
Yi-Chuan Chou and Yun-Mei Hsiung: A Normalized Equation of Axially Loaded Piles in Elasto-Plastic Soil    1 

Manuscript received June 30, 2008; revised August 20, 2008; ac-
cepted September 3, 2008. 

1 Lecturer, Department of Construction Management, Tungnan
University, Shenkeng Township, Taipei County 222, Taiwan,
R.O.C. (e-mail: ycchou@mail.tnu.edu.tw). 

2 Professor (corresponding author), Department of Construction
Management, Tungnan University, Shenkeng Township, Taipei
County 222, Taiwan, R.O.C. (e-mail: hsiung@mail.tnu.edu.tw). 
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ABSTRACT 

Based on the elasto-plastic soil model, a set of normalized equations of axially loaded piles are established. It was found that 
the curves of normalized load-characteristic value of piles or normalized settlement-characteristic value of piles are distributed in 
a range and bounded by two lines. The upper bound is the curve of high end bearing pile and the lower bound is the curve of the 
pure friction pile. Due to the character of axially loaded piles, the normalized equations present a simple and effective approach to 
evaluate the load and settlement of piles. 
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1. INTRODUCTION 
The pile is widely used in the geotechnical engineering, es-

pecially the axially loaded piles, because piles will increase the 
bearing capacity and decrease the settlement of foundation effec-
tively in soft layers. In general, the allowable settlement of 
structure controls the design of foundation. Hence, the load-   
settlement relation of piles is most concerned by the geotechincal 
engineers. 

The relationship of shear stress and displacement along the 
pile of real soil is nonlinear and varies with the depth as shown in 
Fig. 1. Hence, the close form solution is unavailable in the usual 
case. For example, if the relation of shear stress and displacement 
is a hyperbolic function, the solution must be expressed by an 
elliptic function. If the relation of shear stress and displacement 
of soil is constant but linearly varies with depth, the solution 
must be expressed by the Bessel function (O’Neil, 1991). Both 
the elliptic function and Bessel function are very complicated. 
These solutions must be resort to the numerical analysis. 

The load transfer method (t-z curve) presented by Coyle and 
Reese (1966) is a very popular numerical method used in the pile 
engineering. Although this method is very effective and simple, 
the computer work is unavoidable. The purpose of this paper is to 
present a convenient equation for the axially loaded piles in 
elasto-plastic soil in normalized form for geotechnical engineers. 
This normalized equation will provide us an easy way to predict 
the pile behavior. The solutions can be calculated without diffi-
culty using a calculator.  

2. FORMULATION 

Since it is only possible to obtain exact solutions for rela-
tively simple problems, the elasto-plastic soil model to be con 

 
Fig. 1  Axially loaded pile and soil model 

sidered is shown in Fig. 1(a). Before the soil displacement 
reaching the yielding displacement w*, the soil behaves elasti-
cally. In the elastic range, the shear stress increases linearly with 
displacement. Once the displacement of soil attains the yielding 
displacement w*, the shear stress keeps constant as long as the 
displacement increases. The ratio of maximum shear stress fs to 
the yielding displacement w* is the coefficient of subgrade reac-
tion in shear stress ks. 

2.1 Elastic Condition 

In this analysis, a circular solid pile of length l and outer 
diameter d is considered. The elastic modulus of pile shaft is E. 
For the Winkler model, the surrounding soil layer and end bear-
ing layer is assumed to have a constant subgrade reaction of 
shear stress ks and subgrade reaction of vertical stress kt, respec-
tively. The strength of the end bearing layer is usually equal to or 
higher than that of the surrounding soil layer. If a load P is ap-
plied to the pile top as shown in Fig. 1(b), the settlement of the 
pile (w) along the depth z is controlled by the following differen-
tial equation (Scott, 1981)  

2
2

2 0d w w
dz

− λ =   (1) 

Journal of GeoEngineering, Vol. 4, No. 1, pp. 1-7, April 2009 

displacement 

stress

non-linear model 
elasto-plastic model 

fs

W∗

elastic zone 

plastic zone

Pt

z0

w0

′

(a) (b)



2  Journal of GeoEngineering, Vol. 4, No. 1, April 2009 

sdk
EA

π
λ =   (2)  

in which A = the cross area of pile and λ = the characteristic 
length of pile. For Eq. (1), the general solution includes two con-
stants as follows,  

1 2
z zw C e C e−λ λ= +   (3) 

The two boundary conditions considered are: at the pile top 
z = 0, F = P; at the pile tip z = l, F = Pt = Awl kt. The variable wl 
is the displacement of the pile tip. Based on the general solution, 
the constant C1and C2 are solved. Thus, the pile settlement at the 
pile top is  
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From Eq. (4), the force at the pile top is  
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Because of the special form of the equation above, we can define 
a function of hyperbolic tangent of η which equals the value of  
kt / λE. The variable η is the characteristic value of the end bear-
ing capacity of the pile.  

tanh( ) tk
E

η =
λ

  (6) 

The hyperbolic tangent of η is in proportion to the subgrade 
reaction of vertical stress kt and is inverse to λE. We will see later 
that tanh(η) is in terms of the ratio of the elastic modulus of soil 
at the pile tip to the elastic modulus of the pile shaft. Then, it is 
interesting to note that the relationship between the applied force 
and settlement involves a hyperbolic tangent function: 

0 tanh( )P EAw l= λ λ + η   (7) 

in which λl is the characteristic value of the pile. Both λl and η 
are nondimensional value. In the elastic condition, a linear rela-
tion exists between the settlement and load at the pile top. It is 
seen apparently in this compacted form that the contribution of 
the values of η and λl to the pile is in the hyperbolic tangent 
function. If the value of η equals zero, a pure friction pile, the 
value of λl will dominate the behavior.  

2.2 Elasto-Plastic Condition 

As the load on the pile top increases, the soil surrounding 
the pile begins to yield downward. As the soil yields to a depth of 
z0, the pile can be divided into two parts in the analysis as shown 
in Fig. 1(b). In the upper part, the soil is yielding to the depth of 
z0. In the lower part, the soil is still in an elastic condition to the 
range of length l '. Since the shear stress keeps constant in the 
plastic zone, the differential equation is similar to Eq. (1) and 

may be expressed as 

2
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In which fs = ks w*. There are two constants to be determined in 
the general solution. The first condition considered at the pile top 
is: z = 0; F = P or w = w0. The connected point C provides the 
second condition. For the elastic zone, at the connected point C, 
the settlement is w* and the force is Pz0. From the elastic solution 
in Eq. (7), Pz0 = λEaw* tanh(λl ' + η).  Hence, the load applied to 
the pile top may be expressed as  

'
*  0tanh( ) sP EA w l df z= λ λ + η + π  (9) 

the settlement at the pile top is therefore  
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Corresponding to the change of l ' or (l − z0), Eqs. (9) and (10) 
give the load and settlement at the pile top. The ultimate load is 
the load as the friction along the pile is fully mobilized, i.e., l ' = 0. 
In the derivation above, the soil of end bearing capacity is as-
sumed in the elastic condition. Basically, both the load and set-
tlement of pile are controlled by the characteristic value λl and η 
as in the elasto-plastic condition. If two different pile-soil sys-
tems constitute the same λl and η values, they will display the 
same behavior.  

From Eq. (9), as the settlement at the pile top just equals w*, 
the corresponding load is very useful in the application and is 
denoted as the normalized load factor Pc 

* tanh( )cP EA w l= λ λ + η   (11) 

3. SOIL PARAMETERS 

In the elastic theory, the parameters are the soil modulus Es 
and Poisson ratio ν. Since the variation of the value of Poisson 
ratio is in a narrow range and has little influence on the calcu-
lated result, a constant value of 0.35 or 0.4 usually will be used in 
the analysis. These parameters can be obtained conveniently 
from laboratory or field test. In the Winkler model, the soil pa-
rameters are the coefficient of subgrade reactions ks for side fric-
tion and kt for end bearing of the pile. These parameters are usu-
ally obtained from experiences or back analyses via in-situ pile 
tests.  

Based on the elastic theory, Scott (1981) derived the rela-
tions of the coefficient of subgrade reactions kt and ks, respec-
tively, as follows:  

2(1 )
s

t
Ek

d
=

− ν
  (12) 
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In which d is the diameter of the pile. The value of kt is four 
times of ks. The value of some typical elastic modulus of soil for 
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engineering purpose has been compiled by Das (1999) and is 
listed in Table 1. The corresponding values of kt and ks using Eqs. 
(12) and (13) as diameter equal 1 m are listed in Table 1 also for 
reference. Although the Eqs. (12) and (13) are very simple, they 
are very useful for the preliminary estimation. 

For the in-situ concrete piles, the elastic modulus of pile 
shaft depends on the yielding strength of concrete. The value is 
about in the range of 2.0 ~ 2.4 × 107 kN/m2. The ratio of pile 
length to diameter (l / d) is in the range of 20 ~ 50. The less the 
ratio, the more rigid the pile. Conversely, the larger the ratio, the 
more compressible the pile. 

Substituting Eq. (13) into Eq. (2), we obtain  

2(1 )
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dE
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  (14) 

If the influence of Poisson ratio is ignored, the value of λl will 
underestimate about 6%, then the approximate relation is 

sE ll
E d

⎛ ⎞λ ≈ ⎜ ⎟
⎝ ⎠

  (15) 

The characteristic value of the pile is in terms of the ratio of 
length to diameter and the ratio of elastic modulus of soil to that 
of the pile shaft. According to the ratio suggested by Poulos and 
Davis (1980), the values of λl for various types of soil are calcu-
lated using Eq. (15) and listed in Table 2. Based on the value of 
λl, the pile can be divided into two categories. For a rigid pile, 
the value of λl is equal to or less than 0.5. For the compressible 
pile, the value of λl is larger than 0.5. It will be seen in an equa-
tion later, the amount of normalized settlement is in proportion to 
the square of λl. 

Substituting Eqs. (12) and (15) into Eq. (6), we obtain 

2 2tanh( )
(1 ) (1 )

s bE E
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If the influence of Poisson ratio is ignored, the value of tanh(η) 
will underestimate about 6%. Then the approximate relation is  

tanh( ) bE
E

η ≈   (17) 

The characteristic value of the end bearing capacity of the pile is 
in terms of the ratio of elastic modulus of soil at the pile tip to the 
elastic modulus of the pile shaft. The end bearing layer of the pile 
is usually stiff or dense soil or bed rock. Hence, the symbol Eb is 
used instead of Es. Deere and Miller (1966) presented a classifi-
cation graph for intact rock specimens based on the ratio of the 
elastic modulus to the unconfined compressive strength, together 
with the absolute value of the latter. For most rocks, the ratio   
E / qu lies in the range of 200 to 500. Hence, three classes are de-
fined as follows: For the higher class, the ratio is larger than 500. 
For the medium class, the ratio is between 200 and 500. For the 
lower class, the ratio is less than 200. Some relevant values of 
rocks and the calculated values of η are listed in Table 3.  

Based on the value of η, the pile can be divided into four 
categories. For the pure friction pile, the value of η is zero. For 

Table 1  Soil parameters 

Soil type Es (MN/m2)* ks (MN/m2)# kt (MN/m2)+ 

Soft clay 4 ~ 21 1.14 ~ 5.99 4.56 ~ 23.94 

Medium clay 21 ~ 41 5.99 ~ 11.69 23.94 ~ 46.74 

Stiff clay 41 ~ 96 11.69 ~ 27.36 46.74 ~ 109.44

Loose sand 10 ~ 24 2.85 ~ 6.84 11.40 ~ 27.36 

Medium sand 17 ~ 28 4.85 ~ 7.98 19.38 ~ 31.92 

Dense sand 35 ~ 55 9.98 ~ 15.68 39.90 ~ 62.70 

*  Das (1999) 
#  By Eq. (12) for d = 1m, ν = 0.35. 
+  By Eq. (11) for d = 1m, ν = 0.35. 

Table 2  Value of λl 

Soil type E / Es * l  / d λ l 

Soft clay 6000 20 0.26 

Medium clay 2000 35 0.78 

Stiff clay 300 50 2.89 

Loose sand 1500 20 0.52 

Medium sand 1000 35 1.11 

Dense sand 500 50 2.24 

* Poulos (1980) 

Table 3  Value of η 

Rock type qu (kN/m2) E*/qu Eb Eb /E tanh (η) η 

Stiff clay 2000 150 3.0×104 0.0135 0.116 0.12 

Soft rock 5000 200 2.0×105 0.045 0.23 0.22 
Medium 

rock 20000 300 6.0×105 0.27 0.52 0.58 

Medium 
rock 25000 400 1.0×106 0.45 0.67 0.81 

Hard rock 40000 500 2.0×107 0.91 0.95 1.80 

Hard rock 40000 520 2.08×107 0.95 0.97 2.10 

* E = 2.2×107 kN/m2 
 
 
the stiff clay or soft rock, the lower end bearing capacity, the 
value of η is between 0.01 and 0.5. For the medium end bearing 
capacity, the value of η is between 0.5 and 1.5.  

For the hard rock, the end bearing capacity, the value of η is 
between 1.5 and 3.0. Since the limiting value of hyperbolic tan-
gent function is one and the value of tanh(3.0) is 0.99, it is rea-
sonable to adopt η = 3.0 to be the upper bound for end bearing.  

Regarding the yielding displacement of soil, it is hard to de-
termine from the elastic theory. The value of the yielding dis-
placement depends on the soil properties and pile dimensions. 
Vijayergiya (1977) has compiled some information of yielding 
displacement from in-situ pile tests, and this information is listed 
in Table 4 for reference. 

4. NORMALIZED EQUATION OF LOAD AND 
SETTLEMENT  

The equation of load or settlement derived above can be 
written in a normalized form when the normalized load factor Pc 

(in Eq. (11)) and normalized displacement factor w* are used. 
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Table 4  Yielding displacement of soil, w* (Vijayergiya, 1977) 

In clay In sand 
Pile size (mm) w* (mm) Pile size (mm) w* (mm) 

152 3.05 323 6.35 
406 2.54 ~ 7.62 406 5.08 ~ 10.16 
610 7.62 ~ 10.16 457 12.70 ~ 25.40 
762 10.16 ~ 20.32 610 10.16 

 
 
For the solution of elastic condition, the normalized equation 
obtained from Eq. (7) is 

0

*c

P w
P w

=   (18) 

It is a linear relation. It means that the settlement will be in pro-
portion to yielding displacement as the applied load is less or 
equal to the normalized load factor Pc.   

For the elasto-plastic condition, the normalized form of the 
Eqs. (9) and (10) are 

( ) tanh( )
tanh( )c

P l l l
P l

′ ′λ − λ + λ + η
=

λ + η
 (19) 

( )20

*

11 ( ) 2( ) tanh( )
2

w l l l l l
w

′ ′ ′= + λ − λ + λ − λ λ + η  (20) 

Both the normalized load equation and normalized settlement 
equation are parametric functions of λl, λ l ' and η. The parameter 
λl stands for the property of the pile-soil system. The parameter λ 
l ' and η stand for the amount of load mobilized along the pile and 
end bearing capacity, respectively. The value of η is related to 
the characteristic length λ of pile as shown in Eq. (6). The higher 
the value of η, the large the end bearing. As η = 0, it is a pure 
friction pile. Therefore, the solution implies that the pure friction 
pile is a special case of the end bearing pile.  

As the shear stress along the pile is fully mobilized, i.e., l ' = 
0, the Eqs. (19) and (20) will be simplified to the following equa-
tions: 

( ) tanh( )
tanh( )

u

c

P l
P l

λ + η
=

λ + η
  (21) 

( )20

*

11 ( ) 2( ) tanh( )
2

w l l
w

= + λ + λ η  (22) 

These relations provide us a simple way to evaluate the ul-
timate load or settlement in terms of the normalized load factor 
Pc and normalized displacement factor w* as the friction is fully 
mobilized along the pile.  

For comparison, the curves of the normalized equations are 
plotted in Figs. 2 and 3 with varying characteristic values of λl 
and η. The value of η is specially assigned, i.e., η = 0.0, 0.5, 1.5 
and 3.0. It is seen that these curves are more and more close to-
gether as the value of η increases. It is clear to see that these 
curves will approach a limiting value as η ≥ 3.0.  

4.1 Lower Bound Curve 

For the pure friction pile, i.e., η = 0, the Eqs. (21) and (22) 
will reduce to 

( )
tanh( )

u

c

P l
P l

λ
=

λ
  (23) 

20

*

11 ( )
2

w l
w

= + λ   (24) 

Equation (23) is a transcendental function and gives the ultimate 
load of pile. Equation (24) is a parabolic function and gives the 
settlement of the pure friction pile. There is a single point corre-
sponding to each characteristic value of the pile. The points for η 
= 0 are connected using the solid line as shown in Figs. 2 and 3. 
This curve represents the lower bound for a family of curves of 
the normalized load or normalized settlement.  

4.2 Upper Bound Curve 

If η ≥ 3.0, as the pile is installed on the very hard bed rock, 
tanh(η) ≅ 1 and tanh(λl + η) ≅ 1. For this high end bearing pile, 
Eqs. (21) and (22) will reduce to 

1u

c

P l
P

= + λ   (25) 

 
Fig. 2  Normalized load-λl curve 

 
Fig. 3  Normalized settlement-λl  curve 
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20

*

1 1 (1 )
2 2

w l
w

= + + λ   (26) 

Equation (25) is a linear function and gives the ultimate load 
of pile. Equation (26) is a parabolic function and gives the set-
tlement of pile. These two equations are plotted in Figs. 2 and 3 
using the long dashed line to represent the upper bound of the 
normalized load or normalized settlement curves. In the figure, 
there are another two curves for η = 0.5 and η = 1.5 bounded by 
the upper and lower curves.  

Due to the hyperbolic tangent function existing in Eq. (23), 
it seems complicated at first glance. However, as the value of λl 
increases, the value of tanh(λl) will approach one. Therefore, the 
term on the right side of Eq. (23) will become λl. Comparison 
between Eqs. (23) and (25) shows that the difference is one. It is 
not hard to see in Fig. 2, the lines representing these functions are 
parallel as λl is larger than 2.0.  

It is interesting to note that both Eqs. (24) and (26) are 
parabolic functions. It means that the amount of the normalized 
settlement is in proportion to the square of λl. The difference of 
these two equations is λl. It is evident to see in Fig. 3 that the 
distance between the upper and lower bounds increases with the 
increase of λl. 

5. APPLICATION  

Although the pile considered in the previous formulation 
belongs to in-situ concrete piles, these equations are still avail-
able for driven piles with hollow sections. For pipe piles, the area 
of the pile shaft in the calculation is the cross section area instead 
of the total area. In practice, the equations involve two different 
conditions as follows: 
1. If the applied load is equal to or less than the normalized load 

factor Pc, the soil is in the elastic condition, and Eq. (18) is 
used. 

2. If the applied load is larger than the normalized load factor Pc, 
part of the soil has arrived to yielding condition, and Eqs. (19) 
and (20) are used. 

5.1 Example 

A bored pile was installed in the medium clay of length 50 
m and diameter 1 m. From soil tests, the elastic modulus of soil is 
found to be Es = 30000 kN/m2, and the yielding displacement of 
soil is w* = 0.5 cm. In the analysis, elastic modulus of pile shaft E 
= 2.2 × 107 kN/m2 is used. Compute the settlement and load on 
the pile top as the pile is fully mobilized under the two conditions; 
A: For the pure friction pile, B: For the pile with end bearing 
capacity.  

Solution: 
From Eq. (13), for d = 1 m and ν = 0.35 then ks = 8550 kN/m3  
From Eq. (12), for d = 1 m and ν = 0.35 then kt = 34200 kN/m3  
For condition A: η = 0. 
From Eq. (2), λ = 0.039 and then λl = 1.95   
From Eq. (11), Pc = λEAw∗ tanh(λl + η) = 3233 kN 

From Eq. (23),
( ) 2.03

tanh( )
u

c

P l
P l

λ
= =

λ
, Pu = 6563 kN 

From Eq. (24), 20

*

11 ( ) 2.9
2

w l
w

= + λ = , 

w0 = 2.90 × 0.5 = 1.45 cm 
For condition B:  
From Eq. (6), tanh(η) = 0.04  then  η = 0.04  

From Eq. (11), Pc = λEAw∗ tanh(λl + η) = 3243 kN 

From Eq. (21),
( ) tanh( ) 2.07
tanh( )

u

c

P l
P l

λ + η
= =

λ + η
, Pu = 6713 kN 

From Eq. (22), ( )20

*

11 ( ) 2( ) tanh( ) 2.98
2

w l l
w

= + λ + λ η = , 

w0 = 2.98 × 0.5 = 1.49 cm 

It is seen that the equation obtained above provides a simple 
and effective way for both the pure friction and end bearing pile. 
The curves in Figs. 2 and 3 present an easy chart to obtain the 
answer. For condition A in the example, it is a pure friction pile. 
The lower bound curve in Figs. 2 and 3 gives the answer. For 
condition B in the example, it is an end bearing pile with η = 0.04. 
The value of η is small. Then the curve of η = 0 in Figs. 2 and 3 
can provide the answer with enough accuracy. For the other con-
ditions which are not included in Figs. 2 and 3, an approximate 
answer will be obtained through interpolation. 

5.2 Case Study  

A bored pile was installed in the medium silt clay and the 
end bearing layer is sandstone. The length of pile is 45 m, and the 
diameter is 1 m. In the field, the load test procedure follows the 
conventional static load test. Since it belongs to a proof test, there 
is no instrument on the pile. The maximum load of the load test is 
6000 kN.  

Based on the record of the field test shown on the paper of 
Hsiung and Hung (2004), the elastic modulus of pile shaft E is 
2.2 × 107 kN/m2, the yielding displacement of soil w* is 2.6 mm, 
ks is 12000 kN/m3 and kt is 684000 kN/m3. What is the load and 
settlement of this pile using the normalized equations offered in 
this paper? 
Solution: 
From Eq. (2), λ = 0.0466  then  λl = 2.1 

From Eq. (6), tanh(η) = 0.668  then  η = 0.81   
The value of λl is more than 0.5, the pile belongs to com-

pressible piles. The value of η is more than 0.5, the pile belongs 
to medium end bearing piles. The first point to be considered is 
that the settlement at pile top just equal to the yielding displace-
ment of soil.  
From Eq. (11), Pc = 2072 kN and w0 = 2.6 mm.  

As the load on the top of pile increases, the mobilized fric-
tion of pile goes gradually downward. For example, λl ' equals λl 
in the beginning, then λl ' equals 0.8λl, 0.6λl, …, and 0.2λl. The 
final point to be considered is under the condition of friction fully 
mobilized, λl ' = 0.0λl.  

From Eq. (21), 2.79u

c

P
P

= , the applied load is Pu = 5773 kN. 

From Eq. (22), 0

*
4.61w

w
= , the settlement is w0 = 11.99 mm. 
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Table 5 Calculated loads and settlements of the pile in the 
case study 

λl′ P0 / Pc w0 / w* P (kN) w (mm) 
2.10 1.00 1.00 2072 2.60 
1.68 1.41 1.50 2931 3.91 
1.26 1.82 2.17 3770 5.63 
0.84 2.20 2.96 4562 7.71 
0.42 2.54 3.83 5258 9.95 
0.00 2.79 4.61 5773 11.99 
 
 
The load and settlement of these points are calculated using 

Eqs. (19) and (20) and listed in Table 5. For comparison, the 
calculated points and the field test data are plotted together in Fig. 
4. Since the elasto-plastic soil model is considered in the equa-
tions derived, the load-settlement relation displays nonlinear be-
havior when the load is more than the normalized load factor Pc. 

Actually, the ultimate load of this test pile should be more 
than 5773 kN. Because the soil of end bearing capacity is as-
sumed in the elastic condition in the equation derived, the ulti-
mate capacity of bearing layer is not mobilized fully. This as-
sumption will induce that the estimated bearing capacity is on the 
conservative side. This is the limitation of equations developed in 
this presentation. However, the coincidence or the tendency be-
tween the test record and calculated value is quite well. It is evi-
dent that the normalized equations provide a simple and effective 
way to evaluate the load or settlement of the pile.  

6. CONCLUSIONS 

From the equations derived, data analysis and comparison of 
case study described in the paper, the following conclusions are 
drawn:     
1. Based on the elasto-plastic soil model, a set of normalized 

equations of axially loaded pile have been established. If the 
applied load is equal to or less than the normalized load factor 
Pc, a linear relationship exists between the normalized load 
and settlement. If the applied load is larger than the normal-
ized load factor Pc, two parametric equations of λl and η pre-
sent the relationship of the normalized load and settlement, 
respectively. These equations provide a simple and effective 
way to evaluate the load or settlement of the pile, and the so-
lutions can be calculated using a calculator. 

 
Fig. 4  Load-settlement curve of case study 

2. The behavior of axially loaded piles is determined by two 
nondimensional variables, λl and η. The variable λl is the 
characteristic value of the pile and the variable η is the char-
acteristic value of the end bearing capacity of the pile. Based 
on the value of λl, the pile can be divided into two categories: 
the rigid and compressible piles. Based on the value of η , the 
pile can be divided into four categories: pure friction, low, 
medium, and high end bearing capacity.  

3. Basically, the dominant parameters in the equations are the 
yielding displacement, coefficient of subgrade reactions of 
shear stress ks and vertical stress kt. These parameters are usu-
ally obtained from experiences or back analyses via in-situ 
pile tests. The relations suggested by Scott (1981) are useful 
for the preliminary estimation. 

4. The curves of the normalized load-λl and normalized settle-
ment- λl for various value of η are distributed in a range and 
bounded by two curves. The upper bound is the curve for the 
high end bearing pile of η = 3. The lower bound is the curve 
for pure friction pile of η = 0. The mathematical functions of 
these curves are simple. These curves present a chart to de-
termine the load or settlement of pile easily and effectively.  

5. Because the soil of end bearing capacity is assumed in the 
elastic condition, the ultimate capacity of bearing layer is not 
mobilized fully. This assumption will induce that the esti-
mated bearing capacity of pile is on the conservative side. 
This is the limitation of equations developed in this presenta-
tion.  

NOTATIONS 

The following symbols are used in this paper. 

 A = cross section area of pile 
 d = pile diameter 
 E = elastic modulus of pile shaft 
 Eb = elastic modulus of end bearing soil  
 Es = elastic modulus of pile shaft soil 
 I = moment inertia of pile shaft 
 fs = maximum shear stress of soil 
 kh = coefficient of subgrade reactions of lateral stress 
 ks = coefficient of subgrade reactions of shear stress 
 kt = coefficient of subgrade reactions of vertical stress 
 l = pile length 
 P = pile load 
 Pc = normalized load factor 
 Pu = ultimate load 
 w0 = settlement at pile top 
 wl = settlement at pile tip 
 w* = yielding displacement   
 w = settlement of pile 
 λ = characteristic length   
 λl  = characteristic value of pile 
 η = characteristic value of end bearing 
 ν = Poisson ratio of soil 
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