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Abstract
We define an abstract normed vector space where the genetic operators are elements.
This is used to define the disturbance of the generational operator G as the distance
between the crossover and mutation operator (combined) and the identity. This quan-
tity appears in a bound on the variance of fixed-point populations, and in a bound
on the force kv � G�v�k that applies to the optimal population v. When analyzed for
the case of fixed-length binary strings, a connection is shown between these measures
and the size of the search space. Guides for parameter settings are given, if population
convergence is required as the string length tends to infinity.
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1 Introduction

It is well known that a fixed-point population of the simple genetic algorithm (com-
prising proportional selection, crossover, and mutation) may not necessarily be uniform
(consist of copies of a single individual) in the infinite population limit. In fact, if mu-
tation is non-zero, then the fixed-point population will definitely be mixed (see Eigen
et al. (1989), Vose and Wright (1994), and van Nimwegen et al. (1997)). Intuitively, an
increase in the size of the search space might well increase the spread of the population,
since there will be a greater number of possible individuals. A major concern of this
paper is to analyze the effects of the GA parameter settings on this phenomenon. In
particular, a means of setting the mutation and crossover rates will be given that guar-
antees the convergence of the fixed-point population in the limit as the size of the search
space increases.

It is also known that an actual finite population only approximates the flow de-
scribed by the infinite population model, since there are only a finite number of possible
populations. In particular, if the infinite population model predicts a small change from
one generation to the next, then an actual population might remain fixed at what has
been called a “metastable” state (see Vose and Liepins (1991), Vose (1999a), van Nimwe-
gen et al. (1999), and Rowe (1998)). A second concern of this paper will be to look at
whether or not populations will stall in this way in regions close to the optimal solu-
tion. Again, the parameter settings proposed will guarantee that the optimal solution
will increasingly become a stalling region as the size of the search space increases. This
does not guarantee that the optimal solution will be found. Rather, it guarantees that if
the genetic algorithm should happen to produce a population mostly comprising copies
of the optimal solution, then it is likely to settle on this population for some time.
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In this paper, we view genetic operators as elements of an abstract vector (or linear)
space. This enables the application of simple results from functional analysis (see Mad-
dox (1988) for an introduction). We will be concerned with the “distance” of the operator
representing crossover and mutation from the identity operator. This quantity gives a
measure of how much these operators are disturbing the population, and it appears in
the bounds that are derived for the variance of the fitnesses within a fixed-point popu-
lation and for the force that applies to a population consisting entirely of copies of the
optimal solution. Much of the paper is concerned with setting up the appropriate ab-
stract spaces for the different genetic operators and then deriving these bounds. This is
done within a general setting. The application to fixed-length binary strings then gives
rise to the results concerning the effects of increasing search space size.

2 Definitions

Suppose we have a finite search space � of size n. To simplify notation, we identify
the elements of � with the integers f�� �� � � � � n� �g. The dynamical systems model for
the simple genetic algorithm (SGA) (Vose, 1999a; Vose and Wright, 1994, 1995) repre-
sents populations as vectors p � �p�� � � � � pn���, so that p � �n. In this vector, pj is the
proportion of the population taken up by the individual j � �. For any population,Pn��

j�� pj � �. To record this property, we will make use of the function h � �n � �
defined by

h�x� �

n��X
j��

xj

for any x � �n. This is an example of a bounded linear functional on �n. A linear func-
tional on a vector space is a function that maps elements of the vector space to values
in the underlying scalar field (in our case, the real numbers) that is also linear. That h
is bounded is a consequence of our vector space being finite-dimensional. The set of
bounded linear functionals on a vector space X is called the dual space, denoted by X y.
It is important to realize that the set Xy can itself be considered a vector space over the
same scalar field as X .

We can now write the set of all possible populations as:

� � fx � �x�� � � � � xn��� � h�x� � �� xj � �g �

which is known as the simplex.
Given a fitness function f � � � ��, the effect of proportional selection on a pop-

ulation is given by a diagonal matrix

Sk�k � f�k��

where f�k� is the fitness of individual k. The selection operator F is then

F�p� �
Sp

h�Sp�

for all p � �. This operator is also well defined for the whole of �n, except for those
points x � �n where h�Sx� � �. When F acts on a point in the simplex, it gives the
expected next population after the application of proportional selection. Note that � is
invariant with respect to F . The mean fitness of a population p is given by Mean�p	 �
h�Sp�.
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The effects of applying mutation and crossover to a population can also be rep-
resented by operators. We denote the mutation operator by U � �n � �n and the
crossover operator by C � �n � �n. We look at these in more detail in the next two
sections. For now, we note the following result due to Vose and Wright (1995). For mu-
tation and crossover operators in standard use,

C � U � U � C�

where � denotes operator composition. That is, the order in which mutation and
crossover are performed is irrelevant; the result is the same. We denote the two opera-
tors acting together by M. The full effect of one generation of the SGA on a population
p is given by

G�p� �M�F�p��

The remainder of the paper proceeds as follows. First, the mutation operator is
shown to be linear, representable by a matrix U . The set of bounded linear operators
on a space may be given a norm. This is calculated forU . Second, crossover is examined
from the point of view of the space of bilinear operators. The linear space of quadratic
operators is defined, of which the pure crossover operator is a member. Again, a norm
is established on this space. It is then shown how linear operators that are invariant on
� are equivalent to certain quadratic operators, and that therefore, under this equiva-
lence, they are also members of this space. We can, at this stage, talk sensibly about the
distances between operators, sequences of operators, and the convergence of such se-
quences. We will use this normed space to derive some bounds on two properties of the
SGA: the variance of the fitness of a fixed-point population, and the stability of the pop-
ulation comprising copies of the optimum solution. In the case where the search space
comprises fixed-length binary strings, these bounds will be seen to depend on the size
of the search space. We will then be able to address scalability issues, particularly with
regard to the appropriate choice of operator as the size of the search space grows.

In order to define norms on the different spaces of operators, we need a base norm
on the linear space �n. Rather than using the usual Euclidean norm, we will use the
absolute norm,

kxk �

n��X
j��

jxj j�

which has some nice properties in this context. For example,

p � �� kpk � h�p� � ��

and therefore, the simplex makes up part of the unit sphere, as defined by this norm.
Similarly,

p � �� kSpk � h�Sp� �Mean�p	�

3 Mutation is a Linear Operator

Mutation is an operator that works by changing (or mutating), with a certain probability,
one individual into another. The operatorU is, therefore, given by a matrixU , whereUi�j

is the probability that j � � is mutated into i � �.
It should be noted that any linear operator from �n � �n can be represented

uniquely by a corresponding n� n matrix. It is often convenient to blur the distinction
between a linear operator and the matrix to which it corresponds. In particular, since
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U is a finite-dimensional matrix, we can immediately deduce that it is a bounded (and
therefore continuous) linear operator on �n.

The set of all bounded linear operators on a normed vector spaceX is denotedB�X�
and is itself a vector space under the following definitions. If A�B � B�X� and �� � are
scalars, then define

��A 
 �B��x� � ��Ax� 
 ��Bx�

for any x � X . The space B�X� can also be given a norm. For any A � B�X�, we define

kAkL � sup
kxk��

kAxk (1)

(the subscript L indicating a space of linear operators). It follows that kAxk � kAkLkxk
for any x � X and A � B�X�, and moreover, kAkL is the smallest constant for which
this is true for all x.

We are particularly interested in linear operators that are invariant on � (that map
� into itself). For such operators, we have the following result.

THEOREM 1: Let A � �� � be linear. Then kAkL � �.

PROOF: Consider A as an n � n matrix. Let ej be the vector with a 1 in position j and
zeros elsewhere. The ith component of Aej is Ai�j . But since ej � �, we know that
Aej � �. Therefore,

	 Ai�j � � for all i� j

	
P

iAi�j � � for all j

Thus all the entries of the matrix A are non-negative, and the columns of A sum to 1.
Given that we are using the absolute norm on �n, it is a standard result (Kantorovich
and Akilov, 1982) that, for any matrix A,

kAkL � max
j

n��X
i��

jAi�j j� (2)

The result follows. �

COROLLARY 1: Any mutation matrix U � B��n� has norm 1.

This means that, for any x � �n� kUxk � kxk. In fact, mutation is norm-preserving:

kUxk � kxk

for all x � �n. Since U is invariant on the simplex, we have p � �� kUpk � kpk � �.
Notice that this holds for any finite search space � and for any means of defining
mutation. In particular, it is not restricted to a search space comprising binary strings
with bitwise mutation.

THEOREM 2: The set of linear operators in B��n� that are invariant on � is convex.

PROOF: Let A�B � B��n� be invariant on �, and let � � ��� �	. Then, for any x � �, let

y � ��A 
 ��� ��B��x� � �Ax
 ��� ��Bx
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Then

h�y� � h��Ax
 ��� ��Bx�

� �h�Ax� 
 ��� ��h�Bx�

� �
 �� �

� �

And for all k � �� � � � n� �,

yk � ��Ax 
 ��� ��Bx�k

� ��Ax�k 
 ��� ���Bx�k

� �

Therefore, �A
 ��� ��B is invariant on �. �

The selection matrix S, defined above, is also a bounded linear operator (though
not necessarily invariant on �). That is, S � B��n�. Its norm is

kSkL � max
k

Sk�k � max
k
ff�k�g�

since the fitness function f is non-negative. kSk is therefore equal to the maximum fit-
ness (i.e., the global optimum).

Recall that the space of bounded linear functionals on a vector space is itself a vector
space, called the dual space. If the underlying space has a norm, then a norm can be
defined for the dual.

kgk � sup
kxk��

jg�x�j

for any g � Xy. In our case, X � �n and h � �ny. It is easy to show that khk � �.

4 Pure Crossover is a Quadratic Operator

In this section, we start by considering a pure crossover operator. Given a population
distribution p � � from which the first parent is drawn and q � � for the second par-
ent, let ��p�q� � � be the population distribution resulting from crossing over random
parents from p and q.

Let ei be the vector with a 1 at position i and zeros elsewhere. Thus ei represents
a population comprised entirely of copies of i. Then the kth component of ��ei� ej� is
equal to the probability that crossing i and j will produce k. Therefore,

��p�q�k �
X
i�j

piqj��ei� ej�k�

and thus,

��p�q� �
X
k

�
�X

i�j

piqj��ei� ej�k

�
Aek

�
X
i�j

piqj
X
k

��ei� ej�kek

�
X
i�j

piqj��ei� ej��
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��p�q� is thus completely determined by the n� vectors ��ei� ej�, and this definition can
be naturally extended over the whole of �n. It is an example of a bilinear operator. That
is, if x�y� z � �n, and �� � are scalars, then

���x
 �y� z� � ���x� z� 
 ���y� z��

and
��z� �x
 �y� � ���z�x� 
 ���z�y��

An operator must also be bounded to be bilinear, but this condition always holds in fi-
nite dimensions.

The set of bilinear operators can itself be made into a normed linear space (Kan-
torovich and Akilov, 1982), but we will be concerned with a different, though related,
space. This is because the crossover operator draws both parents from the same distri-
bution, not two different ones. Thus, given a bilinear operator�, we can define a related
operator C � �n � �n by

C�x� � ��x�x� �
X
i�j

xixj��ei� ej��

We will call such an operator quadratic and denote the set of quadratic operators on a
linear space X by Q�X�.

THEOREM 3: Let A�B � Q�X�, and let �� � be scalars. Then, defining

��A
 �B��x� � ��A�x�� 
 ��B�x��

for all x � X makes Q�X� a vector space over the field of scalars.

Notice that a quadratic operator is non-linear, since for example, ���x� � ����x�
(a fact pointed out for crossover in Wright and Bidwell (1996)). A norm can be defined
on Q�X� as follows:

kAkQ � sup
kxk��

kA�x�k (3)

for any A � Q�X�, the subscript Q referring to the fact that we have a space of quadratic
operators. It is straightforward to show that

kA�x�k � kAkQkxk
�� (4)

THEOREM 4: Let C be the crossover operator defined above. Then kCkQ � �.

PROOF: Let kxk � �. Then,

kC�x�k � k
X
i�j

xixj��ei� ej�k

�
X
i�j

jxixj jk��ei� ej�k�

Now, since ��ei� ej� � �, we have k��ei� ej�k � �, and so

kC�x�k �
X
i�j

jxixj j
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�
X
i

jxij
X
j

jxj j

� kxk�

� �

�

It is also important to note that the composition of a quadratic operator with a
linear operator is also quadratic.

THEOREM 5: If Q � Q�X�, and A � B�X�, then

A �Q � Q�X��

and
Q �A � Q�X��

PROOF: Since Q � Q�X�, there must be a bilinear operator BQ such that Q�x� �
BQ�x�x� for all x � X . Let V � X �X � X be defined by

V �x�y� � BQ�Ax� Ay�

for any x�y � X . Then, if z � X , and �� � are scalars, then

V ��x 
 �y� z� � BQ�A��x 
 �y�� Az�

� BQ��Ax 
 �Ay� Az�

� �BQ�Ax� Az� 
 �BQ�Ay� Az�

� �V �x� z� 
 �V �y� z��

A similar argument shows V �x� �y 
 �z� � �V �x�y� 
 �V �x� z�, and so V is a bilinear
operator. Clearly, �Q �A��x� � V �x�x� for all x � X and so Q �A is quadratic.

Now let W � X �X � X be defined by

W �x�y� � A�BQ�x�y���

then

W ��x 
 �y� z� � A�BQ��x
 �y� z��

� A��BQ�x� z� 
 �BQ�y� z��

� �A�BQ�x� z�� 
 �A�BQ�y� z��

� �W �x� z� 
 �W �y� z��

Similarly, it can be shown that W �x� �y 
 �z� � �W �x�y� 
 �W �x� z�, and so W is
bilinear. Clearly, �A �Q��x� �W �x�x� for all x � X , and so A �Q is quadratic. �

5 A Normed Space for Genetic Operators

The pure crossover operator C, defined in the last section, represents the effect of ap-
plying crossover to a population vector. In practice, there is usually a probability called
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the crossover rate with which crossover is to be carried out. If the crossover rate is �, then
the effect of this mixed crossover operator is

C�x� � �C�x� 
 ��� ��x�

This suggests that C is a linear combination of the quadratic operator C and the linear
identity operator I . However, we can simplify things by making the following obser-
vations.1

THEOREM 6: Define a quadratic operator I � Q��n� by setting

��ei� ej� �
ei 
 ej

�

so that
I�x� �

X
i�j

xixj
ei 
 ej

�

for any x � �n. Then for all p � �,
I�p� � p�

PROOF: For any x � �n,

I�x� �
X
i�j

xixj
ei 
 ej

�

�
�

�

X
i�j

xixjei 

�

�

X
i�j

xixjej

�
�

�

X
i

xiei
X
j

xj 

�

�

X
j

xjej
X
i

xi

�
�

�
x
X
j

xj 

�

�
x
X
i

xi

� x
X
i

xi

Therefore, for all p � �,

I�p� � p
X
i

pi

� p

Thus the quadratic operator I is the identity on the simplex. �

COROLLARY 2: Let A � �n � �n be a linear operator. Then A � I � Q��n�, and

�A � I��p� � Ap

for all p � �. Moreover,
kA � IkQ � kAkL

1Thanks to Michael Vose for these observations.
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using the appropriate norms on each side of the equation.

PROOF: That A � I � Q��n� follows from Theorem 5.

kA � IkQ � sup
kxk��

kA � I�x�k

� sup
kxk��

kA

�
x
X
i

xi

�
k

� sup
kxk��

�����
X
i

xi

����� kAxk
� sup

kxk��

�X
i

jxij

�
kAxk

� sup
kxk��

kxkkAxk

� sup
kxk��

kAxk

� kAkL

�

It can be seen then that any linear operator A is equivalent to a quadratic operator
A � I for all points in the simplex. We will therefore identify linear operators with their
quadratic equivalents. For example, the identity matrix I is identified with I. Similarly,
we will identify the mutation matrix U with the quadratic operator U � I. When there
is no ambiguity, we will refer to both of these operators as being U . Under this identi-
fication, we see that mutation U � Q��n�, and the mixed crossover operator C can be
written

C � �C 
 ��� ��I � Q��n��

Notice, moreover, that if we have any linear operators A and B, then

�A
B� � I � A � I 
B � I�

Hereafter, we assume that all operators are in the normed space Q��n� unless stated
otherwise. Consequently, we write the norm k
kQ for this space as simply k
k. We retain
the notation k 
 kL to refer to the norm on the space of linear operators where necessary.

We pointed out earlier that the order of composition of C and U does not matter
for typical implementations of crossover and mutation. We now give a condition for
this to be true within our framework.

THEOREM 7: Let U be a linear operator and � be a bilinear operator on �n. Let C � �n � �n

be defined by
C�x� � ��x�x��

Given a scalar �, define
C�x� � �C�x� 
 ��� ��x�

If for all i� j � �� � � � � n,
U��ei� ej� � ��Uei�Uej��
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then
C � U � U � C�

PROOF: Let the linear operator U be given by a matrix U . We will show that under the
conditions stated, U � C � C � U , from which the result follows straightforwardly.

C�x� � ��x�x� �
X
i�j

xixj��ei� ej�

Therefore,

C � U�x� � ��Ux� Ux�

� ��U�
X
i

xiei�� U�
X
j

xjej��

� ��
X
i

xiUei�
X
j

xjUej�

�
X
i

xi��Uei�
X
j

xjUej�

�
X
i

xi
X
j

xj��Uei� Uej�

�
X
i�j

xixj��Uei� Uej�

�
X
i�j

xixjU��ei� ej�

� U
X
i�j

xixj��ei� ej�

� U � C�x�

�

The condition in the theorem is that, given two parent individuals, the probability
of producing a given child individual by first applying crossover and then mutation is
the same as by first applying mutation (to the parents) and then crossover. This holds
for a wide range of crossover and mutation definitions, including all those in standard
practice operating on binary strings (Vose and Wright, 1995).

The next two sections provide some applications of our new, normed space to de-
veloping some bounds that help describe the behavior of the SGA. For a search space
consisting of fixed-length binary strings, these bounds will depend on the size of the
search space (via the string length �) and will therefore provide some insight into the
scalability of certain choices of operator.

6 Fitness Variance of Fixed-point Populations

Our first application of the new normed spaceQ��n� is to find a bound on the variance
of the fitness in a fixed-point population. A population p � � is a fixed-point if

G�p� � p�
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Given the representations of selection, mutation, and crossover defined above, the gen-
erational operator G is

G�p� �
�M� S��p�

h�Sp��
�

where M � C � U � U � C. So at a fixed-point,

�M� S��p� � h�Sp��p�

Recall that the mean fitness of a population p is given by

Mean�p	 � h�Sp��

Similarly, the variance of the fitness of a population is

Var�p	 � h�S�p�� h�Sp���

When p is a fixed-point, we have the following result.

THEOREM 8: Let p � � be a fixed-point of G, then

Var�p	 � max
k
ff�k�gMean�p	kI �Mk�

PROOF: Let � � kSpk � h�Sp� be the mean fitness of the fixed-point p. Now define a
linear operator

Fx �
�

�
Sx�

Notice that Fp � F�p�. Then,

h�Fp� �
h�Sp�

�
� ��

and

h�F �p� � h�F �
�

�
Sp�� � h

�
S�p

��

�
�

h�S�p�

h�Sp��
�

Now, since p is a fixed-point, p � G�p� �M�F�p� �M� Fp. Therefore,

Fp � F �M � Fp�

which implies
h�F �M � Fp� � h�Fp� � ��

It follows that

Var�p	

��
� h�F �p�� �

� h�F �p�� h�F �M � Fp�

� h�F �p� F �M � Fp�

� h�F � �Fp�M� Fp��

� h�F � �I �M� � Fp�

� khkkFkLk�I �M� � Fpk
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using the appropriate norms for each operator. Now we use Equation 4 to give:

Var�p	

��
� khkkFkLkI �MkkFpk��

Now khk � �, kFkL � kSkL��, and kFpk � �, so

Var�p	 � �kSkLkI �Mk�

and substituting � �Mean�p	 and kSkL � maxkff�k�g gives

Var�p	 � max
k
ff�k�gMean�p	kI �Mk

as required. �

It should be noted that this theorem sums up, within a completely general frame-
work, the well-known convergence result that as the mutation rate and crossover rate
tend to zero, so the fixed-point tends to a population that is uniform with respect to fit-
ness values (Cerf, 1998; Rudolph, 1997).

7 Stability of the Optimum Population

The second application considers what happens to a population comprised entirely of
copies of the optimum. We are interested in how far this population moves into the sim-
plex upon application of the generational operator G. For any population p, the distance
kp� G�p�k is called the force on p. When the force is small, it is possible for finite pop-
ulations to stall there, forming a metastable state. This metaphor of “force” was intro-
duced by Michael Vose at ICGA’91. The principle of metastability is described in Vose
and Liepins (1991) and Vose (1999b). For examples of its use in explaining GA dynamics
for certain fitness functions, see van Nimwegen et al. (1997, 1999) and Rowe (1998).

For the population consisting entirely of the optimum, we have:

THEOREM 9: Let v � � be the population comprised entirely of copies of the optimum. Then

kv� G�v�k � kI �Mk�

PROOF: It is known that the population v is a fixed point of the SGA when there is no
crossover or mutation. That is:

Sv

h�Sv�
� v�

Therefore,

kv � G�v�k � k
Sv

h�Sv�
�

�M� S��v�

h�Sv��
k�

The force on v is invariant with respect to scaling the fitness function. Therefore we will
assume (without loss of generality) that fitness is scaled such that the maximum fitness
value is 1. This means that kSvk � h�Sv� � �, and so

kv� G�v�k � kSv� �M� S��v�k

� k�I �M� � Svk

� kI �MkkSvk�

� kI �Mk�

�
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8 Scalability of Operators

The factor kI �Mk appearing in the bounds derived above is the distance of the com-
bined crossover and mutation operator M from the identity operator. That is, it is a
measure of how much crossover and mutation disturb the state of the population. The-
orem 8 may be interpreted as saying that the smaller the disturbance due to crossover
and mutation, the less the fitness variance of the fixed-point population. Similarly, The-
orem 9 says that the less the disturbance, the more likely a finite population will form a
metastable state near to the optimum. This means that, should the GA create a popula-
tion comprising mostly copies of the optimum, then it is likely to settle at that popula-
tion for some time. It should be understood that this in no way guarantees that such a
population will actually be found in any run.

It is important, therefore, to study the quantity kI � Mk, which we will call the
disturbance of the generational operator G, and denote D�G�. We will see shortly that
when the search space comprises binary strings in the usual way, the disturbance of G
depends on the size of the search space. We will use this connection to explore some
issues in the scalability of the genetic operators. First, we derive an upper bound for
the disturbance.

THEOREM 10: If M � C � U , and C � �C 
 ��� ��I with � � � � �, then

D�G� � kI � ��� ��Uk
 ��

PROOF:

D�G� � kI �Mk

� kI � C � Uk

� kI � ��C � U�� ��� ��Uk

� k�I � ��� ��U�� ��C � U�k

� k�I � ��� ��U�k
 k � ��C � U�k

� k�I � ��� ��U�k
 �kC � Uk

From Equation 3,
kC � Uk � sup

kxk��

kC � U�x�k�

and we know that U is norm-preserving, so kxk � �� kU�x�k � �. Thus

kC � Uk � kCk � �

by Theorem 4. Combining these results gives

D�G� � k�I � ��� ��U�k
 �kC � Uk

� k�I � ��� ��U�k
 ��

�

COROLLARY 3: For a crossover only algorithm (i.e., zero mutation),

D�G� � ���
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The corollary results from substituting U � I in Theorem 10. We also have:

COROLLARY 4: For a mutation only algorithm (i.e., zero crossover),

D�G� � kI � Uk � kI � UkL�

Corollary 3 is interesting with regard to a conjecture of Vose and Wright (1994) that
the only asymptotically stable fixed-points of G, when there is no mutation, are vertices
of the simplex, when the search space is the usual set of fixed-length binary strings. At
a vertex, the fitness variance is zero. Experiments by Wright and Bidwell (1996) suggest
the existence of unstable fixed-points within the simplex, also with zero fitness variance.
Our corollary, however, leaves open the possibility of fixed-points (not necessarily sta-
ble) with non-zero fitness variance, at least in this general setting.

Let us now turn to the usual search space for genetic algorithms: the set of binary
strings of length �. Mutation is implemented bitwise, with an individual bit changing
with probability �, referred to as the mutation rate.

THEOREM 11: Suppose the search space comprises bit strings of length �. That is, we represent
each element of � � f�� �� � � � � �� � �g by its binary representation. Mutation is implemented
bitwise with mutation rate �. Crossover is given by a suitable quadratic operator and applied
with rate �. The disturbance of G is then

D�G� � �� ���� ����� ����

PROOF: From Theorem 10, we have

kI �Mk � kI � ��� ��Uk
 � � kI � ��� ��UkL 
 ��

The (linear) norm of the matrix I � ��� ��U can be found from Equation 2, noting that
the diagonal entries of U are equal to �� � ���, and that kUk � �. The result follows
directly. �

Theorem 11 gives us a link between the disturbance of G and the size of the search
space, via the string length �. We have the following results for some potential choices
of mutation rate.

COROLLARY 5: If the mutation rate is fixed as � varies, then

lim
���

D�G� � ��

If the mutation rate is � � ���, then

lim
���

D�G� � ��
�

e
��� ���

If the mutation rate is � � ��� for some fixed � 	 � 	 �, then

lim
���

D�G� � �� �e����� ���
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If the mutation rate is � � ����, then

lim
���

D�G� � ���

This corollary indicates that if a converged (uniform) population is to be guaranteed
in the limit as the string length increases (assuming that the fitness function stays
bounded), then the mutation rate must decrease faster than ���. If the Vose-Wright con-
jecture is true, then the setting of a fixed non-zero crossover rate�may well not interfere
with the convergence to a uniform population. However, in order to guarantee this, one
can ensure that �� � as ���.

It should be noted that the change in search space size does not influence the dis-
tance between population vectors in the simplex so as to counterbalance these conver-
gences (see Theorem 3.1 of Vose (1999b)).

9 Illustrative Experiments

First, we give an example that illustrates that the fixed-point population need not be
uniform in the limit as � � �, when mutation is set at ���. The fitness function is the
multiplicative function (Prügel-Bennett, 1999; Woodcock and Higgs, 1996). Each 1 in the
bitstring counts 1 point, and each 0 counts s, where � 	 s 	 �. The fitness of the whole
string is given by multiplying these scores together. The optimum is thus the string con-
taining all ones, which has a fitness of 1. Using the results presented in Woodcock and
Higgs (1996), we can calculate2 that, at the infinite population fixed point p:

Mean�p	 � m��

and
Var�p	 � �s�a��� a� 
m��� �m���

where
m � �� as�

and

a �
�

�

�
��

�

�



�

s�
�

r
���

�

�



�

s�
�� �

�

s�

�
�

Setting s � ��� and letting ��� gives3

lim
���

Mean�p	 �
�

e
�

and
lim
���

Var�p	 �
�

e���
�

�

e�
�

That is, the variance tends to approximately ���

. Some experiments were run to check
this, tracking a population of 500 over 100 generations. The fitness variances of the final
populations (at generation 100) for a number of string lengths is plotted in Figure 1 along
with the theoretical curve for the infinite population case.

Second, to illustrate the decrease in fitness variance with increasing string length
when � � ����, two simple experiments were conducted. Both experiments used the

2Thanks to Nick Longford of De Montfort University for help with this.
3Calculations performed using Mathematica 3.0 c�Wolfram Research.
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Figure 1: Fitness variance of population at generation 100, for different string lengths,
with multiplicative fitness function. Mutation only, � � ���. Each point is the average
of 30 runs. The error bars represent one standard deviation. The solid line shows the
theoretical value for the infinite population limit.
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Figure 2: Fitness variance of population at generation 100, for different string lengths,
with multiplicative fitness function. Left: mutation only, � � ����. Right: mutation and
crossover, � � ����� � � �. Each point is the average of 30 runs. The error bars represent
one standard deviation.

same multiplicative function as before, with a population size of 500. In the first ex-
periment, mutation was set to ����, and there was no crossover. For six different string
lengths, the GA was run for 100 generations and the fitness variance of the final pop-
ulation calculated. This was repeated 30 times for each string length. The results are
shown in Figure 2, and it is clear that the fitness variance decreases with increasing
string length. The error bars on the graphs are one standard deviation.

The second experiment was almost the same as the first, except uniform crossover
was applied with � � �. As can be seen, the application of crossover makes very little
difference to the fitness variance of the final population. Of course, this is only an ex-
ample, and the results might well be different for other fitness functions. However, it
seems a reasonable generalization of the Vose-Wright conjecture to suggest that the fit-
ness variance of an asymptotically stable fixed-point population is independent of the
probability of the crossover rate �. Note that the analysis followed in this paper has ap-
plied to any fixed-point, not just asymptotically stable ones.
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10 Conclusions

An abstract normed vector space has been described of which the genetic operators are
elements. Using this framework, a bound has been given for the fitness variance of a
fixed-point population p (Theorem 8), namely:

Var�p	 � max
k
ff�k�gMean�p	kI �Mk�

Similarly, a bound has been derived for the force on the population, v, comprising
copies of the optimal solution (Theorem 9):

kv� G�v�k � kI �Mk�

The quantity kI �Mk is called the disturbance of the generational operator G, since it
represents the extent to which crossover and mutation disturb a population. Analyzing
this quantity in the case of fixed-length binary strings leads to a connection with the size
of the search space (via the string length �). In particular, assuming the fitness function
remains bounded as � increases, both the fitness variance of fixed-point populations and
the force on the optimal population can be guaranteed to tend to zero as ���, if �� �
as ���, and �� � faster than ���. A counterexample has been given that shows the
rate of ��� is not sufficient. It is conjectured that the crossover rate � actually has no
effect on these quantities, though this has not been proven.
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