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ABSTRACT 

Modal interaction refers to the way that the modes of a 
structure interact when its geometry and material 
properties are perturbed. The amount of interaction 
between the neighboring modes depends on the closeness 
of the natural frequencies, the mode shapes, and the 
magnitude and distribution of the perturbation. By 
formulating the structural eigenvalue problem as a 
normalized modal eIgenvalue problem, it is shown that 
the amount of interaction in two modes can be simply 
characterized by six normalized modal parameters and 
the difference between the normalized frequencies. In 
this paper, the statistical behaviors of the normalized 
frequencies and modes are investigated based on a 
perturbation analysis. The results are independently 
verified by Monte Carlo simulations. 

INTRODUCTION 

Variations in manufacturing, measurement, and 
material properties always cause engineering structures 
to vary a certain amount from their nominal design. 
Whether or not this variation significantly affects the 
structure's dynamic response depends on the magnitude 
of the variation and the characteristics of the original 
design. For systems with well separated natural 
frequencies, first-order perturbation theory (Fox and 
Kapoor. 1968) shows that the changes In natural 
frequencies and modes are small if the variation is small. 
The statistical behavior of the frequencies and modes of 
systems with well separated natural frequencies have 
been extensively studied, for example, by Collins and 
Thomson (1969) and Kiefling (1970). However, it is not 
unusual for a two- or three-dimensional structure to  

have closely spaced natural frequencies. In this case, 
simple perturbation theory indicates that the 
contributions from the unperturbed neighboring modes 
to a perturbed mode are significant and can result in 
large variations in the actual mode shapes. 

This result has practical implications to gas turbine 
blading. Modern low aspect ratio blades often have 
natural frequencies that are close together. As a result, 
the modal stress fields of these modes could be highly 
variable from one blade to the next. This has clear 
implications to vibration testing and fatigue prediction. If 
the modal stress fields are highly variable then it 
becomes more difficult to characterize the stress ratios 
for a blade, more strain gages may be required, and it 
may be necessary to test more blades to assess scatter. 
For engineers .encountering systems with frequencies 
that are close together an important concern is how close 
do the frequencies have to be before the modes become 
highly sensitive to structural variations. This concern 
provides the motivation for this study. 

Papers by Sobczyk (1972) and by Schiff and Bogdanoff 
(1972) addressed the issue of predicting the frequency 
variation that occurs when the structure is perturbed, 
but did not discuss the variation in the mode shapes. 
More recently, the Stochastic Finite Element Method has 
been widely applied to this class of problems, for example 
refer to Vanmarcke and Grigoriu (1983), Shtnozuka and 
Yamazald (1988). or Ramu and Ganesan (1993). The 
drawbacks of this method are that it is computationally 
intensive and case specific. Consequently, the results of 
an analysis on one structure cannot be readily 
transferred to another. 
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In this paper, the problem of modal interaction is 
formulated in terms of a normalized modal eigenvalue 
problem. A first-order perturbation solution is presented 
for the case of two modes. The statistical behavior of the 
normalized frequencies and modes are then determined 
from the results of the perturbation analysis. The range 
of validity of the perturbation solution is then examined 
by independent Monte Carlo simulations. 

NORMALIZED MODAL EIGENVALUE PROBLEM 
Consider the structural eigenvalue problem for an 

unperturbed system, 

K oipo = m o ipono2 	
(1) 

where K°  and M°  are the stiffness and mass matrices. 
If (P i°  and cur are the t-th mode shape and natural 
frequency of the unperturbed system, then 00  and 120  
are the unperturbed modal and frequency matrices 
defined as: 

cpo = [0? 03 	
(2) 

° 	i a g(o (1) o • o ) 
	

(3) 

where N is the number of degrees of freedom of the 
system. When the system is perturbed by variations in 
its structural properties, the stiffness and mass matrices 
are assumed to change by AK and 4M respectively. 
The perturbed structural eigenvalue problem can then be 
written as 

(K °  + AK)0 =(M°  + AM)012 2 	(4) 

where 0 and 12 are the modal and the frequency 
matrices of the perturbed system with the following 
expressions. 

= [(Pi 02 • -• ON] 
	

(8) 

12 = cliagfroi 012 	613) 

	
(6) 

where (fri and rot are the i-th perturbed mode and its 
associated natural frequency. Since the unperturbed 
modes form a complete basis, it is possible to express the 
perturbed mode Øj  in terms of the unperturbed modes 

09  

0i = T, ora, 	 (7) 

where ay is the component of the i-th unperturbed mode 

in the J-th perturbed mole. By substituting (7) in (4) and 

premultiply (4) by 0°  . (4) implies, because of the 

orthogonality of modes. 

S2° (/ + A/k )12°Ca  = (/ + A/m  )Ca  /22 	(8) 

where Ca  = (ay) is the coefficient matrix of as. Under 
the assumption of unit modal mass, the perturbations in 
the normalized modal stiffness and mass matrices are 

= no""looT  AKoono-1 
	

(8) 

zum = aPT  amo° 	(10) 

Now, if the normalized frequency matrix is defined as 

where 	c7) 	is 	a 	frequency 	reference. 

= dia9(71 72" TN). and yi = cod. then. by 
combining (11) and (8). the normalized modal eigenvalue 
problem is formulated as 

r°(1 + Luk)r°ca  = + alm)car2 
	

(12) 

It should be noted that, in the case of zero 
perturbations, that is. when Alk and Arm  are zero, the 

eigen-solution for (12) is 

F = F°  and Ca  = Ca°  = / 	(13) 

which means that the natural frequencies remain the 
same and each "perturbed" mode has only the 
component of the corresponding unperturbed mode. In 
general, when Alk and Arm  are non-zero, the coefficient 
matrix Ca  will not be a diagonal matrix. This indicates 
that the perturbed modes have non-zero components 
from several unperturbed modes. Clearly, the amount of 
modal interaction depends on how the coefficient matrix 
Ca  changes. Note that Ca  is only dependent on the 
perturbations in the normalized modal matrices (AIk 
and Alm ) and on the distribution of the normalized 
frequencies F° . As a result, equation (12) has resulted 
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a
a21 

=[(1_s2I22
k12 
 +0- SYS  a2  

ran 

-2(1- 52 )(1- 8)2  cov(k.12•M121 12  (24) 

in isolating the issue of how close the unperturbed 

frequencies must be to have significant modal interaction 

from the effect of the perturbations in the modal stiffness 

,Alk and the modal mass Alm . 

PERTURBATION ANALYSIS 

In order to gain better insight into the modal 

interaction problem consider the case of a system that 

consists of two closely spaced modes. Assume the two 

modes have unperturbed natural frequencies W and 

4)
2

. Then, by letting 

— 1  o 	n  0) 
= 2 

— (0.),•  + co 
 

(14)  

(15)  

(16)  
kl2 	k22 

[mil 	m12] 
Alm  = 	 (17) 

m12 	m22 

the normalized modal eigenvalue problem can be written 

[all a12]
.  

a21 a22 

(I_ 8 2 )k 12  -(I+8)2  m22 

48 	(21) 

where yi and 72 are the perturbed frequencies, a21 is 

the component of the second unperturbed mode in the 

first perturbed mode, and an is the component of the 

first unperturbed mode in the second perturbed mode. 

Note that when 5 is small, (21) implies that the 

interaction between neighboring modes can be quite 

large, even though the structural perturbations are 

small. 

Once the expressions in (19)-(21) were developed, it 

was possible to define the statistical behaviors of 71. 72. 

a2I, and an. Assume that the small quantities kg 

and mui are normally distributed about their mean 

values kg and iffy with standard deviations cricy  and 

amg  , respectively. The mean values for the frequencies 

and the amount of modal interaction can be obtained by 

simply substituting kg and mg in (19)-(21) by kg and 

ffig. By applying basic multivariate statistical analysis, 

the standard deviations of yi . 72. a21, and an are 

Ark = 
k12] 

-52)k12 
, 	

m12 

46 

kl2 I - 8 0  rli} 

0 /+•5 a2i 

as 

[1_S 0 irn  k!) 

0 1+ 3 k 	l+k22

I  

(1 -

5) 4 cr2it  + cr2  — 2 cov(ki 1, mi 	(22) 
Crl  = 	 k 

= (1+ 5) I 2 	a2 
22  - 2 cov(k22. m22 ) (23) 

k.2.2 	m 2 11"  
CY

Y2 

(18) 

where yi and [au 02.11 are the j-th normalized 

frequency and mode shaiA of the perturbed system. 

Assuming that kg and mg are small quantities and 

neglecting higher order terms in kg and mg. the 

solution for (18) is 

1+ in11 

m12 

M/2 }fall 

I + M22 a2J 

yi E — 8(1 + 
k

" — m11 ) 
2 	2  

9 	ii14 
(19) 	

Can 
= [(i _ o2)2 ,2 

--/2 (- •

74. 

 -/ MI2 

72 

= 

	8)(1  + k22 m22\ 

2 	2 
(20) 	_2(1_ 82)(1+ 3)2  cov(kn , m121/2  (25) 
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Equations (22)-(25) give a simple way of calculating 
the standard deviations of the normalized natural 
frequencies yi and 12 and the amounts of the modal 
interaction a21 and an for a given frequency difference 
23 when the standard deviations and covariances of the 
six normalized modal perturbations are small. 

MONTE CARLO SIMULA110N 

Two-Mode Case Study  

In order to explore the llmitations of the perturbation 
analysis, a Monte Carlo simulation is conducted for the 
normalized modal eigenvalue problem defined by (18). 
The mean values and the covariances of the normalized 
modal perturbations are assumed to be zero. The mass 
and stiffness standard deviations are assumed to be the 
same, that is, 

C S aky = arty 
	Vi,J 	(26) 

Since the case of closely spaced modes is of primary 
interest, the frequency difference 23 will be assigned 
values significantly less than one. The results of the 
Monte Carlo simulation will be compared with that 
predicted by equation (22)-(25). Under the above 
assumptions, equations (22)-(25) may be simplified to: 

1 / 	\ 
an  'C72  = tv 2a) 

cra21 °wan = 2 25 

Equations (27) and (28) imply that the standard 

deviation in the natural frequencies and in the modal 

interactions should increase linearly with a when 3 is 

fixed. Monte Carlo results I depicted in Figure 1(a) and 

1(b) show the linear relationship holds reasonably well 

for 1117/25 less than 0.8. Note from Figure 1(b) that the 

linear relationship holds for values of a al , up to 0.4 

and, consequently, can be used to predict reratively large 

amounts of modal interaction. The Monte Carlo 

simulations confirm that the perturbation results also 

hold when 8 is varied and a is held fixed. Figures 2(a) 

and 2(b). From Figure 2(a) the standard deviation in the 

frequency is relatively independent of 3 when 8 is small 

— a result which is consistent with equation (27). 

I  Based on 10,000 simulations.  

Figure 1: Two mode case study: 3. 0.0005, a varies 

Similarly, from Figure 2(b) it can be seen that aa12  is 

linearly proportional to -■./a I 23 which is consistent 

with equation (28). 

Four-Mode Case Study 

A practical concern is to what extent the perturbation 

results developed for the two mode case can be applied to 

a system that has more than two modes that are close 

together. This concern is investigated by performing a 

Monte Carlo simulation of a system with four closely 

spaced modes. Figure 3 indicates the spacing of the 

unperturbed frequencies. This study concentrates on the 

representative case of the interaction between the second 

and the third modes and how it is affected by the 

(27)  

(28)  
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closeness of the first and fourth modes. The selection of 

the normalized modal parameters is essentiall y  the same 

as in the two-mode case study. In addition, it is 

assumed that the standard deviations a kg  and amg  

associated with the first and fourth modes are the same 

as those of the two center modes. 

Figure 2: Two mode case study: 3 varies, a 0 0005 

Figure 3: Frequencies of the four mode case 

Figure 4: Four mode case study: 3a  . 0.005, 5b = 	(5c 
varies, a 0.0001 

Representative results from the Monte Carlo 
simulation are depicted In Fi gures 4(a) and 4(13). The 
results in Figure 4(a) indicate that the standard 
deviations in the second and third fre quencies are 
essentially  independent of the distance, 4. This is not 
surprising since this result is consistent with the two 
mode case (Fi gure 2(a)) and the behavior predicted b y  
equations (22) and (23). Figure 4(b) indicates that the 
Monte Carlo generated CIO  agree reasonably  well with 
the theory  (equations (24) and (25)) when the interaction 
between the third and fourth modes is small. Fi gure 4(b) 
also indicates that there is some deviation from the two-
mode theory  when the third and fourth modes are 
sufficiently  close together. 
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Consequently, the results of the four mode Monte 
Carlo simulation appear to infer that the perturbation 
results developed for the two mode case is applicable to 
structures where several modes have frequencies that are 
close together, provided that the neighboring modes do 
not significantly interact with the center modes. This 
result significantly simplifies the determination of the 
likelihood of modal interaction in a complex structure 
since it means that modes can be dealt with a pair at a 
time. 

CONCLUSIONS 
In this paper the perturbed structural eigenvalue 

problem is formulated as a normalized modal eigenwalue 
problem. The advantage of this formulation is that it 
more clearly separates frequency and structural effects in 
the modal interaction problem. As a result, a 
perturbation analysis of the normalized problem yields 
the results that the standard deviation in the interaction 
between two modes is approximately given by 

ag 
= 1 

1 
.12 o- (29) 

where 3 characterizes the closeness of the frequencies 

(4fU) for the nominal geometry and a characterizes 

the variation in the structural properties that 

corresponds to the modes in question. Thus, for 

example. if an engineer wants to insure that a perturbed 

mode will contain no more than 10% of an unperturbed 

neighboring mode, then Ca.  could be limited to a third 

of that value, i.e., 0.0333. 'The frequency parameter 3 
could be determined from the natural frequencies of the 

nominal geometry using a standard finite element 

analysis. Then equation (29) would yield a maximum 

allowable value of a. 

The structural parameter a depends on the mode 
shapes of the specific modes of interest, as well as, the 
amount of variability that occurs in the geometry and in 
the material properties. It may be possible to develop 
estimates of a for certain classes of problems (cast 
compressor blades, for example) in which the types of 
structures, modes, and manufacturing processes are 
limited. This will be the next area of research in this 
research program. If it is possible to establish estimates 
for a, then equation (29) and the natural frequencies of 
the nominal geometry could be used to quickly determine 
which modes would be likely to have high variability. 
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