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ABSTRACT

Modal Interacton refers to the way that the modes of a
structure interact when its geometry and material
properties are perturbed. The amount of interaction
between the neighboring modes depends on the closeness
of the natural frequencies, the mode shapes, and the
magnitude and distribution of the perturbation. By
formulating the structural eigenvalue problem as a
normalized modal eigenvalue problem, it is shown that
the amount of interaction in two modes can be simply
characterized by six normalized modal parameters and
the difference between the normalized frequencies. In
this paper. the statistical behaviors of the normalized
frequencies and modes are investigated based on a
perturbation analysis. The results are independently
verified by Monte Carlo stmulations.

INTRODUCTION

Variations in manufacturing. measurement., and
material properties always cause engineering structures
to vary a certain amount from their nominal design.
Whether or not this variation significantly affects the
structure’s dynamic response depends on the magnitude
of the variation and the characteristics of the original
design. For systems with well separated natural
frequencies, first-order perturbation theory (Fex and
Kapoor, 1968) shows that the changes in natural
frequencles and modes are small If the variation [s small.
The statistical behavior of the frequencies and modes of
systems with well separated natural frequencies have
been extensively studied. for example, by Coliins and
Thomson (1969) and Kiefiing (1970). However, it is not
unusual for a two- or three-dimensional structure to

have closely spaced natural frequencies. in this case,
simple perturbation theory Indicates that the
contributions from the unperturbed neighboring modes
to a perturbed mode are significant and can result in
large variations in the actual mode shapes.

This result has practical implications to gas turbine
blading. Modern iow aspect ratio blades often have
natural frequencies that are close together. As a result,
the modal stress fields of these modes could be highly
variable from one blade to the next. This has clear
implications to vibration testing and fatigue prediction. If
the modal stress fields are highly variable then it
becomes more difficult to characterize the stress ratios
for a blade, more strain gages may be required, and it
may be necessary to test more blades to assess scatter.
For engineers.encountering systems with frequencies
that are close together an important concern Is how close
do the frequencies have to be before the modes become
highly sensitive to structural variations. This concern
provides the motivation for this study.

Papers by Sobezyk (1972) and by Schiff and Bogdanoff
(1972) addressed the Issue of predicting the frequency
variation that occurs when the structure is perturbed,
but did not discuss the variation In the mode shapes.
More recently, the Stochastic Finite Element Method has
been widely applied to this class of problems. for example
refer to Vanmarcke and Grigoriu (1983). Shinozuka and
Yamazaki ([988), or Ramu and Ganesan (1993]). The
drawbacks of this method are that it is computationally
intensive and case specific. Consequently, the results of
an analysis on one structure cannot be readily
transferred to another.
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In this paper. the problem of modal interaction is
formulated in terms of a normalized modal eigenvalue
problem. A first-order perturbation solution is presented
for the case of two modes. The statistical behavior of the
normalized frequencies and modes are then determined
from the results of the perturbation analysis. The range
of validity of the perturbation solution is then examined
by independent Monte Carlo simulations.

NORMALIZED MODAL EIGENVALUE PROBLEM
Consider the structural eigenvalue problem for an
unperturbed system,

2
K°%9° = M°@°0° ()

where K2 and M are the stiffness and mass matrices.
If ¢f and m? are the i-th mode shape and natural
frequency of the unperturbed system, then @° and 02°
are the unperturbed modal and frequency matrices
defined as:

¢° = [¢? ¢g ¢Rr] 2

02° = diag(mf ©J - "’?\I) (3

where N is the number of degrees of freedom of the
system. When the system Is perturbed by variations in
its structural properties, the stiffness and mass matrices
are assumed to change by AK and AM. respectively.
The perturbed structural eigenvalue problemn can then be
written as

(K° + Ax)d: - (M° + AM)¢.(22 : )

where @ and (2 are the modal and the frequency
matrices of the perturbed system with the following
expressions,

O =(¢; 92 ON] (5)

2= dfﬂ.g(&)j o - GJ3) (6)

where ¢; and @; are the i-th perturbed mode and its
associated natural frequency. Since the unperturbed
modes form a complete basis, it is possible to express the
perturbed mode ¢ in terms of the unperturbed modes

o]
¢ -

$;=% ¢ oy (7)
i

where @ is the component of the i-th unperturbed mode
in the j-th perturbed mo;l‘[e. By substituting (7) in (4) and
premultiply (4) by ¢° . (4) implies, because of the
orthogonality of modes,

QO(I + AL )2°Cy = (I + Al }Cu 22 (8)

where Cy = (a- ) Is the coefficient matrix of as. Under
the assumption of unit modal mass, the perturbations in
the normalized modal stiffness and mass matrices are

-1 T -1
Al = 2° @9 AKPOQ° (9)

T
Al = % AM@° (10)

Now, if the normalized frequency matrix is defined as

r==0 1y

ES
@

where @ is a frequency_ reference,
I'=diag(y; y2 -~ vn). and 7 =w;/@. then. by
combining (11) and (8). the normalized modal eigenvalue
problem is formulated as

oI+ AL )IPCq = (I + Al )Co T2 (12)

It should be noted that, in the case of zero
perturbations, that is, when Al}. and Al are zero, the
eigen-solution for (12) is

r=r° and C,=CS=1I (13)

which means that the natural frequencies remain the
same and each “perturbed” mode has only the
component of the corresponding unperturbed mode. In
general, when Al and Al are non-zero, the coefficient
matrix Cp will not be a diagonal matrix. This indicates
that the perturbed modes have non-zero components
from several unperturbed modes. Clearly, the amount of
modal interaction depends on how the coefficient matrix
C, changes. Note that Cg is only dependent on the
perturbations in the normalized modal matrices ( Al
and Aly) and on the distribution of the normalized
frequencies I?. As a result, equation (12) has resulted
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in isolating the issue of how close the unperturbed
frequencies must be to have significant modal interaction
from the effect of the perturbations in the modal stiffness
Al and the modal mass Alpy,.

PERTURBATION ANALYSIS

In order to gain better Insight into the modal
interaction problem conslider the case of a system that
consists of two closely spaced modes. Assume the two
modes have unperturbed natural frequencies aJ? and
mg. Then, by letting

- 1 o o
(D—-z—((t)l +(t)2 [14)
1l o__.o .
d= 2E|a)1 034 (15)
kil kiz :
Al = (16)
kiz k22
mj) mpz
Al = (17)
mj2 maz

the normallzed modal eigenvalue problem can be written
as

1-6 0 Y1+ky; kjo 1-§ 0O ajj
0 1+6| kjz 1+kpz 0 1+6])|ag;

l1+myp; mjyo aj
=y J (18)
mjo l1+moo az_;

where 7y; and [aU agle are the j-th normalized
frequency and mode shape of the perturbed system.
Assuming that k;y and my are small quantities and
negiecting higher order terms in ky and my, the
solution for (18) is

71 5(1—6)[1+%-3-—£n§1-1-) (19)

= k22 m22)
={1+8) 1+ 2= 22 20
y2 =(1 5)( 2 (20)

[au 012]_
agy agz

)]

(1 -52)k12 ~(1-8)%m;3
- 45

(1-52}k12 ~(1+8)%my2
448 (21)

1

where ¥; and y9 are the perturbed frequencies, gy Is
the component of the second unperturbed mode In the
first perturbed mode, and a2 Is the component of the
first unperturbed mode in the second perturbed mode.
Note that when & is small, (21) implies that the
interaction between neighboring modes can be quite
large, even though the structural perturbations are
small.

Once the expressions in (19)-(21) were developed. it
was possible to define the statistical behaviors of ¥;. ¥2.
ag). and @p2. Assume that the small quantities ky
and mj are normally distributed about their mean
values g- and My with standard deviations o), and
Om g respectively. The mean values for the frequencies
and’the amount of medal interaction can be obtained by
simply substituting ky and my in (19)-(21) by ky and
My. By applying basic multivariate statistical analysis,
the standard deviations of ¥;. ¥2. G2;.and ;g are

(1-9)
2

o-,n = Jof” + O'fnn —2COV(k11.m11) (22)

(146
Oy, =(;2).Ja,322 +c‘ﬁ1 2 - 2cov{kzz.mz2z) (23

2

1 2y2 4
aa2,=4_5[(1-5 o2 +1-802

1/2
~2(1-52)(1- 8% cov(ksz.my 2)] (24)
o =L (1—62)202 +(1+ 6)402
a2 7 45 k2 mj2
' 1/2
--2(1— 62)(1+ 5)2 cov(k;z.m12)] ' (25)
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Equations (22)-(25) give a simple way of calculating -

the standard deviations of the normalized natural
frequencies y; and ¥2 and the amounts of the modal
interaction ag) and )4 for a given frequency difference
26 when the standard deviations and covariances of the
six normalized modal perturbations are small.

MONTE CARLO SIMULATION

Jwo-Mode Case Study

In order to explore the limitations of the perturbation
analysis, a Monte Carlo simulation is conducted for the
normalized modal eigenvalue problem defined by (18).
The mean values and the covariances of the normalized
modal perturbations are assumed to be zero. The mass
and stiffness standard deviations are assumed to be the
same, that is,

O =0k = Omy vi, j (26)

Since the case of closely spaced modes is of primary
interest, the frequency difference 28 will be assigned
values significantly less than one. The results of the
Monte Carlo simulation will be compared with that
predicted by equation (22)-(25). Under the above
assumptions, equations (22}-(25) may be simplified to:

Oy =0y = é(ﬁ") (27)

Oup1 = Oajp = %[—Jgg—) (28)

Equations (27) and (28) Imply that the standard
deviation in the natural frequencies and in the modal
interactions should increase linearly with ¢ when & is
fixed. Monte Carlo results! depicted in Figure 1(a) and
1(b) show the linear relationship holds reasonably well
for ¥20/265 less than 0.8. Note from Figure 1(b) that the
linear relationship holds for values of Og;, Up to 0.4
and, consequently, can be used to predict refatively large
amounts of modal interaction. The Monte Carlo
simulations confirm that the perturbation results also
hold when & is varied and o is held fixed, Figures 2(a)
and 2(b). From Figure 2(a) the standard deviation in the
frequency is relatively independent of § when § is small
— a result which is consistent with equation (27).

! Based on 10,000 simulations.
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{b) Standard deviations of modal interactions

Figure 1: Two mode case study: 8 = 0.0005, o varies

Similarly, from Figure 2(b) it can be seen that oy, is
linearly proportional to V20 / 25 which Is consistent
with equation (28).

Four-Mode Case Study

A practical concern is to what extent the perturbation
results developed for the two mode case can be applied to
a system that has more than two modes that are close
together. This concemn is investigated by performing a
Monte Carle simulation of a system with four closely
spaced modes. Figure 3 indicates the spacing of the
unperturbed frequencies. This study concentrates on the
representative case of the interaction between the second
and the thlrd modes and how it ls affected by the
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closeness of the first and fourth modes. The selection of
the normalized modal parameters is essentially the same
as in the two-mode case study. In addition, it Is
assumed that the standard deviatlons o), and o y
associated with the first and fourth modes are the same
as those of the two center modes.
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Figure 2: Two mode case study: 8 varies, o = 0.0005
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Figure 3: Frequencies of the four mode case

Figure 4: Four mode case study: 8z = 0.005, 8y = 0.010, &
varies, ¢ = 0.0001

Representative results from the Monte Carlo
simulation are depicted in Figures 4(a) and 4{b). The
results in Figure 4(a} indicate that the standard
deviations in the second and third frequencies are
essentially independent of the distance, 8. This is not
surprising since this result is consistent with the two
mode case (Figure 2(a)) and the behavior predicted by
equations (22) and (23). Figure 4{b) indicates that the
Monte Carlo generated ops agree reasonably well with
the theory (equations (24) and (25)) when the interaction
between the third and fourth modes is small. Figure 4(b)
also indicates that there is some deviation from the two-
mode theory when the third and fourth modes are
sufficiently close together.
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Consequéntly. the results of the four mode Monte
Carlo simulation appear to infer that the perturbation
results developed for the two mode case is applicable to
structures where several modes have frequencies that are
close together provided that the neighboring modes do
not significantly interact with the center modes. This
result significantly stmplifies the determination of the
likelihood of modal interaction in a complex structure
since it means that modes can be dealt with a pair at a
time.

CONCLUSICNS

In this paper the perturbed structural eigenvalue
problem is formulated as a normalized modal eigenvalue
problem. The advantage of this formulation is that it
moere clearly separates frequency and structural effects in
the modal interaction problem. As a result, a
perturbation analysis of the normalized problem yields
the results that the standard deviation in the interaction
between two modes is approximately given by:

1
Oay ‘E‘E G (29)

where J characterizes the closeness of the frequencies
(Af/f) for the nominal geometry and & characterizes
the variation in the structural properties that
corresponds to the modes in question. Thus, for
example, if an engineer wants to insure that a perturbed
mode will contain no more than 10% of an unperturbed
nelghboring mode, then o, could be limited to a third
of that value, L.e., 0.0333. ul‘he frequency parameter §
could be determined from the natural frequencies of the
nominal geometry using a standard finite element
analysis. Then equation (29) would yield a maximum
allowable value of o.

The structural parameter ¢ depends on the mode
shapes of the specific modes of interest, as well as, the
amount of variability that occurs in the geometry and in
the material properties. It may be possible to develop
estimates of o for certain classes of problems [cast
compressor blades, for example) in which the types of
structures, modes. and manufacturing processes are
limited. This will be the next area of research in this
research program. If it is possible to establish estimates
for o, then equation (29) and the natural frequencies of
the nominal geometry could be used to quickly determine
which modes would be likely to have high variability.
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