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1. Introduction

The study of local maps was initiated by Kadison [18] and Larson and Sourour [20].
In 1997, Šemrl [29] introduced the concepts of 2-local automorphisms and derivations
on the algebra B(H). Let A be an algebra. A (non-additive) map ϕ : A → A is called a
2-local automorphism if, for every a, b ∈ A, there exists an automorphism σa,b : A → A

such that ϕ(a) = σa,b(a) and ϕ(b) = σa,b(b). Similarly, a (non-additive) map δ : A → A

is called a 2-local derivation if, for every a, b ∈ A, there exists a derivation da,b : A → A

such that δ(a) = da,b(a) and δ(b) = da,b(b).
Local and 2-local maps have been studied on different operator algebras by many

authors [2–7,15–17,19,21–28].
It is interesting to note that the study of local maps on finite-dimensional algebras is

sometimes more difficult than in the infinite-dimensional case. In [29], Šemrl described
2-local automorphisms on the algebra B(H), all bounded linear operators on the infinite-
dimensional separable Hilbert space H. However, for the case when H is finite dimen-
sional, Šemrl’s original proof was long and involved tedious computations. A similar
description for the finite-dimensional case appeared later, in [19,24]. Our first goal is to
describe 2-local automorphisms on matrix algebras over finite-dimensional division rings.

Theorem 1.1. Let K be a finite-dimensional division algebra over its centre Z with
characteristic not 2, and let Mn(K), n � 1, be the ring of n × n matrices over K. Then
every 2-local automorphism of Mn(K) is an automorphism or an anti-automorphism
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of Mn(K). Moreover, if n � 2, then every 2-local automorphism of Mn(K) is an auto-
morphism of Mn(K).

This result is a generalization of theorems due to Molnar [24] and Kim and Kim [19]
obtained for Mn(C). It also generalizes a theorem by Chebotar et al . [5, Theorem 5.3],
where 2-local automorphisms of finite-dimensional division rings K with characteristic 0
were described. It is interesting to note that the case of anti-automorphism (if n = 1) is
really possible (see [5, Example 5.4]).

Our second theorem gives a description of 2-local derivations on matrix algebras over
finite-dimensional division rings.

Theorem 1.2. Let K be a finite-dimensional division algebra over its centre Z with
characteristic not 2, and let Mn(K), n � 1, be the ring of n × n matrices over K. Then
every 2-local derivation of Mn(K) is a derivation.

This result is a generalization of Kim and Kim’s theorem [19] obtained for Mn(C).
Finally, motivated by [5, Theorem 2.1], we prove the following result.

Theorem 1.3. Let K be a division ring with centre Z and let Mn(K), n � 2, be the
ring of n × n matrices over K. Suppose that α : Mn(K) → Mn(K) is a bijective additive
map such that

α(a−1)α(a) = α(b−1)α(b) �= 0 for all invertible a, b ∈ Mn(K).

Then α = λϕ, where ϕ : Mn(K) → Mn(K) is an automorphism or an anti-automorphism
and λ = α(1) ∈ Z.

This result is connected with the well-known Hua theorem [14] and it generalizes some
results of [5,10].

2. 2-local automorphisms and derivations on matrix algebras over
division rings

Let K be a finite-dimensional division algebra over its centre Z, and let Mn(K) be the
ring of n × n matrices over K. We denote by eij the matrix unit, that is, the matrix
which has a one in the (i, j)-position and zeros elsewhere.

Let tr : K → Z be a reduced trace of K and Tr : Mn(K) → Z be the trace map
of Mn(K) defined by Tr(A) = tr(a11)+tr(a22)+· · ·+tr(ann) if A =

∑
i,jaijeij ∈ Mn(K).

We first recall the following result about the reduced trace (see, for example, [9, p. 148,
Lemma 4]).

Lemma 2.1. There exists an a ∈ K such that tr(a) �= 0.

Lemma 2.2. If A is non-zero in Mn(K), then there exists a B ∈ Mn(K) such that
Tr(AB) �= 0.

Proof. We denote A by
∑

i,j aijeij . Since A �= 0, say ast �= 0 in K for some 1 � s, t �
n. By Lemma 2.1, we can pick an a ∈ K such that tr(a) �= 0. Let B = a−1

st aets. We have
AB =

∑
i aita

−1
st aeis and so Tr(AB) = tr(a) �= 0 as desired. �
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Now we can describe 2-local automorphisms of matrix algebras over finite-dimensional
division rings using some ideas from [5,24].

Proof of Theorem 1.1. Let ϕ : Mn(K) → Mn(K) be a 2-local automorphism.
For every x, y ∈ Mn(K), there exists an automorphism σx,y on Mn(K) such that
ϕ(x) = σx,y(x) and ϕ(y) = σx,y(y). By [13, Theorem 4.3.1], there exists an invertible
c ∈ Mn(K) such that σx,y(x) = cxc−1 and σx,y(y) = cyc−1. Therefore,

ϕ(x)ϕ(y) = σx,y(x)σx,y(y) = cxyc−1 (2.1)

and so

Tr(ϕ(x)ϕ(y)) = Tr(xy) for all x, y ∈ Mn(K). (2.2)

Let {k1, k2, . . . , km} be a basis of K over Z. We claim that ϕ(kiejl), 1 � i � m,
1 � j, l � n, are linearly independent over Z. Assume on the contrary that there exist
λijl in Z not all zero, say λi0j0l0 �= 0, such that

∑
i,j,l

λijlϕ(kiejl) = 0.

By Lemma 2.1, there exists an a ∈ K such that tr(a) �= 0. Since
∑

i λij0l0ki �= 0, let

b =
(∑

i

λij0l0ki

)−1

a.

It follows from (2.2) and the linearity of the trace map that

0 = Tr
([∑

i,j,l

λijlϕ(kiejl)
]
ϕ(bel0j0)

)

=
∑
i,j,l

λijl Tr(ϕ(kiejl)ϕ(bel0j0))

=
∑
i,j,l

λijl Tr(kibejlel0j0)

=
∑

i

λij0l0 tr(kib)

= tr
((∑

i

λij0l0ki

)
b

)

= tr(a),

which is a contradiction. Therefore, the ϕ(kiejl), 1 � i � m, 1 � j, l � n, are linearly
independent over Z and hence span Mn(K) over Z.
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We can now prove the linearity of ϕ over Z. For each u, v ∈ Mn(K) and for every i, j,
l, we find from (2.2) that

Tr(ϕ(u + v)ϕ(kiejl)) = Tr((u + v)kiejl)

= Tr(ukiejl) + Tr(vkiejl)

= Tr(ϕ(u)ϕ(kiejl)) + Tr(ϕ(v)ϕ(kiejl))

= Tr((ϕ(u) + ϕ(v))ϕ(kiejl)).

Since the ϕ(kiejl) span Mn(K) over Z, we have

Tr((ϕ(u + v) − ϕ(u) − ϕ(v))x) = 0 for all x, u, v ∈ Mn(K).

By Lemma 2.2, we have ϕ(u + v) − ϕ(u) − ϕ(v) = 0. That is, ϕ(u + v) = ϕ(u) + ϕ(v) for
all u, v ∈ Mn(K).

For each α ∈ Z and u ∈ Mn(K), there exists an automorphism σu,αu such that
ϕ(u) = σu,αu(u) and ϕ(αu) = σu,αu(αu). Then

ϕ(αu) = σu,αu(αu) = ασu,αu(u) = αϕ(u).

That is, ϕ is a linear map on Mn(K) over Z. Being a 2-local automorphism, ϕ is injective
and hence is surjective, since Mn(K) is finite dimensional over Z.

Note that, for each u ∈ Mn(K), there exists an automorphism σu,u2 such that ϕ(u) =
σu,u2(u) and ϕ(u2) = σu,u2(u2). Then ϕ(u2) = σu,u2(u2) = σu,u2(u)2 = ϕ(u)2 for all
u ∈ Mn(K). Therefore, ϕ is a Jordan automorphism. Since the characteristic of K is
not 2, it follows from the Herstein theorem [11] that ϕ is an automorphism or an anti-
automorphism.

Finally, let n > 1. Suppose that ϕ is an anti-automorphism. Substituting x = e11 and
y = e12 in (2.1), we obtain 0 = ϕ(yx) = ϕ(x)ϕ(y) = cxyc−1, which is a contradiction. �

We shall now describe 2-local derivations of matrix algebras over finite-dimensional
division rings.

Proof of Theorem 1.2. Let δ : Mn(K) → Mn(K) be a 2-local derivation. For each
x, y ∈ Mn(K), there exists a derivation dx,y on Mn(K) such that δ(x) = dx,y(x) and
δ(y) = dx,y(y). By the proposition in [13, p. 100], there exists an invertible c ∈ Mn(K)
such that [c, xy] = dx,y(xy) = dx,y(x)y + xdx,y(y) = δ(x)y + xδ(y). Thus, we have

0 = Tr([c, xy]) = Tr(δ(x)y + xδ(y)) and so Tr(δ(x)y) = − Tr(xδ(y)).

Therefore,

Tr(δ(u + v)z) = − Tr((u + v)δ(z))

= − Tr(uδ(z)) − Tr(vδ(z))

= Tr(δ(u)z) + Tr(δ(v)z)

= Tr((δ(u) + δ(v))z)
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and so
Tr((δ(u + v) − δ(u) − δ(v))z) = 0 for all u, v, z ∈ Mn(K).

By Lemma 2.2, we have δ(u + v) − δ(u) − δ(v) = 0. That is, δ(u + v) = δ(u) + δ(v) for
all u, v ∈ Mn(K).

Finally, for each u ∈ Mn(K), there exists a derivation du,u2 such that δ(u) = du,u2(u)
and δ(u2) = du,u2(u2). Then

δ(u2) = du,u2(u2) = du,u2(u)u + udu,u2(u) = δ(u)u + uδ(u) for all u ∈ Mn(K).

Therefore, δ is a Jordan derivation. Since the characteristic of K is not 2, we see that
δ is a derivation by the Herstein theorem [12]. �

3. A generalization of Hua’s theorem

In 1949, Hua [14] proved that every bijective additive map α on a division ring K satisfy-
ing α(aba) = α(a)α(b)α(a) and α(1) = 1 is an automorphism or an anti-automorphism.
This result was reformulated by Artin as: any bijective additive map α on a divi-
sion ring K satisfying α(a−1) = α(a)−1 and α(1) = 1 is an automorphism or an anti-
automorphism [1, Theorem 1.15]. The same result was established for the n × n matrix
rings over a division ring K in case when K �= GF(2), the Galois field of two ele-
ments [10]. In [5], the authors removed the condition of α(1) = 1 in Hua’s result and
prove the following.

Theorem 3.1 (Chebotar et al . [5, Theorem 2.1]). Let K be a division ring with
centre Z and α : K → K be a bijective additive map such that

α(a−1)α(a) = α(b−1)α(b) for all non-zero a, b ∈ K.

Then α = λϕ, where ϕ : K → K is an automorphism or an anti-automorphism and
λ = α(1) ∈ Z.

We shall generalize this result to matrix algebras over division rings. We begin with
some technical results.

Lemma 3.2. Let K be a division ring with centre Z such that K �= GF(2) and
let Mn(K), n � 2, be the ring of n × n matrices over K. Suppose that α : Mn(K) →
Mn(K) is a surjective additive map. If µ ∈ Mn(K) satisfies [µ, α(y)] = 0 for all invert-
ible y ∈ Mn(K) with y − 1 invertible, then µ ∈ Z.

Proof. We claim first that [µ, α(keij)] = 0 for all k ∈ K and 1 � i, j � n. If k =
0, then the above equality holds automatically. Let 0 �= k ∈ K and 1 � i, j � n.
In the case when i �= j, we pick h ∈ K such that h �= 0, 1. Let y1= h + keij and
y2 = h; we find that yl and yl − 1 are invertible and so [µ, α(yl)] = 0 for l = 1, 2.
Therefore, [µ, α(keij)] = [µ, α(y1) − α(y2)] = 0. In the case when i = j, we consider y =
keii + e12 + e23 + · · · en−1n + en1. Since y and y − 1 are invertible, we have [µ, α(y)] = 0.
It follows from the above case that

0 = [µ, α(e12)] = [µ, α(e23)] = · · · = [µ, α(en−1n)] = [µ, α(en1)],
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and so [µ, α(keii)] = 0. Since α is a surjective additive map, by the claim, we have µ ∈ Z

as desired. �

Our next goal is the case when K = GF(2).

Lemma 3.3. Suppose K = GF(2) and n � 2. Let α be a surjective additive map
of Mn(K) and µ ∈ Mn(K).

(i) If µ satisfies [µ, y] = 0 for all invertible y ∈ Mn(K), then µ ∈ K.

(ii) If µ satisfies [µ, α(y)] = 0 for all invertible y ∈ Mn(K), then µ ∈ K.

Proof. (i) Let i �= j. By assumption, we have [µ, 1] = 0 and [µ, 1 + eij ] = 0, and
therefore [µ, eij ] = 0. Further, since

[
µ, eii + eij + eji +

∑
k �=i,j

ekk

]
= 0 and

[
µ, eij + eji +

∑
k �=i,j

ekk

]
= 0,

it follows that [µ, eii] = 0. Hence, µ ∈ K as desired.

(ii) Since α is additive, we can see from the above proof that [µ, α(eij)] = 0 for all
1 � i, j � n. From the fact that α is surjective and additive, it follows that µ ∈ K. �

Proof of Theorem 1.3. Let z = α(1−1)α(1) �= 0; then z = α(a−1)α(a) = α(a)α(a−1)
and so

α(a)z = α(a)(α(a−1)α(a)) = (α(a)α(a−1))α(a) = zα(a)

for all invertible a ∈ Mn(K). By Lemmas 3.2 and 3.3(ii), we have z ∈ Z.
Suppose first that K �= GF(2). Let λ = α(1) and let ϕ : Mn(K) → Mn(K) be

defined by ϕ(a) = λ−1α(a) for all a ∈ Mn(K). Then ϕ is a bijective additive map
on Mn(K) with ϕ(1) = 1. If we can claim λ ∈ Z, then we will have ϕ(a−1)ϕ(a) =
z−1α(a−1)α(a) = z−1z = 1 for all invertible a ∈ Mn(K). Hence, ϕ is an automorphism
or an anti-automorphism in light of [10] and so the proof will be complete.

Let x, y ∈ Mn(K) be invertible elements such that x − y−1 is invertible. Thus, we have
the following beautiful identity due to Hua:

(x−1 − (x − y−1)−1)−1 = x − xyx. (3.1)

Set x = 1 and let y be an invertible element such that y − 1 is invertible (and hence
1 − y−1 = y−1(y − 1) is invertible). Applying α to (3.1) and using α(a−1) = zα(a)−1, we
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obtain

α(y) = λ − α((1 − (1 − y−1)−1)−1)

= λ − zα(1 − (1 − y−1)−1)−1

= λ − z(λ − α((1 − y−1)−1))−1

= λ − z(λ − z(λ − α(y−1))−1)−1

= λ − (λ−1 − (λ − zα(y)−1)−1)−1

= λ − (λ−1 − (λ − (z−1α(y))−1)−1)−1

= λ − (λ − λ−1α(y)λ)

= λ−1α(y)λ.

Hence, [λ, α(y)] = 0 for all invertible y ∈ Mn(K) with y − 1 invertible. By Lemma 3.2,
we have λ ∈ Z as desired.

Suppose next that K = Z = GF(2). Let a be an invertible element of Mn(K). It follows
from 0 �= z = α(a)α(a−1) ∈ K that α(a) is invertible. Therefore, α is an invertibility-
preserving map. Since α is a bijective map on the finite set Mn(GF(2)), it maps singular
matrices to singular matrices. It follows from Dieudonné’s [8] result that α must have
the form of α(X) = UXV or α(X) = UXtV , where U, V ∈ Mn(K) are invertible and t

is the transpose map.
Say α(X) = UXV . Let a be an invertible element in Mn(K). It follows from

α(a−1)α(a) = α(1)2

that Ua−1V UaV = UV UV , i.e. [V U, a] = 0 for all invertible a. Therefore, V U ∈ K

by Lemma 3.3(i) and so UV = V U . Hence, we have α(1) = UV = V U ∈ K and
α(X) = UXV = UV (V −1XV ) = α(1)(V −1XV ) as desired. Similar arguments can be
applied for the case α(X) = UXtV . The proof is completed. �
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