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A note on a broken Dirichlet convolution
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Abstract: The paper deals with a broken Dirichlet convolution ⊗ which is based on using the
odd divisors of integers. In addition to presenting characterizations of ⊗-multiplicative functions
we also show an analogue of Menon’s identity:∑

a (mod n)

(a,n)⊗=1

(a− 1, n) = φ⊗(n)[τ(n)−
1

2
τ2(n)],

where (a, n)⊗ denotes the greatest common odd divisor of a and n, φ⊗(n) is the number of inte-
gers a (mod n) such that (a, n)⊗ = 1, τ(n) is the number of divisors of n, and τ2(n) is the number
of even divisors of n.
Keywords: Dirichlet convolution, Möbius function, multiplicative arithmetical functions, Menon’s
identity
AMS Classification: 11A25.

1 Introduction

An arithmetical function is a complex-valued function whose domain is the set of positive integers
Z+. The Dirichlet convolution f ∗ g of two arithmetical function f and g is defined by

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
,

where the summation is over all the divisors d of n (the term ”divisor” always means ”positive
divisor”). The identity element relative to the Dirichlet convolution is the function δ:
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δ(n) =

{
1 if n = 1

0 otherwise

An arithmetical function f has a convolution inverse if and only if f(1) 6= 0. The convolution
inverse of the zeta function ζ (ζ(n) = 1 for any n ∈ Z+) is the (classical) Möbius function µ:

µ(n) =


1 if n = 1

(−1)k if n is a product of k distinct primes
0 if n has one or more repeated prime factors.

There are many fundamental results about algebras of arithmetical functions with a variety of
convolutions. The Davison− or K−convolution ([2], [10, Chapter 4]) f ∗K g of two arithmetical
functions f and g is defined by

(f ∗K g)(n) =
∑
d|n

K(n, d)f(d)g
(n
d

)
,

where K is a complex-valued function on the set of all pairs of positive integers (n, d) with d|n.
If K ≡ 1 then the K-convolution is the Dirichlet convolution.

In [12] the C-algebra of extended arithmetical functions is considered as an incidence al-
gebra of a proper Möbius category. If a category C is decomposition-finite (i.e. C is a small
category in which for any morphism α, α ∈ MorC, there are only a finite number of pairs
(β, γ) ∈MorC ×MorC such that γβ = α) then the C-convolution f̃ ∗ g̃ of two incidence func-
tions f̃ and g̃ (that is two complex-valued functions defined on the set MorC of all morphisms
of C) is defined by:

(f̃ ∗ g̃)(α) =
∑
γβ=α

f̃(β)g̃(γ).

The incidence function δ̃ defined by

δ̃(α) =

{
1 if α is an identity morphism
0 otherwise

is the identity element relative to theC-convolution ∗ . A Möbius category (in the sense of Leroux
[9, 1]) is a decomposition-finite category in which an incidence function f̃ has a convolution
inverse if and only if f̃(α) 6= 0 for any identity morphism α. The Möbius function µ̃ of a Möbius
categoryC is the convolution inverse of the zeta function ζ̃ defined by ζ̃(α) = 1 for any morphism
α of C. Some useful characterizations of a Möbius category C are given in [1, 7, 8, 9]. The set
of all incidence functions I(C) of a Möbius category C becomes a C-algebra with the usual
pointwise addition and multiplication and the C-convolution ∗ .

The prime example of a Möbius category (with a single object) is the multiplicative monoid of
positive integers Z+, the convolution being the Dirichlet convolution and the associated Möbius
function being the classical Möbius function. A simple example of a proper Möbius category
is the category C⊗ with two objects 1 and 2 and with HomC⊗(1, 1) = 2Z+ − 1 (the set of odd
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positive integers), HomC⊗(1, 2) = 2Z+ (the set of even positive integers), HomC⊗(2, 1) = ∅,
HomC⊗(2, 2) = {id2}, the composition of morphisms being the usual multiplication of integers.
In this case, the C⊗-convolution (called the broken Dirichlet convolution in [12]) f̃ ⊗ g̃ of two
incidence functions f̃ and g̃ is the following one:

n ∈ Z+, (f̃ ⊗ g̃)(n) = f̃(n)g̃(id2) +
∑

vu=n; u6=n

u∈2Z+−1

f̃(u)g̃(v); (f̃ ⊗ g̃)(id2) = f̃(id2)g̃(id2).

In [12] the elements of the incidence algebra I(C⊗) are called extended arithmetical functions.
Now,

A = {f̃ ∈ I(C⊗)|f̃(id2) = f̃(1)}

is a subalgebra of the incidence algebra I(C⊗) (see [12, Remark 4.2]). All elements of this sub-
algebra A are arithmetical functions and the convolution induced in A for arithmetical functions
is the following:

n ∈ Z+, (f ⊗ g)(n) = f(n)g(1) +
∑

d|n; d<n

d∈2Z+−1

f(d)g
(n
d

)
.

It is straightforward to see that the above arithmetical functions convolution is a Davison
convolution with:

K⊗(n, d) =

{
1 if d = n or d is odd
0 otherwise.

It is clear that the incidence functions δ̃, ζ̃, µ̃ ∈ I(C⊗) are elements of the subalgebra A and,
as arithmetical functions, they coincide with the arithmetical functions δ, ζ and µ⊗ respectively,
where (see [12, Proposition 2.1])

µ⊗(n) =


µ(n) if n is odd
−1 if n = 2k (k > 0)

0 if n is even, n 6= 2k.

2 Odd-multiplicative arithmetical functions

Following Haukkanen [3], an arithmetical function f is K-multiplicative (where K is the basic
complex-valued function of a Davison convolution) if

(1) f(1) = 1;

(2) (∀n ∈ Z+), f(n)K(n, d) = f(d)f(n
d
)K(n, d), for all d|n.

In the case of a Möbius category C we say that an incidence function f ∈ I(C) is
C-multiplicative (see also [11]) if the following conditions hold:

(1) f(1) = 1;

(2) (∀α ∈MorC), f(α) = f(β)f(γ), for all (β, γ) ∈MorC ×MorC with γβ = α.
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Now, we call an arithmetical function f odd-multiplicative if

(1) f(1) = 1;

(2) (∀n ∈ Z+), f(n) = f(2n(2))
∏

p[f(p)]
n(p), where n = 2n(2)

∏
p p

n(p) is the canonical
factorization of n.

Proposition 2.1. Let f be an arithmetical function. The following statements are equivalent:

(i) f is odd-multiplicative;

(ii) f is C⊗-multiplicative;

(iii) f is K⊗-multiplicative.

Proof. (i) ⇒ (ii). Let n = 2n(2)
∏

p p
n(p) be the canonical factorization of n and let n = vu

the product of two positive integers u and v such that u is odd. If u = 2u(2)
∏

p p
u(p) and

v = 2v(2)
∏

p p
v(p) are the canonical factorizations of u and v respectively then u(2) = 0,

u(p) ≤ n(p) and v(2) = n(2), v(p) = n(p)− u(p). It follows:

f(n) = f(2n(2))
∏
p

[f(p)]n(p) = f(2u(2))
∏
p

[f(p)]u(p)f(2v(2))
∏
p

[f(p)]v(p) = f(u)f(v).

(ii) ⇒ (iii). Id d is an odd divisor of n then n = n
d
d is a factorization of the morphism n in

C⊗. Therefore f(n) = f(d)f(n
d
). Since K⊗(n, d) = 0 if d is even, it follows:

f(n)K⊗(n, d) = f(d)f(
n

d
)K⊗(n, d) for all d|n.

(iii) ⇒ (i). Let n = 2n(2)
∏

p p
n(p) be the canonical factorization of n. Since

∏
p p

n(p) is an
odd divisor of n it follows:

f(n) = f(2n(2))f(
∏
p

pn(p)).

It remains to be shown that f(
∏

p p
n(p)) =

∏
p[f(p)]

n(p) which immediately follows by induction.

Proposition 2.2. Let f be an arithmetical function such that f(1) 6= 0. The following statements
are equivalent:

(i) f is odd-multiplicative;

(ii) f(g ⊗ h) = fg ⊗ fh for any two arithmetical functions g and h;

(iii) f(g ⊗ g) = fg ⊗ fg for any arithmetical function g;

(iv) fτ⊗ = f ⊗ f , where

τ⊗(n) =

{
τ(n) if n is odd

1 + τ(m) if n = 2km, k > 0, and m is odd

(τ(n) is the number of divisors of n).
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Proof. (i)⇒ (ii).

(fg ⊗ fh)(n) = f(n)g(n)h(1) +
∑

d|n; d<n

d∈2Z+−1

f(d)g(d)f(
n

d
)h(

n

d
) =

= f(n)[g(n)h(1) +
∑

d|n; d<n

d∈2Z+−1

g(d)h(
n

d
)] = [f(g ⊗ h)](n).

(ii)⇒ (iii). This is obvious.
(iii) ⇒ (iv). It is straightforward to check that ζ ⊗ ζ = τ⊗. When we put g = ζ in (iii) we

obtain (iv).
(iv) ⇒ (i). Since f(1) = f(1)τ⊗(1) = f(1)f(1) and f(1) 6= 0, it follows f(1) = 1.

Now, let n = 2n(2)
∏

p p
n(p) be the canonical factorization of n. We shall prove by induction on

s = n(2) +
∑

p n(p) that

f(n) = f(2n(2))
∏
p

[f(p)]n(p).

If s = 1 then obviously the equality holds. The equality holds also if n = 2k. So, we assume
that s > 1 and in the same time that τ⊗(n) > 2. We have

f(n)τ⊗(n) = 2f(n) +
∑

d|n; d6=1,n

d∈2Z+−1

f(d)f(
n

d
).

Since d|n and d 6= 1, n it follows, by the hypothesis of induction, that

f(d)f(
n

d
) = f(2d(2))

∏
p

[f(p)]d(p)f(2
n
d
(2))
∏
p

[f(p)]
n
d
(p) = f(2n(2))

∏
p

[f(p)]n(p).

Taking into account that ζ ⊗ ζ = τ⊗, we have∑
d|n; d6=1,n

d∈2Z+−1

f(d)f(
n

d
) = (τ⊗(n)− 2)f(2n(2))

∏
p

[f(p)]n(p),

and therefore
f(n) = f(2n(2))

∏
p

[f(p)]n(p).

An arithmetical function f is called multiplicative if f(mn) = f(m)f(n) whenever
(m,n) = 1. If f is multiplicative and f(1) 6= 0 (i.e. f is not identically zero) then f(1) = 1

and f−1(1) = 1. Here and in the next Proposition, f−1 (g−1, (fg)−1) means the inverse of f
(g, fg) relative to the convolution ⊗. Note that C⊗ being a Möbius category, f(1) 6= 0 assures
the existence of the convolution inverse f−1.

Proposition 2.3. Let f be a multiplicative arithmetical function such that f(1) 6= 0. The following
statements are equivalent:
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(i) f is odd-multiplicative;

(ii) fg−1 = (fg)−1 for any arithmetical function g with g(1) 6= 0;

(iii) fµ⊗ = f−1;

(iv) f−1(pm) = 0 for any odd prime p and any m > 1.

Proof. (i)⇒ (ii). δ = fδ = f(g ⊗ g−1) = fg ⊗ fg−1 and fg−1 ⊗ fg = f(g−1 ⊗ g) = fδ = δ.

(ii)⇒ (iii). fµ⊗ = fζ−1 = (fζ)−1 = f−1.

(iii)⇒ (iv). f−1(pm) = f(pm)µ⊗(p
m) = f(pm)µ(pm) = 0 if m > 1.

(iv) ⇒ (i). Let n = 2n(2)
∏

p p
n(p) be the canonical factorization of n. Since f is multiplica-

tive it follows:
f(n) = f(2n(2))

∏
p

f(pn(p)).

Now, 0 = (f ⊗ f−1)(pm) = f(pm) + f(pm−1)f−1(p) for any odd prime p and m ≥ 1. Thus,
f−1(p) = −f(p) and f(pm) = f(pm−1)f(p). Therefore,

f(n) = f(2n(2))
∏
p

[f(p)]n(p).

3 The analogue of Menon’s identity

As a matter of course, the Dirichlet convolution leads us to the divisibility relation on Z+ and the
convolution ⊗ leads us to an ”odd-divisibility” relation |⊗ defined by

m|⊗n if and only if m is odd and m|n.

We denote the greatest common odd divisor of m and n by (m,n)⊗ and let φ⊗(n) be the
number of integers a (mod n) such that (a, n)⊗ = 1.

Lemma 3.1. We have:

(1) (a, n)⊗ = (a+ n, 2n)⊗;

(2) φ⊗(2n) = 2φ⊗(n);

Proof. (1). If (a, n)⊗ = d then d is odd, d|a and d|n. It follows that d|a+n and d|2n. Therefore,
d|(a + n, 2n)⊗. If d′ is an odd integer such that d′|a + n and d′|2n then d′|n and d′|a. It follows
(a+ n, 2n)⊗|d, and in conclusion, (a, n)⊗ = (a+ n, 2n)⊗.

(2) follows immediately from (1).

By induction on k, using Lemma 3.1.(2), we obtain the following result.

Proposition 3.1. Let n = 2km be the factorization of n such that m is odd. Then

φ⊗(n) = 2kφ(m),

where φ is Euler’s totient function.
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Corollary 3.1. We have

φ⊗(n) =

{
φ(n) if n is odd

2φ(n) if n is even.

Corollary 3.2. The arithmetical function φ⊗ is multiplicative.

In the theory of arithmetical functions a well known and elegant result is Menon’s identity
([6]): ∑

a (mod n)

(a,n)=1

(a− 1, n) = φ(n)τ(n).

In this section, using Menon’s generalized identity established by Haukkanen [5], we evaluate
the sum ∑

a (mod n)

(a,n)⊗=1

(a− 1, n)

which obviously becomes the above expression in the case if n is odd.
In [4], Haukkanen introduced the concept of a generalized divisibility relation (of type

f = {fp : p is prime}) satisfying certain conditions (see also [5, Section 2]). For such a gen-
eralized divisibility relation o, fp are functions from Z+ to Z+ ∪ {0} defined by: fp(a) is the
smallest integer i ∈ {1, 2, · · · a} such that pi o pa if such i exists, and fp(a) = 0 otherwise. Now,
(m,n)o denotes the greatest element among the divisors d of m satisfying d o n and φo(n) is the
number of integers a (mod n) such that (a, n)o = 1 (see [5, Section 3]). In [5, Theorem 4.1],
Haukkanen established Menon’s generalized identity. In particular (see [5, (4.4)],∑

a (mod n)

(a,n)o=1

(a− 1, n) = φo(n)
∑
d|n

φ(d)nd
dφo(nd)

,

where nd =
∏

p|d p
n(p).

Proposition 3.2. We have ∑
a (mod n)

(a,n)⊗=1

(a− 1, n) = φ⊗(n)[τ(n)−
1

2
τ2(n)],

where τ2(n) is the number of even divisors of n.

Proof. It is straightforward to check that the relation |⊗ is a Haukkanen’s generalized divisibility
relation of type f = (02, ζ, ζ, · · · ), where 02(a) = 0 for any positive integer a. Since∑

d|n
d∈2Z+−1

φ(d)nd
dφ⊗(nd)

=
∑
d|n

d∈2Z+−1

φ(d)nd
dφ(nd)

=
∑
d|n

d∈2Z+−1

1 =

= the number of odd divisors of n,
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and

∑
d|n

d∈2Z+

φ(d)nd
dφ⊗(nd)

(nd=2n(d)md)
=

∑
d|n

d∈2Z+

φ(d)nd
d2nd(2)φ(md)

=

=
∑
d|n

d∈2Z+

ndd
∏

p|d

(
1− 1

p

)
d2nd(2)md

∏
p|d;p6=2

(
1− 1

p

) =
∑
d|n

d∈2Z+

(
1− 1

2

)
=

1

2
τ2(n),

it follows that

∑
a (mod n)

(a,n)⊗=1

(a− 1, n) = φ⊗(n)
∑
d|n

φ(d)nd
dφ⊗(nd)

=

= φ⊗(n)[
∑
d|n

d∈2Z+−1

φ(d)nd
dφ⊗(nd)

+
∑
d|n

d∈2Z+

φ(d)nd
dφ⊗(nd)

] =

= φ⊗(n)[τ(n)−
1

2
τ2(n)].
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280–282.

[10] McCarthy, P. J. Introduction to Arithmetical Functions Springer-Verlag, 1986.

[11] Schwab, E. D. Complete multiplicativity and complete additivity in Möbius categories,
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