A NOTE CONCERNING THE L_{1} CONVERGENCE OF A CLASS OF GAMES WHICH BECOME FAIRER WITH TIME

by LOUIS H. BLAKE

(Received 4 March, 1970; revised 1 August, 1970)
Throughout this note, let $(\Omega, \mathfrak{Q}, P)$ be a probability space with $\left\{\mathfrak{Q}_{n}\right\}_{n \geqq 1}$ an increasing sequence of sub σ-fields of \mathfrak{A} whose union generates \mathfrak{A}. Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of random variables adapted to $\left\{\mathscr{A}_{n}\right\}_{n \geqq 1}$ (see [3], p. 65) and henceforth be referred to as a game. As in [1], the game $\left\{X_{n}\right\}_{n \geqq 1}$ will be said to become fairer with time if, for every $\varepsilon>0$,

$$
P\left[\left|E\left(X_{n} \mid \mathfrak{A}_{m}\right)-X_{m}\right|>\varepsilon\right] \rightarrow 0
$$

as $n, m \rightarrow \infty$ with $n \geqq m$.
The purpose of this note is to establish the
Theorem. If $\left\{X_{n}\right\}_{n \geq 1}$ is a game which becomes fairer with time and if there exists $Z \in L_{1}(\Omega, \mathfrak{A}, P)$ such that $\left|X_{n}\right| \leqq Z$ for all $n \geqq 1$, then $\left\{X_{n}\right\}_{n \geqq 1}$ converges in the L_{1} norm.

Proof. The result will be established by exhibiting a martingale game, $\left\{Y_{n}\right\}_{n \geqq 1}$, adapted to $\left\{\mathfrak{N}_{n}\right\}_{n \geqq 1}$, which converges in the L_{1} norm to a random variable Y and showing that the process $\left\{X_{n}-Y_{n}\right\}_{n \geq 1}$ converges in the L_{1} norm to zero.

First, the martingale $\left\{Y_{n}\right\}_{n \geqq 1}$ is produced. Let $\left\{X_{n}\right\}_{n \geqq 1}$ be used to define a sequence of signed measures on each \mathfrak{Q}_{n} as follows:

$$
\mu_{n}(A) \equiv \int_{A} X_{n} d P \text { for all } A \in \mathfrak{V}_{n}
$$

Observe that μ_{n} is a signed measure on \mathfrak{X}_{k} for all $k \leqq n$ and also that μ_{n} is a finite signed measure inasmuch as $\left|X_{n}\right| \leqq Z$ all n.

Observe also that, for n arbitrary but fixed and $A \in \mathfrak{N}_{n}$, the sequence $\left\{\mu_{p}(A)\right\}_{p \geqq n}$ is Cauchy. This follows immediately from the inequality

$$
\begin{equation*}
\left|\mu_{p}(A)-\mu_{q}(A)\right| \leqq \int\left|\left(E\left(X_{p} \mid \mathfrak{\Re}_{q}\right)-X_{p}\right)\right| d P \tag{1}
\end{equation*}
$$

and the facts that $\left|X_{n}\right| \leqq Z$ for all n and that $\left\{X_{n}\right\}_{n \geqq 1}$ becomes fairer with time.
Thus, let v_{n} be a set function on \mathfrak{A}_{n} defined by

$$
v_{n}(A) \equiv \lim _{\substack{p \rightarrow \infty \\ p \geqq n}} \mu_{p}(A) \text { for each } A \in \mathfrak{A}_{n} .
$$

Where $\left|X_{k}\right| \leqq Z$ for all $k \geqq 1$, it is immediate that $\left|v_{n}(A)\right|<\infty$ for all $A \in \mathfrak{U}_{n}$ and hence that v_{n} is a signed measure on \mathfrak{A}_{n}. (See [2], p. 159.)

It follows from the construction that, for any n and m with $n \geqq m, v_{n}=v_{m}$ on \mathfrak{A}_{m} and also that, for every $n, v_{n} \ll P$. Hence there exists a martingale game $\left\{Y_{n}\right\}_{n \geq 1}$ adapted to $\left\{\mathfrak{U}_{n}\right\}_{n \geq 1}$ with $v_{n}(A)=\int_{A} Y_{n} d P$ for all $A \in \mathfrak{U}_{n}$.

It will next be established that, for every $n, Y_{n}^{+} \leqq E\left(Z \mid \mathfrak{H}_{n}\right)$ a.e. and $Y_{n}^{-} \leqq E\left(Z \mid \mathfrak{M}_{n}\right)$ a.e. This will show that $\left\{Y_{n}\right\}_{n \geqq 1}$ is a uniformly integrable martingale and hence that it converges in the L_{1} norm.

Let

$$
\begin{aligned}
& K_{n} \equiv\left\{w: Y_{n}^{+}>E\left(Z \mid \mathfrak{Q}_{n}\right)\right\} \text { and } \\
& D_{n} \equiv \text { the positive set for } v_{n} .
\end{aligned}
$$

Without loss of generality, assume $P\left(D_{n}\right)>0$. It follows that

$$
\int_{K_{n} D_{n}} Y_{n}^{+} d P=v_{n}\left(K_{n} D_{n}\right)=\lim _{\substack{p \rightarrow \infty \\ p \geqq n}}\left|\mu_{p}\left(K_{n} D_{n}\right)\right|=\lim _{\substack{p \rightarrow \infty \\ p \geqq n}}\left|\int_{K_{n} D_{n}} X_{p} d P\right| \leqq \int_{K_{n} D_{n}} Z d P
$$

Hence $P\left(K_{n} D_{n}\right)=0$; otherwise,

$$
\int_{K_{n} D_{n}} Y_{n}^{+} d P>\int_{K_{n} D_{n}} E\left(Z \mid \mathscr{X}_{n}\right) d P=\int_{K_{n} D_{n}} Z d P
$$

which gives a contradiction. Also, where $Z \geqq 0$ it follows that $E\left(Z \mid \mathfrak{N}_{n}\right) \geqq 0$ a.e. and thus $P\left(K_{n} D_{n}^{c}\right)=0$. Thus $P\left(K_{n}\right)=0$ and $Y_{n}^{+} \leqq E\left(Z \mid \mathfrak{N}_{n}\right)$ a.e.

A similar argument shows that $Y_{n}^{-} \leqq E\left(Z \mid \mathfrak{N}_{n}\right)$ a.e.
The proof will be finished by proving that $\left\{X_{n}-Y_{n}\right\}_{n \geqq 1}$ converges to zero in the L_{1} norm. To do so, one need only show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\mu_{n}\left(A_{n}\right)-v_{n}\left(A_{n}\right)\right|=0 \tag{2}
\end{equation*}
$$

for any sequence $\left\{A_{n}\right\}_{n \geqq 1}$ of sets from $\left\{\mathfrak{X}_{n}\right\}_{n \geqq 1}$; that is, that $A_{n} \in \mathfrak{A}_{n}$ all n. For, in particular, let B_{n} be the positive set for $\left(X_{n}-Y_{n}\right)$ and C_{n} be the negative set for $\left(X_{n}-Y_{n}\right)$, for all n. Then

$$
\int\left|X_{n}-Y_{n}\right| d P \leqq\left|\mu_{n}\left(C_{n}\right)-v_{n}\left(C_{n}\right)\right|+\left|\mu_{n}\left(B_{n}\right)-v_{n}\left(B_{n}\right)\right|
$$

and by (2) it is immediate that $\lim _{n \rightarrow \infty}\left\|X_{n}-Y_{n}\right\|_{1}=0$.
To establish (2), let $\varepsilon>0$ be given. For n and ε given, there exists an integer $k_{n, \varepsilon}$, which may, without loss of generality, be taken greater than n, such that

$$
\begin{equation*}
\left|v_{n}\left(A_{n}\right)-\mu_{k_{n, \varepsilon}}\left(A_{n}\right)\right|<\varepsilon / 2 \tag{3}
\end{equation*}
$$

Also, for all n greater than some sufficiently large integer

$$
\begin{equation*}
\left|\mu_{n}\left(A_{n}\right)-\mu_{k_{n, 4}}\left(A_{n}\right)\right|<\varepsilon / 2 \tag{4}
\end{equation*}
$$

this follows by again using the inequality set forth in (1) and the facts that the game $\left\{X_{n}\right\}_{n \geqq 1}$ is uniformly (a.e.) dominated in absolute value by Z and becomes fairer with time. Inequalities (3) and (4) establish (2) and the proof is complete.

REFERENCES

1. L. H. Blake, A generalization of martingales and two consequent convergence theorems, Pacific J. Math., 35 (1970), 279-283.
2. N. Dunford and J. T. Schwartz, Linear operators, Part I (New York, 1958).
3. P. A. Meyer, Probability and potentials (Waltham, Mass., 1966).

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

