

Open access • Journal Article • DOI:10.2298/FIL0802095X

A note about a theorem of R. Harte — Source link 🗹

Yifeng Xue

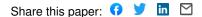
Institutions: East China Normal University

Published on: 01 Jan 2008 - Filomat (National Library of Serbia)

Topics: Homomorphism

Related papers:

- Linear maps between C*-algebras that are *-homomorphisms at a fixed point
- · Identity related to additive mappings on standard operator algebras
- A finiteness property of affine algebras
- · Products of commutators in a Lie nilpotent associative algebra
- Some douglas subalgebras.



Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat **22:2** (2008), 95–98

A NOTE ABOUT A THEOREM OF R. HARTE

Yifeng Xue^{*}

Abstract

Let \mathcal{A} and \mathcal{B} be unital Banach algebras and $T: \mathcal{A} \to \mathcal{B}$ be a unital continuous homomorphism. Put $\mathcal{J} = \operatorname{Ker} T$. Let $\operatorname{Fred}_T(\mathcal{A}) = \{x \in \mathcal{A} | T(x) \text{ is invertible}$ in $\mathcal{B}\}$ and $\operatorname{Fred}_T^0(\mathcal{A}) = \{x + k | x \text{ is invertible in } \mathcal{A}, k \in \mathcal{J}\}$. In this note, we prove that if T has Property (F), then $\operatorname{Fred}_T(\mathcal{A}) \cap \overline{GL(\mathcal{A})} = \operatorname{Fred}_T^0(\mathcal{A})$ iff $\operatorname{Itsr}(\mathcal{J}) = 1$.

For a normed algebra \mathcal{A} with unit 1, let $GL(\mathcal{A})$ (resp. $GL_0(\mathcal{A})$) denote the group of invertible elements in \mathcal{A} (resp. the connected component of 1 in $GL(\mathcal{A})$). If \mathcal{A} is non-unital, we set $GL(\mathcal{A}) = GL(\widetilde{\mathcal{A}})$ and $GL_0(\mathcal{A}) = GL_0(\widetilde{\mathcal{A}})$, where $\widetilde{\mathcal{A}} = \{\lambda 1 + a \mid \lambda \in \mathbb{C}, a \in \mathcal{A}\}$. For a Banach algebra \mathcal{A} , we view \mathcal{A}^n as the set of all $n \times 1$ matrices over \mathcal{A} . According to [3], the left topological stable rank of the unital Banach algebra \mathcal{A} is defined as follows:

 $\operatorname{ltsr}(\mathcal{A}) = \min\{ n \in \mathbb{N} | \mathcal{A}^m \text{ is dense in } \operatorname{Lg}_m(\mathcal{A}), \forall m \ge n \}$

where $\text{Lg}_n(\mathcal{A})$ consists of the elements $(a_1, \dots, a_n)^T$ in \mathcal{A}^n with $\sum_{i=1}^n b_i a_i = 1$ for some $b_1, \dots, b_n \in \mathcal{A}$. If \mathcal{A} is non-unital, we put $\text{ltsr}(\mathcal{A}) = \text{ltsr}(\widetilde{\mathcal{A}})$. We have $\text{ltsr}(\mathcal{A}) = 1$ iff $GL(\mathcal{A})$ is dense in \mathcal{A} (or $\widetilde{\mathcal{A}}$) (cf. [3]).

Let \mathcal{A} be a unital Banach algebra. Write $\operatorname{Rg}(\mathcal{A}) = \{a \in \mathcal{A} | a \in a\mathcal{A}a\}$ and Dr $(\mathcal{A}) = \{a \in \mathcal{A} | a \in a(GL(\mathcal{A}))a\}$ for all regular (generalized invertible) elements and decomposably regular elements of \mathcal{A} . Then Dr $(\mathcal{A}) = \operatorname{Rg}(\mathcal{A}) \cap \overline{GL(\mathcal{A})}$ by [2, Theorem 1.1]). Now let \mathcal{B} be a unital Banach algebra and $T: \mathcal{A} \to \mathcal{B}$ be a unital homomorphism (i.e., T(1) = 1). Put $\operatorname{Fred}_T(\mathcal{A}) = T^{-1}(GL(\mathcal{B}))$, $\operatorname{Fred}_T^0(\mathcal{A}) =$ $GL(\mathcal{A}) + \operatorname{Ker} T$. The elements in $\operatorname{Fred}_T(\mathcal{A})$ are called to be T-Fredholm and in $\operatorname{Fred}_T^0(\mathcal{A})$ are called to be T-Weyl (cf. [1]).

^{*}Project supported by Natural Science Foundation of China (no.10771069), Shanghai Leading Academic Discipline Project(no.B407) and Foundation of CSC

²⁰⁰⁰ Mathematics Subject Classifications. 46H05, 19K56.

Key words and Phrases. T–Fredholm element, T–Weyl element, left topological stable rank. Received: February 26, 2008

Communicated by Dragan Djordjević

Let \mathcal{A}, \mathcal{B} be unital Banach algebras and T be a unital continuous homomorphism of \mathcal{A} to \mathcal{B} . R. Harte proved in [2] that if $\operatorname{Fred}_T(\mathcal{A}) \subset \operatorname{Rg}(\mathcal{A})$ and $1 + \operatorname{Ker} T \subset \operatorname{Dr}(\mathcal{A})$, then

$$\operatorname{Fred}_T^0(\mathcal{A}) = int(\operatorname{Fred}_T^0(\mathcal{A})) = \operatorname{Fred}_T(\mathcal{A}) \cap \overline{GL(\mathcal{A})}.$$
 (*)

by means of the equation $\operatorname{Dr}(\mathcal{A}) = \operatorname{Rg}(\mathcal{A}) \cap \overline{GL(\mathcal{A})}$. In this short note, We will show when $\operatorname{Fred}_T^0(\mathcal{A})$ is closed in $\operatorname{Fred}_T(\mathcal{A})$ and prove that if T has Property (F) (see Definition 1 below) the equation (*) holds iff $\operatorname{Itsr}(\operatorname{Ker} T) = 1$.

Throughout the paper, \mathcal{A}, \mathcal{B} are unital Banach algebras and $T: \mathcal{A} \to \mathcal{B}$ is a unital continuous homomorphism.

Definition 1. We say T has Property (F) if for every $b \in T(\mathcal{A})$ with ||1 - b|| < 1, then $b^{-1} \in T(\mathcal{A})$.

Obviously, if $T(\mathcal{A})$ is closed in \mathcal{B} , then $T(\mathcal{A})$ has Property (F). Also, we have

Proposition 2. Let \mathcal{A} , \mathcal{B} and T be as above.

- 1. If $\operatorname{Fred}_T(\mathcal{A}) \subset \operatorname{Rg}(\mathcal{A})$, then T has Property (F);
- 2. If T has Property (F), then $\operatorname{Fred}^0_T(\mathcal{A})$ is closed in $\operatorname{Fred}_T(\mathcal{A})$.

Proof. (1) Let $b \in T(\mathcal{A})$ such that ||1 - b|| < 1. Then $b \in GL(\mathcal{B})$. Choose $a \in \mathcal{A}$ such that b = T(a). Since $a \in \operatorname{Fred}_T(\mathcal{A}) \subset \operatorname{Rg}(\mathcal{A})$, there is $a_0 \in \mathcal{A}$ such that $aa_0a = a$ and consequently, $b^{-1} = T(a_0)$.

(2) Let $a \in \operatorname{Fred}_T(\mathcal{A})$ and $\{a_n\}_1^{\infty} \subset \operatorname{Fred}_T^0(\mathcal{A})$ such that $\lim_{n \to \infty} a_n = a$. Choose n_0 such that $||T(a_{n_0}) - T(a)|| < \frac{1}{2||(T(a))^{-1}||}$. Then $||T(a_{n_0})(T(a))^{-1} - 1|| < \frac{1}{2}$. Put $b = T(a_{n_0})(T(a))^{-1} \in GL(\mathcal{B})$. Then $||b^{-1}|| < \frac{1}{1 - ||1 - b||} < 2$. Since $b^{-1} \in T(\mathcal{A})$ and $||b^{-1} - 1|| \le ||b^{-1}|| ||b - 1|| < 1$, it follows that there is $d \in \mathcal{A}$ such that $b = (b^{-1})^{-1} = T(d)$. Combining this with $b^{-1} \in T(\mathcal{A})$, we can find $c \in \mathcal{A}$ such that $k_1 = ac - 1$ and $k_2 = ca - 1$ are in Ker T. Pick n_1 such that $||a_{n_1} - a|| < \frac{1}{||c||}$. Then $||1 + k_1 - a_{n_1}c|| = ||(a - a_{n_1})c|| < 1$ so that $g = k_1 - a_{n_1}c \in GL(\mathcal{A})$. Therefore

$$a = g^{-1}(k_1 - a_{n_1}c)a = g^{-1}k_1a - g^{-1}a_{n_1}k_2 - g^{-1}a_{n_1} \in \operatorname{Fred}^0_T(\mathcal{A}).$$

Theorem 3. Let \mathcal{A}, \mathcal{B} be unital Banach algebras and $T: \mathcal{A} \to \mathcal{B}$ be a unital homomorphism with Property (F). Then

$$\operatorname{Fred}_T^0(\mathcal{A}) = int(\operatorname{Fred}_T^0(\mathcal{A})) = \operatorname{Fred}_T(\mathcal{A}) \cap \overline{GL(\mathcal{A})}$$

iff ltsr (Ker T) = 1.

Proof. Since $GL(\mathcal{A})$ is open in \mathcal{A} , $GL(\mathcal{A}) + k$ is open in \mathcal{A} for each $k \in \text{Ker } T$. Thus $\text{Fred}_T^0(\mathcal{A}) = \{GL(\mathcal{A}) + k \mid k \in \text{Ker } T\}$ is open in \mathcal{A} and hence is open in $\text{Fred}_T(\mathcal{A})$, i.e., $\text{Fred}_T^0(\mathcal{A}) = int(\text{Fred}_T^0(\mathcal{A}))$.

By Proposition 2, when T has Property (F), $\underline{\operatorname{Fred}}_T^0(\mathcal{A})$ is closed in $\operatorname{Fred}_T(\mathcal{A})$. Noting that $GL(\mathcal{A}) \subset \operatorname{Fred}_T^0(\mathcal{A})$ and $\operatorname{Fred}_T(\mathcal{A}) \cap \overline{GL(\mathcal{A})}$ is the closure of $GL(\mathcal{A})$ in $\operatorname{Fred}_T(\mathcal{A})$, thus $\operatorname{Fred}_T(\mathcal{A}) \cap \overline{GL(\mathcal{A})} \subset \operatorname{Fred}_T^0(\mathcal{A})$.

We now prove that $\operatorname{Fred}_T(\mathcal{A}) \cap \overline{GL(\mathcal{A})} \supset \operatorname{Fred}^0_T(\mathcal{A})$ iff $\operatorname{ltsr}(\operatorname{Ker} T) = 1$. Suppose that $\operatorname{ltsr}(\operatorname{Ker} T) = 1$, then for any $a \in GL(\mathcal{A})$ and $k \in \operatorname{Ker} T$,

$$a + k = a(1 + a^{-1}k) \in a(\overline{GL(\operatorname{Ker} T)}) \subset \overline{GL(\mathcal{A})},$$

i.e., $\operatorname{Fred}_T^0(\mathcal{A}) \subset \operatorname{Fred}_T(\mathcal{A}) \cap \overline{GL(\mathcal{A})}.$

Conversely, for any $k \in \operatorname{Ker} T$ and any $\epsilon \in (0,1)$, there is $x_{\epsilon} \in GL(\mathcal{A})$ such that $\|1+k-x_{\epsilon}\| < \frac{\epsilon}{4(1+\|1+k\|)} \ (<\frac{1}{2})$. Put $a_{\epsilon} = x_{\epsilon} - k$. Then $a_{\epsilon} \in GL(\mathcal{A})$ and $\|a_{\epsilon}^{-1}\| < \frac{1}{1-\|1-a_{\epsilon}\|} < 2$. Set $z_{\epsilon} = a_{\epsilon}^{-1}x_{\epsilon}$. Then $z_{\epsilon} \in GL(\mathcal{A}), T(z_{\epsilon}) = T(z_{\epsilon}^{-1}) = 1$, i.e., $z_{\epsilon} \in GL(\operatorname{Ker} T)$ and furthermore,

$$||1+k-z_{\epsilon}|| \le ||1+k-x_{\epsilon}|| + ||a_{\epsilon}^{-1}||||1-a_{\epsilon}|||x_{\epsilon}|| < \epsilon.$$

Now let $x = \lambda 1 + z \in \widetilde{\operatorname{Ker} T}$. If $\lambda = 0$, we put $\underline{x_{\epsilon} = \epsilon 1 + z} = \epsilon(1 + \epsilon^{-1}z)$. Then $||x - x_{\epsilon}|| < \underline{\epsilon}$ and $\underline{x_{\epsilon}} \in \overline{GL(\operatorname{Ker} T)}$. So $x \in \overline{GL(\operatorname{Ker} T)}$. If $\lambda \neq 0$, then $x = \lambda(1 + \lambda^{-1}z) \in \overline{GL(\operatorname{Ker} T)}$. Therefore, ltsr (Ker T) = 1.

We conclude the paper with following two examples:

Example 4. Let X be a Banach space and let B(X) (resp. K(X)) denote the Banach algebra of all bounded linear operators (resp. compact operators) on X. Let T be the canonical homomorphism of B(X) onto B(X)/K(X). Then Ker T = K(X). Using the fact that every nonzero point in the spectrum of a compact operator is isolated, we can deduce that ltsr(K(X)) = 1. So by Theorem 3, $\text{Fred}_T^0(B(X)) = int(\text{Fred}_T^0(B(X)) = \text{Fred}_T(B(X)) \cap \overline{GL(B(X))}$.

Example 5. Let $\mathcal{A} = C(\overline{\mathbf{D}})$ and $\mathcal{B} = (\mathbf{S}^1)$. Let T be the homomorphism from \mathcal{A} onto \mathcal{B} given by restriction $T(f)(z) = f(z), \forall z \in \mathbf{S}^1, f \in C(\overline{\mathbf{D}})$. Since Ker $T \cong C_0(\mathbb{R}^2)$ and $\widetilde{\operatorname{Ker} T} \cong C(\mathbf{S}^2)$, it follows from [3, Proposition 1.7] that ltsr (Ker T) = 2. By Theorem 3, $\operatorname{Fred}_T^0(\mathcal{A})$ is both open and closed in $\operatorname{Fred}_T(\mathcal{A})$ and $\operatorname{Fred}_T(\mathcal{A}) \cap \overline{GL(\mathcal{A})} \subsetneq \operatorname{Fred}_T^0(\mathcal{A})$.

Acknowledgement. The author is grateful to the referee for his (or her) helpful comments and kindly pointing out some typos in the paper.

References

 R. Harte, Fredholm theory relative to a Banach algebra homomorphism, Math. Z., 179 (1982), 431–436.

- [2] R. Harte, Regular boundary elements, Proc. Amer. Math. Soc., 99 (1987), 328–330.
- [3] M.A. Rieffel, Dimensions and stable rank in the K-Theory of C*-algebras, Proc. London Math. Soc., 46(1983), 301–333.

Department of Mathematics, East China Normal University, Shanghai 200241, P.R. China

E-mail: yfxue@math.ecnu.edu.cn