behaviour of a Weibull distribution, and significant deviations from the normal
distribution occur. The agreement of this test series with the Weibull distribution function is

confirmed in Fig.2d, where the results line up very well with that function.

normal distribution ' Weibull distribution

specimen test mean life Olog N rm.sdev. | rmsdev. |- a . b | X,

series (ke) . : ' ' (ke)
unnotched 1 196 0.114 -0.0187 0.0149 0.708 6.841 42.7
2 1290 0.i63 : 0.0335 ©0.0325 - 0.680 4.388 309.8

edgenotched | '3 185 0.069 | 0.0242 - - - -

4 . 1168 0.180 0.0459 0.0193 - 0.298 1.519 631.5

riveted S 116 0.059 0.0092 0.0097 -0.219 3.806 73.5

lap joint ‘ .

6 - 1019 0.098 0.0135 0.0127 0.258 2.521 602.6

The probability density functions of thé Weifnill distribﬁtions are shown in Figure 4. The effect
of the shape parameter b is e.vid‘ent. A“typical shape of the Weibull probability density function
can be observed for tést series 4, fof Which the nbfmal distjri‘.but.ion functibn is a poor |
approximation. The b-value of series 5 (3.81) is the value most close to the value b = 3.23,
for which the Weibull distribution function” becomes very. much similar to the normal
distribution function. The similarity is illustrated by Fig.4, while it can also be observed from

a comparison of Fig.le with Fig.2e.

From a physical point of view, it should be expected that the Weibull distribution function is
more appropriate than the normal distribution fuhction. It. has a lower limit, which appears to
be physically necessary. On the other hand, a lower 'limi't is assoéiat_ed with very low
probabilities of failure. The lowest probability of failure in Figures 1 and 2 is 0.02 % (1 in
5000), and the graphs do not suggest dramatic differences for the two distribution functions.-
The only exception is test seﬁes 4, where the normal distribution predicts much lbwer fgtigue
lives than the Weibull distribution for a very low level of failure probability. Test series 3 is
the other one of the two test series on edge-notched specimens. It shows a completely different
behaviour, compare Figs. 1c and 1d. There is no obvious explanation why such an unsystematic
difference could occur. As a matter of fact, we must be veryv cautious in deriving statistical
information of laboratory test series. There may be several sources for scatter, which are
irrelevant for practical problems. Part of the scatter may be due to the fatigue test itself (fatigue

machine, operator) or specimen production. We will not deal with this issue any further here
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to avoid speculations. The prime reason for the present analysis was to obtain Weibull

distribution functions for some relatively large test series with a least square approach and to

see how the results would compare to the usual normal distribution approach.

SUMMARY AND CONCLUSIONS

Six relatively large test series (18 to 30 similar ’tests)' on 2024-T3 specimens were
statistically analyzed. For this purpose a least square deviation procedure was developed
for the 3-parameter Weibull distribution function.

On the average, the Weibull distribution function agreed equally well of better with the test

* data in comparison to the normal distribution function. There was one noteworthy

exception.

3. The data confirm relatively more scatter for higher endurances.

(1]

[2]

[3]
(4]

The practical significance of statistical analysis of large test series should be considered

~ with extreme caution in view of possible sources of scatter in laboratory tests, which may

be irrelevant in practice.
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Appendix A: Fatique lives og;aiﬁgd in_six test series.

Unnotched specimens,
table 3.1 of {1]

Unnotched specimens,

table 3.1 of {1}

Edge-notched specimens,
table 3.2 of [1]

Smex = 225 MPa (R = 0) Smex = 157 MPa (R = 0) . Spex = 103 MPa (R = 0)
i N; (k) i N; (kc) i N; (kc)
1 110 1 636 - 1 122
2 128 2 707 2 145
3 161 3 801 3 © 163
4 160 4 1038 4 161
5 160 5 1090 5 163
6 170 6 1102 6 163
7 171 7 1160 7 184
8 172 8 1167 8 187
9 199 9 1262 9 194
10 203 10 1265 10 194
11 204 11 1404 11 : 195
12 205 12 1418 12 199
13 211 13 1461 13 ‘202
14 212 14 1511 14 - 204 -
15 233 15 2119 15 205
16 248 16 2132 16 212
17 259 17 2158 17 212
18 268 18 2368 18 216
19 - 285 . 19 - 216
20 296 20 . 222

Edge-notched specimens,
table 3.2 of [1]

Riveted lap joints
table 4.1 of (2]

Riveted lap joint
" table 4.1 of {2}

Smax = 64 MPa (R = 0) S, = 88 MPa, S, = 71 MPa S, = 88 MPa, S, = 31 MPa
i N; (ke) ‘ i N, (kc) i N; (ke)
1 " 655 1 87 1 655
2 678 2 96 2 774
3 707 3 100 3 790
4 734 4 104 4 - . 830
5 - 740 5 105 5 884
6 841 6 105 6 806
7 867 7 106 7 908
8 884 8 112 8 930
9 . 915 9 118 9 953 .
10 930 10 115 10 1004
1 988 1 121 1 1012

12 1000 12 121 12 . 1041
13 1011 13 122 13 ~ 1070
14 1018 14 123 © 14 y 1128
15 1060 15 124 15 1154
16 1087 16 126 16 1185
17 - . 1095 17 128 17 1252
18 1184 18 130 18 ~1259°
19 1238 19 139 . 19 1516
20 1241 20 157 20 : 1664
21 : 1264
22 1395

23 : 1430
24 1469
25 1685
26 1726
27 1920
28 2391
29 2947
30 3348
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Appendix B: The normal distribution function

The equation of the normal distribution function is:

v-p 2

P(x) = f e 2 o dv
. 0y/2n .
Substitution of:
u=Y"¢#

‘0
leads to the normalized equation:

B +Uo _

P(x) e 2" d u

which is tabulated in many handbooks, see for instance [3].

- An approximation is given in the formula book by Dwight [4] (formula 585):

g X2 x4 - x§
2113 22.215 23.317

fe"z""dt = x(2)1/2
V2 T -x kY
Combining Egs. (19) and (20) gives:

: 2 4 8
P(x) = 0.5 + — [ S S X +}

=l 218 22215 28317

(17)

(18)

(19)

(20)

(21)

The number of terms in [ ] should be larger for larger | x | values. For x up to +3 a number

of 25 terms is sufficient, for x approaching +5 a number of 50 terms should be used.

A normal probability paper plot requires that plottiﬁg positions' are calculated for specific P-
levels (iri Figs lato Ifat P = 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50,
and symmetric values). P-levels must also be calculated to plot the test data ®; = (-%£)/n,

Eq.(9)). It implies that x must be calculated for specified P(x) values. This has been done with

Eq.(21). It requires an iteration procedure, which was started at x = -5, and using increasing

x-values until Eq.(21) is satisfied for a given P-value.

The normal distribution in Figs. la to If is a linear function, passing through the point

(1,0.5) with a slope 1/0.
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Appendix C: The Weibull di§tribution function

Solvmg X, and a from Eqs (13) and (14) and substltutxon in Eq (15) leads to:
BV = )x,-SLPP + a- SLP2P - SXLPP = 0 | '
with: = (SXLP-n - SXI-SLP)/ (SLP2'n - SLPZ)
X =(SXI-a-SLP)/n
SXI =Zx
TE; = {-log(1 - P)}'®
TEL; = blog(TE)

SLP = I TE;

SLP2 = I TE?
SXLP = I x; TE;
SLPP = I TE,;- TEL,
SLP2P = T TE? TEL,

SXLPP = ¥ x; TE; TEL;
The solution of b can now be obtained by an iteration process. Starting with b =1 the value

of b is increased until BV = 0 in the above equation is satiSﬁed.
The plotting positions for specified P-values can easily be derived from the distribution function:

a

o= (22)°
P(x) = 1- _ .
by rewritting the equation as: '

x - x, =al-log(1 - P)J® (23)

By selecting a probability scale with the y-codrdinate as a linear function of the right hand term
of Eq.(23), the Weibull distribution function will become a straight line. It illustrates that the
scale is depending on & and b. | '
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Figure 3. The standard deviations for the three types of specimens.

series . b
P 1 6.841
" 2  4.388
4 1.519
- 5  3.886
6 2.524

FIE S |

108

Figure 4. Weibull probability density functions for 5 test series. |
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