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We use singulary vocabularies to analyze first-order 

definability over doubly-linked data structures.  Singulary 
vocabularies contain only monadic predicate and monadic 
function symbols.  A class of mathematical structures in any 
vocabulary can be interpreted in a singular vocabulary, while 
preserving the notions of elementary definability and bounded-
degree. Doubly-linked data structures are a special case of 
bounded-degree finite structures in which there are symmetric 
labeled connections between elements, corresponding closely 
with physically feasible models of information storage.  They can 
be associated with logical models involving unary relations and 
bijective functions in what we call an invertible singulary 
vocabulary. Over classes of these models, there is a normal form 
for first-order logic which eliminates all quantification of 
dependent variables. The paper provides a syntactically based 
proof using counting quantifiers. It also makes precise the notion 
of implicit calculability for arbitrary arity first-order formulas.  
Linear-time evaluation of first-order logic over doubly-linked 
data structures becomes a direct corollary. Included is a 
discussion of why these special data structures are appropriate 
for physically realizable models of information.  

 
 
Introduction  
This research grew out of an old question involving the signatures of first-order structures: 
 

• What is the simplest vocabulary retaining the full expressive power of first-order logic?   
 
There are many ways to define simplicity, but we chose “smallest arity” as our yardstick, and 
wondered if the explicit use of pairing in a structure could somehow be avoided.  Part of the 
motivation came from practical applications, because the basic data structures used in Computer 
Science rely entirely on nodes which store data and pointers to other nodes. These structures 
arose as models of data storage subject to the practicalities of physical memory devices. This 
presents a new question regarding the asymptotic scalability of data structures: 
 

• What are the physically realizable classes of data structures? 
 
Though we do not extensively argue a convincing answer for this question, we do take the 
position that doubly-linked data structures are required. Part of the reason for this is the inherent 
reversibility of connections in space, which in real memory must comprise actual physical links. 

Although using pointers to efficiently represent data has clearly proven its practical value in 
nearly all areas of computing, describing finite models in a theoretical fashion by unary 
functional vocabularies seems to have been long neglected until the work of [Grandjean].  Indeed, 
this clever idea has proven its utility by a line of research which has culminated in robustly 
capturing deterministic linear time computation on random access machines by defining unary 
functions via algebraic recursion schemes [Grandjean & Schwentick]. In this paper, we are more 



interested in how the logical properties of reversibly-linked structures relate to linear-time. 
It is well known that structures over any fixed vocabulary can be elementarily interpreted in 

the language of graphs – i.e. only a single binary relation (with equality) is required.* But perhaps 
less well recognized is the fact that this can also be accomplished in a singulary vocabulary: one 
which admits only monadic predicates and monadic function symbols, with equality. 

Distinct from monadic logic, which excludes function symbols, first-order singulary logic is 
expressive enough to interpret elementary definability over any vocabulary whatsoever. The 
construction is straightforward yet reveals an important fact – in general there will be an 
unbounded number of references to an unbounded number of nodes. While this presents no 
problem for purely mathematical studies, it is not realistic for physically scalable models of 
information.  Structures of unbounded-degree cannot be physically realizable.  So we restrict our 
attention to models of information which have a fixed number of symmetric connections between 
their datum – otherwise known as doubly-linked data structures.  While this does not necessarily 
ensure physical realizability, it comes much closer.  The natural vocabulary for these classes is an 
invertible singulary vocabulary in which each function has an inverse.  Within this realm, first-
order definability is much simpler than it appears.  Our main result states that it is possible to 
rewrite all first-order formulas in a normal form that eliminates all quantified dependencies 
between variables. 

 
Theorem: Any first-order formula ζ(x1, … xk) in an invertible singulary vocabulary is equivalent 
to a Boolean combination of: 
 

1. atomic formulas:  α(x1, … xk)  & 
2. numerically quantified sentences:  ∃nx β(x)  where β is quantifier-free. 

 
Over finite structures, the numerically quantified sentences can be computed in linear-time, and 
the quantifier-free formulas in constant-time.  With the appropriate notion of evaluation for 
formulas with free variables, we obtain a corollary which states that all such first-order formulas 
are computable in linear-time. 

Ideas behind a semantic collapse for first-order queries on bounded-degree structures were 
motivated from notions of locality due to [Hanf], as treated in [Libkin, Ch.4] and [Immerman, 
Ch.6].  Ideas for a syntactic collapse of first-order formulas were inspired by [Gaifman], whose 
normal form is remarkable for its generality.  It applies to all relational structures, but quantified 
dependencies between variables remain [Libkin, p.60]. Further motivation was obtained from the 
pioneering result of [Seese], which demonstrated a linear-time algorithm for first-order sentences 
over bounded-degree graphs [Immerman, p.103] and [Libkin, p.101].  A related result was 
presented in [Lindell] in a different logical setting, applying Hanf’s Lemma to first-order 
sentences, but it did not apply to formulas or discuss linear-time evaluation. Very similar results 
to ours were independently attained by [Durand & Grandjean].  

The outline of the paper is as follows.  In the first section we define singulary logic, its syntax 
and semantics.  In the second section we illustrate how any structure can be interpreted as a 
singulary structure, via a simple first-order transformation from an arbitrary vocabulary to a 
singulary vocabulary. In the third section we show that relational structures are of bounded-
degree if and only if their images as singulary structures are also.  In the fourth section we 
examine finite domains, and see how doubly-linked data structures are really just invertible 
singulary models.  The fifth section contains our main result, a normal form for first-order 
formulas in invertible singulary vocabularies.  In the sixth section we look at consequences of this 
result from a complexity theoretic point of view, and show any first-order formula can be 
evaluated in linear-time, regardless of its arity.  In the last section we summarize and derive 
conclusions for the theory of finite models of information. 

                                                
* A fairly complete treatment of this result appears in my Ph.D. dissertation: “The Logical Complexity of 
Queries on Unordered Graphs,” University of California at Los Angeles, 1987.  



§1 Singulary logic 
According to the Oxford English Dictionary, the word singulary is used exclusively in logic, 
referring to mathematical operations “involving just one element”. The term was introduced by 
W.V. Quine, who preferred it to the more common usage ‘unary’ because of Latin derivation 
[Quine].  It became adopted by Alonzo Church who, in concurring with Quine on this 
etymological point, went so far as to define singulary vocabularies in which all the function and 
predicate symbols have only one place [Church]. This constraint formally prohibits tupling, and 
singulary structures can be visualized as directed graphs of bounded out-degree, where each node 
is colored by the combination of predicate symbols that make it true, and is the origin of exactly 
one type of outgoing edge for each function symbol. 

From a terminological point of view, it will be helpful to distinguish between ‘monadic’ and 
‘unary’ when referring to intentional and extensional objects respectively, though we make no 
such distinction for the adjective ‘singulary’, using it in both situations. 

For a symbolic vocabulary to be singulary, all variables must appear alone as the object of 
predicate or function application (equality is excluded from this restriction so that one variable 
can appear on each side of an equals sign). More formally, 
 
Definition: A singulary vocabulary consists only of monadic predicates and monadic functions  
 

L = {P1, …, Pm, f1, ..., fk} where each symbol has precisely one place for a variable. 
 

Singulary vocabularies are interpreted by singulary structures in the obvious way: 
 
Definition: A singulary structure S with domain |S| has only unary relations and unary functions: 
 

S = 〈|S|, P1, …, Pm, f1, …, fk〉 where each Pi ⊆ |S|, and each fj: |S| → |S|. 
 
The number of elements in |S| is the size of S. As is customary, we will refer to S as an L-
structure. A collection of L-structures is called an L-class. Classes over singulary vocabularies are 
called singulary classes. First-order formulas defined on singulary classes are defined inductively 
in the usual way. 
 
Definition: Given a singulary vocabulary L, define the syntax for L-formulas inductively as:  
 
 atomic terms  x, y, z, ... where x, y, z, ... are individual variables 
 compound terms f(t) where t is a term and f is a function symbol 
 
 atomic formulas P(t) where t is a term and P is a predicate symbol 
 equality s = t  where s and t are terms 
 negation ¬φ where φ is a formula 
 implication φ → ψ where φ and ψ are formulas 
 quantification ∃x φ where x is a variable and φ is a formula 
 
In addition, we will use the common abbreviations for conjunction (∧), disjunction (∨), and 
universal quantification (∀). As is customary, a first-order sentence over the vocabulary L will be 
referred to as an L-sentence. L-sentences are Boolean queries which define properties of L-
classes. The semantics of L-formulas are no different than those of formulas in ordinary first-
order logic. However, it is entirely possible for a formula over a singulary vocabulary to define a 
binary relation, such as φ(x, y) ≡ x ≠ y.  In this case, the formula φ is not itself singulary. The term 
singulary formula will be reserved for formulas with precisely one free variable. 

It is important to realize that even though equality is technically a binary relation, it is not 
necessary to use pairs of elements for its interpretation.  This is unlike the more general case of a 
graph where knowledge of its edges is required, and cannot be determined by an examination of 



its vertices alone. In other words, equality is not a real relation in the sense that it does not engage 
distinct elements of a structure. Yet its presence is required as we shall see in the next section. 
 
§2 Singulary interpretations 
In this section we show that for any vocabulary L whatsoever, there is a singulary vocabulary L* 
which interprets it in a first-order way.  That is to say, every L-structure S can be uniformly 
transformed into a singulary L*-structure S* so that the resulting L*-class has essentially the same 
first-order properties as the original L-class. Moreover, this transformation is an elementary 
interpretation so that first-order L-formulas are convertible to equivalent L*-formulas. In a certain 
sense, the elementarily definable properties of any class can be mirrored in a singulary class. 

It is not necessary to consider vocabularies L with function symbols (or constants), since it is 
easy to adapt these into a purely relational vocabulary (by adding an extra place for the image).  
Furthermore, we can assume that all the relation symbols have the same arity (by adding dummy 
variables to pad up to the maximum arity if necessary).  So, without loss of generality, we will 
assume that L is a relational vocabulary R1, …, Rm of uniform arity k ≥ 2. In this case we say that 
the L-structure S = 〈A, R1, …, Rm〉 is of arity k.† For each such structure, let Τ(S) be the set of k-
tuples 〈s1, …, sk〉 appearing in S, either in some relation Ri(s1, …, sk) or as ground k-tuples 〈s, …, 
s〉 representing an original domain element s in S.   

Let L* be the singulary vocabulary {P1, …, Pm, f1, …, fk}. To each L-structure S, associate the 
singulary L*-structure S* of size O(|S|k) by the following uniform construction.  
 
Definition: Let S = 〈|S|, R1, …, Rm〉 be an L-structure of arity k.  Define the L*-structure 
 

S* = 〈Τ(S), P1, …, Pm, f1, ..., fk〉 
with domain  

Τ(S) =S ∪ R1 ∪...∪ Rm  
where  

S = {〈s, …, s〉 ∈ |S|k}. 
 
Define the predicates and functions of S* as follows: 
 
 Pi = {〈s1, …, sk〉 : Ri(s1, …, sk)}  for 1 ≤ i ≤ m  
 fj(〈s1, …, sk〉) = 〈sj, …, sj〉  for 1 ≤ j ≤ k  
 
The predicates mark the nodes for each respective relation.  The functions serve to project the 
nodes so that they can be interpreted as k-tuples – the jth component of s is given by fj(s).  
 

The simplest example is that of an ordinary directed graph, where m = 1 and k = 2.  In the 
figure below, round vertices and straight edges are used to depict the original graph. For the 
singulary structure, functions f1 and f2 are drawn as curved arrows originating on the left and right 
respectively, and the predicate P1 is demarcated using boldface inside the rectangular nodes.  

 
Transforming a graph into a singulary structure 

                                                
† Even though a single binary relation would suffice (as stated in Exercise 3.7 of [Immerman]) it is more 
instructive to examine the uniform arity case. See also previous footnote.  

〈a, b〉 〈b, c〉 
 

〈a, a〉 〈b, b〉 〈c, c〉 

b 

a c 
Graph 



 
If we refer to each instance of Ri(s1, …, sk) as a fact, then we can think of the mapping into a 

singulary structure as a conversion in which each extant fact in the original k–ary structure is 
converted to an actual member of the singulary domain. In this way, the singulary image structure 
is a more accurate representation of the amount of information contained therein since it has one 
node for each fact.  If each fact in the original structure necessitated some matter for storage, then 
the size of the singulary structure (number of nodes) would be proportional to the total mass of 
the original structure.  Note that the number of facts in a singulary structure is precisely 
proportional to its mathematical size since, on a per node basis, each monadic predicate symbol 
contributes one bit of information, and each monadic functions symbol contributes one element. 

Perhaps the ideas in this result are folklore, but it is still worth stating (and proving) in its 
entirety. 
 
Theorem: Let L = {R1, …, Rm} be a relational vocabulary of arity k ≥ 2.  Then for each L-
sentence θ there is an equivalent L*-sentence θ* such that for all L-structures S, 
 

S |= θ    ⇔    S* |= θ*.  
 
Moreover, the L*-class {S* : S is an L-structure} is an elementary class. 
 
Proof: To see that we can translate any first-order sentence θ, we prove a stronger statement for 
formulas.  Given θ(x1, …, xl) for l ≥ 0, construct θ*(x1, …, xl) according to the following 
instructions.  For each variable w appearing free or bound in θ, we need to say it is a ground 
element.  Do this by adding the following qualifier, which expresses that w is a fixed-point of 
every function: 
 
 /\{fj(w) = w : 1 ≤ j ≤ k} (these are the loops in the diagram). 
 

Each occurrence of an atomic formula Ri(z1, …, zk) must be replaced by a formula asserting a 
new variable z which represents the tuple 〈z1, …, zk〉 satisfying the corresponding monadic 
predicate Pi. This can be achieved by either of the following formulas: 
 
 ∃z /\{fj(z) = zj : 1 ≤ j ≤ k} ∧ Pi(z) 
  (it does not matter which of these is used) 
 ∀z /\{fj(z) = zj : 1 ≤ j ≤ k} → Pi(z) 
  

Notice that the only changes are to variables and atomic formulas. Equality between variables 
stays the same, as do all the Boolean operations and quantification. Note that although bound 
variables are added, the free variables remain the same.  From this conversion, it should be 
obvious that θ(w1, …, wl) will satisfy the tuple 〈s1, …, sl〉 in the original structure S just in case 
θ*(w1, …, wl) satisfies the tuple of elements 〈s1, …,sl〉 in the singulary structure S*, where 
eachsi = 〈si, …, si〉  is a k-tuple in |S|*. 

To finish, we need to design an L*-sentence which recognizes whether a purported singulary 
structure is the result of the construction defined above. The ground elements must always be 
fixed-points of every function.  Let 
 

ε(x) ≡  /\{fj(x) = x : 1 ≤ j ≤ k} 
 
Every component of every node must be a ground element: 
 

∀x /\{ε(fj(x)): 1 ≤ j ≤ k} 
 



The model must be extensional – nodes with identical images under the application of every 
function must be the same (i.e., two tuples with identical components must be the same tuple): 
 

∀y ∀z /\{fj(y) = fj(z) : 1 ≤ j ≤ k} → y = z  
 
Finally, every non-ground element must represent a tuple that appears in some relation.   
 

∀x ¬ε(x) → \/{Pi(x) : 1 ≤ i ≤ m} 
 
Together, these sentences axiomatize {S* : S is an L-structure}, and the theorem is proved. 

−| 
So it is seen that, with respect to definability, singulary structures are no less general than 

arbitrary structures.  But in general, there will be an unbounded number of elements in the 
singulary model that reference the ground elements, leading to structures of unbounded-degree.  
As stated in the introduction, our real interest is in examining structures of bounded-degree, and it 
is to this topic that we turn to next. 
 
§3  Bounded-degree classes 
This section illustrates that passage to the singulary model does not change the notion of a class 
of relational structures having bounded-degree.  Our first aim is to carefully define the notion of 
degree in either case. 

The degree of a relational structure can be determined by examining its Gaifman graph, 
which puts an edge between a pair of nodes iff they occur jointly in a tuple of some relation. 
 
Definition: The Gaifman graph of a relational L-structure S is the simple graph determined by: 
 

G(S) = 〈|S|, {〈a, b〉 : a ≠ b & S |= R(… a, … b, …) ∨ R(… b, … a, …) for R in L}〉 
 
E.g. a single triple (of distinct elements) introduces a triangle of edges: 

 
Edges contributed to the Gaifman graph by a 3-tuple  

 
The degree of an element is then defined just to be its degree in the Gaifman graph. 

 
Definition: In a relational structure S, the degree of a vertex s is just its degree in G(S),  
 
 deg(s) = |{s′ : s′—s}| where s′—s is shorthand for an edge between s′ and s. 
 
The degree of S is then defined to be just the degree of its Gaifman graph – the supremum of  
degrees realized in G(S).   

A node in a singulary structure includes both outgoing and incoming arrows.  The out-degree 
of each node is fixed; one arrow for each of the k functions.  So it makes sense to count only the 
in-degree of each node. 
 
Definition: The degree of a node in a singular structure is the sum total of all arrows entering it: 
 

deg(n) = ∑|{n′ : fj(n′) = n}|  1 ≤ j ≤ k 
 

 

R(a, b, c) 

a 

b c 



Note that ‘parallel’ arrows (corresponding to distinct functions) entering n are counted separately, 
and that self-loops also count. The degree of a singulary structure is also the supremum of 
degrees realized in it. 

Below is a picture showing the relationship between S*, the singulary structure for S, and 
edges in G(S), the Gaifman graph for S.  Note though that this figure is a superposition: the image 
of a singulary function is actually a tuple of S (consisting of the same repeated element); whereas 
the nodes in the Gaifman graph are actual elements (not tuples) of S.  

 
Superposition illustrating the situation fi(s) ≠ fj(s) for i ≠ j. 

 
The importance of this, as we shall see, is that there is a uniform relationship between the 

degree of S* and the degree of G(S). So degree bounds on singulary models translate into degree 
bounds for Gaifman graphs, and vice versa.  Indeed, the degree of an element s in the Gaifman 
graph G(S) and the degree of its corresponding tuple ‾s = 〈s, …, s〉 in the singulary structure S* are 
correlated in a fashion that is dependent only on k, independent of S. In the proof, the key idea 
will be to bound the number of tuples of S that s participates in. Recall that by definition Τ(S) 
contains only k-tuples that actually appear in the structure S. 
 
Definition: Let Τ(s) = {〈s1, … si, … sk〉 ∈ Τ(S) : some si = s} be the tuples of S that s appears in. 
 
A class of structures is said to be of bounded-degree if the degree of each structure in the class is 
less than some fixed number. Now we are ready to state the result of this section. 
 
Claim: Let C be a class of relational structures of arity k.  Then C is of bounded-degree iff the 
class of singulary structures C* = {S*: S in C} is also of bounded-degree. 
 
Proof: Consider a relational structure S of arity k.  To prove the result, our aim is to show that 
deg(s) is bounded in G(S) iff the size of Τ(s) is bounded iff deg(‾s) is bounded in S*. It will not be 
necessary to consider the other tuples in the singulary structure S* because they are of degree 0. 

Suppose s has degree d in the Gaifman graph G(S).  This means that whenever s appears in a 
k-tuple of S, only d other elements can appear together with s.  There are at most k(d+1)k−1 
possible tuples that can be so constructed (s takes up one of the k slots, and the remaining k−1 
other slots are filled by the d neighbors of s, including possibly s itself).  So |Τ(s)| has been 
bounded. 

In the other direction, suppose there are l tuples in Τ(s). By definition, in G(S) every neighbor 
s′ of s must appear in one of these k-tuples, and there are no more than l(k−1) places where they 
can occur (the k−1 slots remaining in each of the l tuples). So deg(s) has been bounded in the 
Gaifman graph. 

Now suppose that ‾s has degree d in the singulary model S*. This implies there are at most d 
tuples of S in which s appears, because every occurrence of s in a tuple (and there may be 

edge in G(S), the Gaifman graph 

sj 

fj 

si sj 

〈… si …〉 … 

fi 

tuple s in S*, the singulary model 



multiple occurrences) generates its own distinct edge into ‾s.  So including ‾s itself, we have the 
bound |Τ(s)| ≤ d+1. 

Conversely, suppose there are l tuples in Τ(s).  Every arrow leading into ‾s must come from 
one of those l tuples, and each one can produce at most k arrows leading into ‾s (one for each 
function).  This places a bound deg(‾s) ≤ l·k, which completes the proof. 

−| 
So we see that the notion of a bounded-degree class of structures is invariant under 

interpretation as either a relational database or a singular model. Even if we were to interpret a 
singular model as a relational structure, this notion would stay invariant. 

Consider an arbitrary singulary model M = 〈|M|, P1, …, Pm, f1, ..., fk〉, not necessarily obtained 
as a result of the conversion process detailed above.  It is also possible to convert M into a 
relational structure M′ = 〈|M|, P1, …, Pm, R1, ..., Rk〉, replacing each function fi by a binary relation 
Ri = {〈a, b〉 : fi(a) = b} representing its graph.  Furthermore, the Gaifman graph of M′ will just be 
the symmetric irreflexive closure of the union of all the Ri.  It should be obvious that its degree is 
essentially the same as the degree of M.  

At this point, it may not be clear why feasible models of information need to have bounded-
degree.  Any physically instantiated relational database must be stored as data in memory.  
Regardless of the sophistication or technology used, individual datum must occupy space and be 
somehow connected to one another.  When put in these terms, the appropriate model for 
physically stored information becomes clearer. 
 
§4 Singulary models for Data structures  
Data structures are standard models of how information is stored in a computer – finite 
arrangements of nodes containing data, each linked to other nodes by pointers. It provides a 
mechanism of dynamically increasing information storage capacity by simply increasing its size 
(the number of nodes), keeping the amount of information contained in each node fixed, thereby 
providing a uniform method of storing and accessing the data.  Although the structure (pattern of 
links) can be arbitrary, the amount of Boolean data stored at each node is fixed, as well as the 
number of outgoing pointers. Common examples include lists (linear sequential arrangement of 
nodes), trees, and more generally graphs of fixed out-degree. Each node can be visualized as a 
fixed-width container holding bits and addresses: 

 
Figure illustrating one node in a data structure 

 
When a particular pointer is not being used, it is given the value nil, which stands for ‘nothing’. 
In figures this is indicated by a dot, without the customary arrow extending from it.  

It is easy to see that singulary structures provide a perfect model for data structures.  Each bit 
corresponds to the Boolean value of a predicate, and each address to the value of a function (nil 
values point to a common ‘bottom’ ⊥).  

0 … bits … 1 

 … addresses …  

Uniform width 



 
Figure illustrating an element in a singulary model  

 
Doubly-linked Data Structures 
 
Extracting information from a data structure via an algorithm requires navigating the links.  The 
easiest way to do this is when the structure is ‘doubly-linked’ – each link is provided with a return 
link, providing a convenient way to reverse direction and back out of a node.  This also forces the 
data structure to be of bounded-degree, since the number of incoming links must not exceed the 
number of outgoing links, which are fixed by design.  

Perhaps there is a more significant lesson to be learned from considering the physical 
necessity of storing the data structure in a real memory. It is inconceivable that an unbounded 
number of memory cells could all reference the same location in constant time. For this would 
mean they would all have to be within a bounded distance of each other – an untenable situation 
in finite-dimensional space. So although it might be theoretically possible for an unbounded 
number of locations to point at a given location, there can be no practical method of executing 
those memory references directly without impossible overcrowding. Introducing “way stations” 
would be a method of indirection that attempts to solve the problem by navigating through a 
bounded-degree substructure.  A much more substantial explanation of these concepts and their 
significance to logic can be found in [Lindell]. 

If only a bounded number of links can enter a node, then they might as well be reversible 
(remember that directions in space are inherently reversible), in which case the corresponding 
functions in the singulary model will be invertible. This construction is laid out in the appendix.  
So clearly, the natural model for doubly-linked data structures is to use a singulary vocabulary 
which has an inverse for each function.  
 
Definition: An invertible singulary vocabulary L contains an inverse for each function symbol.   
 

L = {P1, …, Pm, f1, ..., fk , f1°, ..., fk°} 
 
We are using f° to denote the syntactic inverse of f, to distinguish it from the semantic inverse, 
and to indicate that it is a separately interpreted symbol (which happens to always be the inverse). 
When viewed as a graph, each bijective pair (f, f°) determines edges which partition the finite 
domain into a collection of disjoint cycles. 

A problem appears to arise in the case of nil values, because it is not possible for ⊥ to 
accommodate an arbitrarily large number of incoming arrows.  But these are easily dealt with as 
illustrated in the following figure, entirely obviating the need for ⊥. 

 
Figure illustrating wraparound 

P P ¬P P … f  f  f  f  

P1(s) … predicate values … Pm(s) 
 

f1(s) 
 

… function values … fk(s) 
 

Node s 



 
The dotted line represents a value introduced to replace nil, ensuring totality for f. It is determined 
uniquely by tracing backwards along the value chain for f (always possible since f is injective). 
This procedure terminates because every data structure has a finite domain, and the final value 
realized is the one desired. The only thing left is to introduce a new predicate symbol P whose 
sole purpose is to indicate the endpoints where dotted lines were employed.  This enables 
recovery of the original partial function via f(x) = ⊥ iff ¬P(x).  

The real value of viewing doubly-linked data structures as singular models will become 
apparent in the next section, where the mathematical elegance of these invertible vocabularies 
bears fruit by allowing first-order formulas to collapse into a much simpler form.   
 
§5  Normal forms 
In earlier sections we saw that elementary definability over arbitrary vocabularies is essentially 
the same over singulary vocabularies.  However, the singulary structures involved will in general 
have unbounded degree.  We also saw that the notion of a bounded-degree class of structures over 
arbitrary vocabularies is essentially the same over singulary vocabularies.  A class of singulary 
structures is guaranteed to have bounded-degree if every function symbol has a corresponding 
inverse (indeed, this guarantees regularity – every node will have the same degree). Moreover, 
data structures that result from physically embedding data into storage media are naturally 
doubly-linked, and easily modeled within the realm of invertible singulary vocabularies.  Under 
these special circumstances, elementary definability takes on a particular elegance.  First-order 
formulas can always be written in a special normal form where quantifiers are never nested.  To 
demonstrate this we introduce a special type of threshold quantifier which generalizes in a natural 
way ordinary existential quantification. 
 
Definition: For each natural number n, the numerical quantifier ∃nx… stands for “there are (at 
least) n distinct x’s satisfying …”. In case n = 1, this is the ordinary existential quantifier. 
 
Obviously, numerical quantifiers do not extend the realm of first-order definability because for 
any fixed n, ∃n can be rewritten as a combination of n ordinary existential quantifiers.  
 

∃nx ω(x)    ≡ ∃x1…xn {xi ≠ xj: 1 ≤ i < j ≤ n} ∧ {ω(xl) : 1 ≤ l ≤ n} 
 
But these quantifiers do serve to simplify the statement and proof of our normal form theorem, 
which says that over any class of (finite or infinite) structures in an invertible singulary 
vocabulary, every first-order formula can be rewritten as a Boolean combination of quantifier-
free formulas together with sentences composed of numerical quantifiers applied to quantifier-
free formulas. In particular, the quantifiers are never nested. 
 
Theorem: Let ζ(‾x) be a first-order formula in an invertible singulary vocabulary. Then ζ(‾x) is 
equivalent to a Boolean combination of the following: 
 
 Atomic formulas:  α(‾x) & 
 Numerical quantifier sentences:  ∃nx β(x)  where β is quantifier-free. 
 
Proof: By induction on the ordinary first-order syntax – all cases except quantification are trivial. 
Consider ∃x φ(x, ‾y) where φ is in the normal form as specified in the statement of the theorem.  
By putting φ in disjunctive normal form, distributing the existential quantifier over the 
disjunctions, and removing any sentences from underneath the scope of quantification, it suffices 
without loss of generality to consider φ as a conjunction of atomic clauses (or their negations).  In 
a singulary environment, clauses involving a predicate symbol contain only one variable.  So the 
only way that variables can be related to each other is through the equality symbol.  Each 



equation relates just two variables (not necessarily distinct), one occurrence on each side of the 
equals sign. 

If a variable has no connection to x via equations in φ, it should be removed.  Say that two 
(distinct) variables are related if they occur jointly in an equation together, and connected if they 
are in the (reflexive) transitive closure of this symmetric relation (i.e. directly or indirectly 
related).  All variables not connected to x can be factored out from under the scope of the 
quantifier ∃x.  To see how to do this, take any quantifier-free conjunctive formula θ(x, ‾y, ‾z) in 
which x is connected to every y in ‾y and no z in ‾z.  Since it is impossible for any z to occur in the 
same clause with x or any y, we can simply separate out all clauses involving variables from 
among the ‾z as follows: 
 

∃x θ(x, ‾y, ‾z) becomes  φ(‾z) ∧ ∃x φ(x, ‾y) 
 
So without loss of generality, we can assume that each y in φ(x, ‾y) is connected to x.   

If there are no ‾y, we are done (for the sentence ∃x φ(x) is already in the correct form). 
Otherwise x must participate in at least one nontrivial equation (i.e. an equation involving another 
variable y in ‾y), which must be of the form G(x) = H(y), where G and H are compositions of the 
function symbols.  These can always be solved for x by utilizing the critical assumption of 
bijectivity to rearrange the terms: 
 

G(x) = H(y)  becomes  x = G°H(y) 
 
where G° stands for the inverse sequence of functions appearing in G, a crucial step that is only 
possible in an invertible singulary vocabulary. So assume without loss of generality that 
whenever x appears in a nontrivial equation from φ, it is already in the form x = F(y) or x ≠ F(y), 
where F stands for any composition of functions. A positive equation x = F(y) is called an 
identity, whereas a negative equation x ≠ F(y) will be called a diversity. 

After solving for x, there are two cases depending on the polarity of its equations. 
 
Case 1: If an identity x = F(y) appears in φ for some y in ‾y, just substitute the term F(y) for x 
everywhere and eliminate the quantifier:  
 

∃x φ(x, ‾y) becomes  φ(F(y), ‾y) 
 

where φ(F(y), ‾y) is the formula resulting from substituting F(y) for x everywhere in φ(x, ‾y). 
Observe that the resulting formula is of the correct form (i.e. it is quantifier-free).  Clearly, if φ 
asserts that x = F(y), then ∃x φ(x, ‾y) can only be true provided φ(F(y), ‾y). On the other hand, if 
φ(F(y), ‾y) is satisfied, then ∃x φ(x, ‾y) is satisfied by x = F(y).  
 
Case 2: Otherwise, every nontrivial equation in φ involving x must be a diversity x ≠ F(y).  The 
remaining occurrences of x in φ must be single variable occurrences.  These properties of x fall 
into two types of atomic forms: positive or negative predicates P(F(x)) or ¬P(F(x)); and trivial 
equations x = F(x) or x ≠ F(x) representing closed or open paths from x respectively. No matter 
what form they take, collect all these properties together into a formula γ: 
 

γ(x) ≡ /\ {α(x) : α(x) is a clause in φ(x, ‾y)} 
Now we can rewrite φ: 

φ(x, ‾y)     becomes    γ(x) ∧ ψ(x, ‾y) 
 
where the only clauses in ψ involving x are diversities x ≠ F(y).  As observed previously, x must 
relate to at least one y in ‾y.  In order for x to exist, it must both satisfy γ and be distinct from any 
possible “competitors” F(y) which may happen to also satisfy γ.  E.g., if none of the F(y) satisfy 
γ, then we are done, as ∃x [γ(x) ∧ ψ(x, ‾y)] is equivalent to [∃x γ(x)] ∧ ψ′(‾y), where ψ′ is ψ(x, ‾y) in 



which all appearances involving x (i.e. diversities) have been deleted.  More generally, to take 
into account all possibilities, consider any subset T of terms F(y) diverse from x:  
 

(*)  T ⊆ {F(y) : x ≠ F(y) is in ψ} 
 
This circumstance, of x ≠ T, can be pictured as follows (in the case that T is not empty):  

 
Figure illustrating situation where an element x is diverse from the terms in T.  

 
No term in T can be in competition with x unless it satisfies γ.  So let the formula γ[T] say 

that each of these terms satisfy γ: 
 

γ[T] ≡ /\{γ(F(y)) : F(y) ∈ T}. 
 
Note γ[∅] is vacuously true. 

The size of T is a reliable indicator of the number of possible competitors only if the terms in 
T are distinct from one another. So let δ[T] be the formula that says these terms are distinct: 
 

δ[T] ≡ /\{F(y) ≠ F′(y′) : F(y) & F′(y′) are distinct terms in T}. 
 
Again, δ[∅] is vacuously true. 

Claim that the following conjunction of formulas ζ(‾y) is equivalent to the original ∃x φ(x, ‾y).   
 

ζ(y) ≡ /\{δ[T] ∧ γ[T] → (∃n+1z) γ(z) : where n = |T|, and T ranges over (*)}. 
 
This says that there are more elements satisfying γ than the number of distinct terms in T that also 
satisfy γ.  Clearly, ζ is of the correct form (a combination of quantifier-free formulas or numerical 
quantifier sentences). It remains to be seen that ζ(y) is semantically equivalent to ∃x φ(x, ‾y). But 
this is pretty obvious. If γ(x) ∧ ψ(x, ‾y) is satisfied by some element x in a situation where the n 
distinct elements F(y) ≠ x of T also satisfy γ, then there are indeed more than n elements 
satisfying γ.  On the other hand, ζ says that every possible collection of n distinct elements F(y) ≠ 
x satisfying γ always leaves room for another element (namely x) which satisfies γ.   

−| 
Note: In the statement of the theorem, the quantifier-free component α can contain any atomic 
formula of singulary logic, but the sentential component β(x) contains but a single free variable 
and is therefore limited to being composed of properties of paths from x: P(F(x)) or x = F(x). This 
fact will be used in the following section on efficient computations. 
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§6 Linear-time computability 
An important consequence of the normal form theorem is a linear-time algorithm for evaluating 
any first-order formula in an invertible singulary vocabulary. Although essentially the same as the 
pioneering result of [Seese] for first-order sentences over bounded-degree graphs, we are able to 
improve upon it by extending its reach to formulas in a unique way, by attempting to give a 
convincing analysis that not only sentences, but formulas with any number of free variables can 
be realistically evaluated in linear-time, despite the apparent contradictions in output size.  

Ordinarily, evaluating a first-order formula σ(‾x) over a finite model M involves explicitly 
computing the relation determined by σ as a query: 

 
σM = {‾m‾  : M |= σ(‾m‾ )} 

 
When σ is a sentence, the outcome is either true or false, and the statement that σ is 

computable in linear-time over invertible singulary vocabularies makes perfect sense.  But even 
simple binary queries like σ(x, y) ≡ x ≠ y which are “easy” to compute produce super-linear size 
answers. Obviously, when σ(‾x) has multiple free variables we cannot hope to compute the entire 
relation determined by σM in linear-time because its size (the number of tuples) is potentially 
polynomial in the size of M, with degree equal to the arity ofx .  

A solution around this problem is to compute a partial interpretation σM(‾x) which, when 
given values ‾m‾  for the free variables ‾x, can answer in constant-time whether or not M |= σ(‾m‾ ). We 
capture this formally as a notion of implicit linear-time computability.   

 
Definition: An L-query q(‾x) is said to be implicitly computable in linear-time if for every finite L-
structure S, there is a partial interpretation qS(‾x) such that: 
 

1. Given ‾x,  qS(‾x) ⇔ S |= q(‾x) can be computed in O(1) time 
2. Given S, qS(‾x) can be computed in O(|S|) time. 
 

For a formula σ(‾x) this will mean that for each M, we will compute in time linear in M another 
formula σM(‾x) which demonstrates that we implicitly know which tuples satisfy σ over M even 
though we cannot list them explicitly. (This is no different than the trick used to compose space-
bounded algorithms in which the intermediate result exceeds the allotted bound.) The concept 
behind this is illustrated in the figure below. 

 

 
 

Method of partial interpretations used to implicitly calculate a query 
 
Using this concept of implicit evaluation, we can show that the arity of a formula in singular 

logic does not fundamentally affect the efficiency of its evaluation.  
 

Corollary: Let φ(‾x) be a first-order formula in an invertible singulary vocabulary L. Then φ((‾x) is 
implicitly computable in linear-time. 

tuple ‾m‾  

 

model M 

O(1) 

σM(‾x‾ ) partial interpretation 

M |= σ(‾m‾ ) 
 

O(|M|) 

output 

σ(‾x‾ ) 

inputs 

intermediate result 



 
Proof: By the main theorem, φ((‾x) can be written in normal form as a Boolean combination of 
sentences and quantifier-free formulas. Given an L-structure S, each of the constituent sentences 
∃kx β(x) can be explicitly evaluated in linear-time by simply scanning each node s of S to see if it 
satisfies β(s). Checking β(s) involves following bounded-length paths from s of the form F(s) to 
see if they are closed or open (equal or not equal to s), and possibly checking a predicate P there.  
This requires O(1) time for each s, together with counting the results. By substituting those 
Boolean valuations into the original formula φ((‾x), the resultant quantifier-free formula φS(‾x) is the 
desired partial interpretation.  Given values ‾s for its free variables, φS requires only O(1) time to 
answer whether or not  φS(‾s), which is obviously equivalent to S |= φ(‾s). 

−| 
To apply this result to bounded-degree graphs, note that conversion to an invertible singulary 
structure can be accomplished in linear-time, as explained in the appendix. 
 
Conclusion 
When using logic to describe the properties of mathematical structures, it is taken for granted that 
variables can be combined into tuples.  Indeed, the mathematical structures are themselves 
composed of relations involving tuples of elements. We have described singulary structures, a 
situation in which no tuples are used. These structures correspond directly to the data structures of 
Computer Science, where each node is of uniform capacity to store information. Although every 
mathematical structure, without exception, can be transformed into a singulary structure, it is 
necessary to admit elements of arbitrarily high degree.   

If these structures were stored in memory, occupying material locations in space, there would 
be a natural physical bound on the amount of matter that occupied any given place. Hence, 
physically scalable classes of structures should have bounded-degree. For a data structure, this 
corresponds to being doubly-linked, and we saw that invertible singulary structures are almost 
ideal models of this situation. Our normal form theorem applies to these symmetrically linked 
models, showing that first-order definability is much simpler than it appears. In particular, 
quantifiers need not be applied to formulas with more than one variable, permitting a very 
straightforward linear-time evaluation algorithm. For future research, perhaps similarly strong 
normal forms can be obtained for monadic fixed-point logic over invertible singulary 
vocabularies.  

It may appear that our results apply to only a very specialized situation, doubly-linked data 
structures.  But we are trying to argue that these particular models are sine qua non to the whole 
notion of an asymptotically realizable class of finite structures. For how can one speak of an 
actual class of structures being feasible if there is no physically resourceful method that realizes, 
at least in principle, each structure in the class? With a natural notion of bounded-degree built in, 
invertible singulary vocabularies provide a compelling way to model feasible classes of 
structures. These “models of information” have the desirable (indeed requisite) property that each 
datum contains a fixed amount of information, and can access (and is accessible from) only a 
fixed number of locations. 

Although we have emphasized the importance of physical feasibility, our analysis here is far 
from the last word on this subject. A more complete investigation can be found in [Lindell], 
where the finite models in a physically feasible class are embedded into a single infinite 
background structure (the universe), and functions are assigned to directions in space (instead of 
being arbitrary pointers) so that they are torsion-free (assuming that space extends indefinitely in 
every direction). However, since the results in this paper apply to the more general situation of 
arbitrary doubly-linked data structures, and avoid the extra complication of embedding, we have 
chosen to present them this way. 
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Appendix 
 
Summary 
Here we illustrate the precise connection between bounded-degree (simple) graphs, doubly-linked 
data structures, and invertible singulary structures. The goal is to get from a simple graph of 
degree d to an invertible singulary structure in time O(n), where n is the number of nodes. The 
key technique is to use a local ordering of the outgoing and incoming edges at each node.  
 
Preliminaries 
In a simple graph of degree d, arbitrarily number the edges at each vertex 1, …, d to make them 
into (outgoing) arrows f1,… , fd for a data structure. I.e. fi(x) = y if from x there is an edge labeled i 
which leads to y. Set fi(x) = x when there is no ith edge (i.e. a nil). 

 
E(x, y) ≡ \/ {fi(x) = y : x ≠ y, 1 ≤ i ≤ d} will define the original edge relation of the graph.  The 
result is a doubly-linked data structure, in the sense that for each link x → fi(x) = y, there is a 
reverse link fj(y) = x ← y (for nils, i = j). But the functions themselves might not be injective.  To 
make (partial) injective functions, let fi,j(x) = y if an edge leaving x at position i enters y at 
position j.  

 
Clearly, each fi,j is one-one, and fi,j

-1 = fj,i except where it is undefined. This creates a doubly-
linked data structure in which there is a uniform correspondence between each link and its 
reverse, even though there are a lot of nil values (places where fi,j = ⊥). The original data 
structure, modeled by functions fi where i refers to the exit position only, can be recovered by 
letting fi(x) ≡ fi,j(x) for the unique j for which fi,j(x) is defined.  
 
Final step 
(This is also discussed in the main body of the paper.) Each partial injective function can be made 
total (and hence surjective) by wraparound: if f(x) = ⊥, then define f(x) = f −k(x) for the unique 
integer k ≥ 0 such that f −k−1(x) = ⊥. This takes linear time to process, amortized over all nodes. It 
is necessary to add a predicate at the front to record the original nil value, (which could also be 
used if desired to allow for self loops in the original graph).  

 
Each constructed bijective function is necessarily a permutation – a collection of disjoint cycles in 
a finite structure – which leads directly into the definition of invertible singulary structures. 
 
Note 
This will also work for directed graphs (data structures of bounded indegree and outdegree) by 
using additional predicates to mark the reverse edge fj,i as a “fake”.  
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