A note on a broken Dirichlet convolution

Emil Daniel Schwab ${ }^{1}$ and Barnabás Bede ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, The University of Texas at El Paso El Paso, TX 79968, USA
e-mail: eschwab@utep.edu
${ }^{2}$ Department of Mathematics, DigiPen Institute of Technology
Redmond, WA 98052, USA
e-mail: bbede@digipen.edu

Abstract

The paper deals with a broken Dirichlet convolution \otimes which is based on using the odd divisors of integers. In addition to presenting characterizations of \otimes-multiplicative functions we also show an analogue of Menon's identity:

$$
\sum_{\substack{a(\text { mod } n) \\(a, n) \otimes=1}}(a-1, n)=\phi_{\otimes}(n)\left[\tau(n)-\frac{1}{2} \tau_{2}(n)\right],
$$

where $(a, n)_{\otimes}$ denotes the greatest common odd divisor of a and $n, \phi_{\otimes}(n)$ is the number of integers $a(\bmod n)$ such that $(a, n)_{\otimes}=1, \tau(n)$ is the number of divisors of n, and $\tau_{2}(n)$ is the number of even divisors of n.

Keywords: Dirichlet convolution, Möbius function, multiplicative arithmetical functions, Menon’s identity
AMS Classification: 11A25.

1 Introduction

An arithmetical function is a complex-valued function whose domain is the set of positive integers \mathbb{Z}^{+}. The Dirichlet convolution $f * g$ of two arithmetical function f and g is defined by

$$
(f * g)(n)=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right),
$$

where the summation is over all the divisors d of n (the term "divisor" always means "positive divisor"). The identity element relative to the Dirichlet convolution is the function δ :

$$
\delta(n)= \begin{cases}1 & \text { if } \quad n=1 \\ 0 & \text { otherwise }\end{cases}
$$

An arithmetical function f has a convolution inverse if and only if $f(1) \neq 0$. The convolution inverse of the zeta function $\zeta\left(\zeta(n)=1\right.$ for any $n \in \mathbb{Z}^{+}$) is the (classical) Möbius function μ :

$$
\mu(n)=\left\{\begin{array}{cll}
1 & \text { if } & n=1 \\
(-1)^{k} & \text { if } & n \text { is a product of } k \text { distinct primes } \\
0 & \text { if } & n \text { has one or more repeated prime factors. }
\end{array}\right.
$$

There are many fundamental results about algebras of arithmetical functions with a variety of convolutions. The Davison- or K-convolution ([2], [10, Chapter 4]) $f *_{K} g$ of two arithmetical functions f and g is defined by

$$
\left(f *_{K} g\right)(n)=\sum_{d \mid n} K(n, d) f(d) g\left(\frac{n}{d}\right),
$$

where K is a complex-valued function on the set of all pairs of positive integers (n, d) with $d \mid n$. If $K \equiv 1$ then the K-convolution is the Dirichlet convolution.

In [12] the \mathbb{C}-algebra of extended arithmetical functions is considered as an incidence algebra of a proper Möbius category. If a category C is decomposition-finite (i.e. C is a small category in which for any morphism $\alpha, \alpha \in \operatorname{Mor} C$, there are only a finite number of pairs $(\beta, \gamma) \in \operatorname{Mor} C \times \operatorname{Mor} C$ such that $\gamma \beta=\alpha$) then the C-convolution $\widetilde{f} * \widetilde{g}$ of two incidence functions \widetilde{f} and \widetilde{g} (that is two complex-valued functions defined on the set $M o r C$ of all morphisms of C) is defined by:

$$
(\tilde{f} * \widetilde{g})(\alpha)=\sum_{\gamma \beta=\alpha} \widetilde{f}(\beta) \widetilde{g}(\gamma) .
$$

The incidence function $\widetilde{\delta}$ defined by

$$
\widetilde{\delta}(\alpha)=\left\{\begin{array}{cc}
1 & \text { if } \alpha \text { is an identity morphism } \\
0 & \text { otherwise }
\end{array}\right.
$$

is the identity element relative to the C-convolution * . A Möbius category (in the sense of Leroux $[9,1]$) is a decomposition-finite category in which an incidence function \widetilde{f} has a convolution inverse if and only if $\widetilde{f}(\alpha) \neq 0$ for any identity morphism α. The Möbius function $\widetilde{\mu}$ of a Möbius category C is the convolution inverse of the zeta function $\widetilde{\zeta}$ defined by $\widetilde{\zeta}(\alpha)=1$ for any morphism α of C. Some useful characterizations of a Möbius category C are given in [1, 7, 8, 9]. The set of all incidence functions $I(C)$ of a Möbius category C becomes a \mathbb{C}-algebra with the usual pointwise addition and multiplication and the C-convolution * .

The prime example of a Möbius category (with a single object) is the multiplicative monoid of positive integers \mathbb{Z}^{+}, the convolution being the Dirichlet convolution and the associated Möbius function being the classical Möbius function. A simple example of a proper Möbius category is the category C_{\otimes} with two objects 1 and 2 and with $\operatorname{Hom}_{C_{\otimes}}(1,1)=2 \mathbb{Z}^{+}-1$ (the set of odd
positive integers), $\operatorname{Hom}_{C_{\otimes}}(1,2)=2 \mathbb{Z}^{+}$(the set of even positive integers), $\operatorname{Hom}_{C_{\otimes}}(2,1)=\emptyset$, $\operatorname{Hom}_{C_{\otimes}}(2,2)=\left\{i d_{2}\right\}$, the composition of morphisms being the usual multiplication of integers. In this case, the C_{\otimes}-convolution (called the broken Dirichlet convolution in [12]) $\tilde{f} \otimes \widetilde{g}$ of two incidence functions \widetilde{f} and \widetilde{g} is the following one:

$$
n \in \mathbb{Z}^{+}, \quad(\widetilde{f} \otimes \widetilde{g})(n)=\widetilde{f}(n) \widetilde{g}\left(i d_{2}\right)+\sum_{\substack{v u=n ; z \neq n \\ u \in 2 \mathbb{Z}^{+}-1}} \widetilde{f}(u) \widetilde{g}(v) ; \quad(\widetilde{f} \otimes \widetilde{g})\left(i d_{2}\right)=\widetilde{f}\left(i d_{2}\right) \widetilde{g}\left(i d_{2}\right)
$$

In [12] the elements of the incidence algebra $I\left(C_{\otimes}\right)$ are called extended arithmetical functions. Now,

$$
\mathcal{A}=\left\{\widetilde{f} \in I\left(C_{\otimes}\right) \mid \widetilde{f}\left(i d_{2}\right)=\widetilde{f}(1)\right\}
$$

is a subalgebra of the incidence algebra $I\left(C_{\otimes}\right)$ (see [12, Remark 4.2]). All elements of this subalgebra \mathcal{A} are arithmetical functions and the convolution induced in \mathcal{A} for arithmetical functions is the following:

$$
n \in \mathbb{Z}^{+}, \quad(f \otimes g)(n)=f(n) g(1)+\sum_{\substack{d \mid n ; d<n \\ d \in 2 \mathbb{Z}^{+}-1}} f(d) g\left(\frac{n}{d}\right)
$$

It is straightforward to see that the above arithmetical functions convolution is a Davison convolution with:

$$
K_{\otimes}(n, d)=\left\{\begin{array}{cc}
1 & \text { if } d=n \text { or } d \text { is odd } \\
0 & \text { otherwise } .
\end{array}\right.
$$

It is clear that the incidence functions $\widetilde{\delta}, \widetilde{\zeta}, \widetilde{\mu} \in I\left(C_{\otimes}\right)$ are elements of the subalgebra \mathcal{A} and, as arithmetical functions, they coincide with the arithmetical functions δ, ζ and μ_{\otimes} respectively, where (see [12, Proposition 2.1])

$$
\mu_{\otimes}(n)=\left\{\begin{array}{cll}
\mu(n) & \text { if } & n \text { is odd } \\
-1 & \text { if } & n=2^{k}(k>0) \\
0 & \text { if } & n \text { is even, } n \neq 2^{k}
\end{array}\right.
$$

2 Odd-multiplicative arithmetical functions

Following Haukkanen [3], an arithmetical function f is K-multiplicative (where K is the basic complex-valued function of a Davison convolution) if
(1) $f(1)=1$;
(2) $\left(\forall n \in \mathbb{Z}^{+}\right), f(n) K(n, d)=f(d) f\left(\frac{n}{d}\right) K(n, d)$, for all $d \mid n$.

In the case of a Möbius category C we say that an incidence function $f \in I(C)$ is C-multiplicative (see also [11]) if the following conditions hold:
(1) $f(1)=1$;
(2) $(\forall \alpha \in \operatorname{Mor} C), f(\alpha)=f(\beta) f(\gamma)$, for all $(\beta, \gamma) \in \operatorname{Mor} C \times \operatorname{Mor} C$ with $\gamma \beta=\alpha$.

Now, we call an arithmetical function f odd-multiplicative if
(1) $f(1)=1$;
(2) $\left(\forall n \in \mathbb{Z}^{+}\right), \quad f(n)=f\left(2^{n(2)}\right) \prod_{p}[f(p)]^{n(p)}, \quad$ where $n=2^{n(2)} \prod_{p} p^{n(p)}$ is the canonical factorization of n.

Proposition 2.1. Let f be an arithmetical function. The following statements are equivalent:
(i) fis odd-multiplicative;
(ii) fis C_{\otimes}-multiplicative;
(iii) fis K_{\otimes}-multiplicative.

Proof. (i) $\Rightarrow(i i)$. Let $n=2^{n(2)} \prod_{p} p^{n(p)}$ be the canonical factorization of n and let $n=v u$ the product of two positive integers u and v such that u is odd. If $u=2^{u(2)} \prod_{p} p^{u(p)}$ and $v=2^{v(2)} \prod_{p} p^{v(p)}$ are the canonical factorizations of u and v respectively then $u(2)=0$, $u(p) \leq n(p)$ and $v(2)=n(2), v(p)=n(p)-u(p)$. It follows:

$$
f(n)=f\left(2^{n(2)}\right) \prod_{p}[f(p)]^{n(p)}=f\left(2^{u(2)}\right) \prod_{p}[f(p)]^{u(p)} f\left(2^{v(2)}\right) \prod_{p}[f(p)]^{v(p)}=f(u) f(v) .
$$

$(i i) \Rightarrow(i i i)$. Id d is an odd divisor of n then $n=\frac{n}{d} d$ is a factorization of the morphism n in C_{\otimes}. Therefore $f(n)=f(d) f\left(\frac{n}{d}\right)$. Since $K_{\otimes}(n, d)=0$ if d is even, it follows:

$$
f(n) K_{\otimes}(n, d)=f(d) f\left(\frac{n}{d}\right) K_{\otimes}(n, d) \quad \text { for all } d \mid n
$$

$($ iii $) \Rightarrow(i)$. Let $n=2^{n(2)} \prod_{p} p^{n(p)}$ be the canonical factorization of n. Since $\prod_{p} p^{n(p)}$ is an odd divisor of n it follows:

$$
f(n)=f\left(2^{n(2)}\right) f\left(\prod_{p} p^{n(p)}\right) .
$$

It remains to be shown that $f\left(\prod_{p} p^{n(p)}\right)=\prod_{p}[f(p)]^{n(p)}$ which immediately follows by induction.

Proposition 2.2. Let f be an arithmetical function such that $f(1) \neq 0$. The following statements are equivalent:
(i) fis odd-multiplicative;
(ii) $f(g \otimes h)=f g \otimes$ fh for any two arithmetical functions g and h;
(iii) $f(g \otimes g)=f g \otimes f g$ for any arithmetical function g;
(iv) $f \tau_{\otimes}=f \otimes f$, where

$$
\tau_{\otimes}(n)=\left\{\begin{array}{cl}
\tau(n) & \text { if } n \text { is odd } \\
1+\tau(m) & \text { if } n=2^{k} m, k>0, \text { and } m \text { is odd }
\end{array}\right.
$$

$(\tau(n)$ is the number of divisors of $n)$.

Proof. $(i) \Rightarrow(i i)$.

$$
\begin{aligned}
&(f g\otimes f h)(n)=f(n) g(n) h(1)+\sum_{\substack{d \mid n ; d<n \\
d \in 2 \mathbb{Z}^{+}-1}} f(d) g(d) f\left(\frac{n}{d}\right) h\left(\frac{n}{d}\right)= \\
&=f(n)\left[g(n) h(1)+\sum_{\substack{d \mid n, d<n \\
d \in 2 \mathbb{Z}^{+}-1}} g(d) h\left(\frac{n}{d}\right)\right]=[f(g \otimes h)](n) .
\end{aligned}
$$

$(i i) \Rightarrow(i i i)$. This is obvious.
$(i i i) \Rightarrow(i v)$. It is straightforward to check that $\zeta \otimes \zeta=\tau_{\otimes}$. When we put $g=\zeta$ in (iii) we obtain (iv).
$(i v) \Rightarrow(i)$. Since $f(1)=f(1) \tau_{\otimes}(1)=f(1) f(1)$ and $f(1) \neq 0$, it follows $f(1)=1$. Now, let $n=2^{n(2)} \prod_{p} p^{n(p)}$ be the canonical factorization of n. We shall prove by induction on $s=n(2)+\sum_{p} n(p)$ that

$$
f(n)=f\left(2^{n(2)}\right) \prod_{p}[f(p)]^{n(p)}
$$

If $s=1$ then obviously the equality holds. The equality holds also if $n=2^{k}$. So, we assume that $s>1$ and in the same time that $\tau_{\otimes}(n)>2$. We have

$$
f(n) \tau_{\otimes}(n)=2 f(n)+\sum_{\substack{d \mid n ; d \neq 1, n \\ d \in 2 \mathbb{Z}^{+}-1}} f(d) f\left(\frac{n}{d}\right) .
$$

Since $d \mid n$ and $d \neq 1, n$ it follows, by the hypothesis of induction, that

$$
f(d) f\left(\frac{n}{d}\right)=f\left(2^{d(2)}\right) \prod_{p}[f(p)]^{d(p)} f\left(2^{\frac{n}{d}(2)}\right) \prod_{p}[f(p)]^{\frac{n}{d}(p)}=f\left(2^{n(2)}\right) \prod_{p}[f(p)]^{n(p)} .
$$

Taking into account that $\zeta \otimes \zeta=\tau_{\otimes}$, we have

$$
\sum_{\substack{d \mid n ; d \neq 1, n \\ d \in \mathbb{Z}+-1}} f(d) f\left(\frac{n}{d}\right)=\left(\tau_{\otimes}(n)-2\right) f\left(2^{n(2)}\right) \prod_{p}[f(p)]^{n(p)}
$$

and therefore

$$
f(n)=f\left(2^{n(2)}\right) \prod_{p}[f(p)]^{n(p)}
$$

An arithmetical function f is called multiplicative if $f(m n)=f(m) f(n)$ whenever $(m, n)=1$. If f is multiplicative and $f(1) \neq 0$ (i.e. f is not identically zero) then $f(1)=1$ and $f^{-1}(1)=1$. Here and in the next Proposition, $f^{-1}\left(g^{-1},(f g)^{-1}\right)$ means the inverse of f $(g, f g)$ relative to the convolution \otimes. Note that C_{\otimes} being a Möbius category, $f(1) \neq 0$ assures the existence of the convolution inverse f^{-1}.

Proposition 2.3. Letf be a multiplicative arithmetical function such that $f(1) \neq 0$. The following statements are equivalent:
(i) fis odd-multiplicative;
(ii) $f g^{-1}=(f g)^{-1}$ for any arithmetical function g with $g(1) \neq 0$;
(iii) $f \mu_{\otimes}=f^{-1}$;
(iv) $f^{-1}\left(p^{m}\right)=0$ for any odd prime p and any $m>1$.

Proof. $(i) \Rightarrow(i i) . \delta=f \delta=f\left(g \otimes g^{-1}\right)=f g \otimes f g^{-1}$ and $f g^{-1} \otimes f g=f\left(g^{-1} \otimes g\right)=f \delta=\delta$.
(ii) $\Rightarrow(i i i) . f \mu_{\otimes}=f \zeta^{-1}=(f \zeta)^{-1}=f^{-1}$.
(iii) $\Rightarrow(i v) . f^{-1}\left(p^{m}\right)=f\left(p^{m}\right) \mu_{\otimes}\left(p^{m}\right)=f\left(p^{m}\right) \mu\left(p^{m}\right)=0$ if $m>1$.
(iv) $\Rightarrow(i)$. Let $n=2^{n(2)} \prod_{p} p^{n(p)}$ be the canonical factorization of n. Since f is multiplicative it follows:

$$
f(n)=f\left(2^{n(2)}\right) \prod_{p} f\left(p^{n(p)}\right)
$$

Now, $0=\left(f \otimes f^{-1}\right)\left(p^{m}\right)=f\left(p^{m}\right)+f\left(p^{m-1}\right) f^{-1}(p)$ for any odd prime p and $m \geq 1$. Thus, $f^{-1}(p)=-f(p)$ and $f\left(p^{m}\right)=f\left(p^{m-1}\right) f(p)$. Therefore,

$$
f(n)=f\left(2^{n(2)}\right) \prod_{p}[f(p)]^{n(p)}
$$

3 The analogue of Menon's identity

As a matter of course, the Dirichlet convolution leads us to the divisibility relation on \mathbb{Z}^{+}and the convolution \otimes leads us to an "odd-divisibility" relation $\left.\right|_{\otimes}$ defined by

$$
\left.m\right|_{\otimes} n \text { if and only if } m \text { is odd and } m \mid n .
$$

We denote the greatest common odd divisor of m and n by $(m, n)_{\otimes}$ and let $\phi_{\otimes}(n)$ be the number of integers $a(\bmod n)$ such that $(a, n)_{\otimes}=1$.

Lemma 3.1. We have:
(1) $(a, n)_{\otimes}=(a+n, 2 n)_{\otimes}$;
(2) $\phi_{\otimes}(2 n)=2 \phi_{\otimes}(n)$;

Proof. (1). If $(a, n)_{\otimes}=d$ then d is odd, $d \mid a$ and $d \mid n$. It follows that $d \mid a+n$ and $d \mid 2 n$. Therefore, $d \mid(a+n, 2 n)_{\otimes}$. If d^{\prime} is an odd integer such that $d^{\prime} \mid a+n$ and $d^{\prime} \mid 2 n$ then $d^{\prime} \mid n$ and $d^{\prime} \mid a$. It follows $(a+n, 2 n)_{\otimes} \mid d$, and in conclusion, $(a, n)_{\otimes}=(a+n, 2 n)_{\otimes}$.
(2) follows immediately from (1).

By induction on k, using Lemma 3.1.(2), we obtain the following result.
Proposition 3.1. Let $n=2^{k} m$ be the factorization of n such that m is odd. Then

$$
\phi_{\otimes}(n)=2^{k} \phi(m),
$$

where ϕ is Euler's totient function.

Corollary 3.1. We have

$$
\phi_{\otimes}(n)=\left\{\begin{array}{cl}
\phi(n) & \text { if } n \text { is odd } \\
2 \phi(n) & \text { if } n \text { is even } .
\end{array}\right.
$$

Corollary 3.2. The arithmetical function ϕ_{\otimes} is multiplicative.
In the theory of arithmetical functions a well known and elegant result is Menon's identity ([6]):

$$
\sum_{\substack{a(m o d n) \\(a, n)=1}}(a-1, n)=\phi(n) \tau(n) .
$$

In this section, using Menon's generalized identity established by Haukkanen [5], we evaluate the sum

$$
\sum_{\substack{a(m o d n) \\(a, n) \otimes=1}}(a-1, n)
$$

which obviously becomes the above expression in the case if n is odd.
In [4], Haukkanen introduced the concept of a generalized divisibility relation (of type $f=\left\{f_{p}: p\right.$ is prime $\}$) satisfying certain conditions (see also [5, Section 2]). For such a generalized divisibility relation \imath, f_{p} are functions from \mathbb{Z}^{+}to $\mathbb{Z}^{+} \cup\{0\}$ defined by: $f_{p}(a)$ is the smallest integer $i \in\{1,2, \cdots a\}$ such that $p^{i} \imath p^{a}$ if such i exists, and $f_{p}(a)=0$ otherwise. Now, $(m, n)_{\imath}$ denotes the greatest element among the divisors d of m satisfying $d \imath n$ and $\phi_{\imath}(n)$ is the number of integers $a(\bmod n)$ such that $(a, n)_{2}=1($ see [5, Section 3]). In [5, Theorem 4.1], Haukkanen established Menon's generalized identity. In particular (see [5, (4.4)],

$$
\sum_{\substack{a(\bmod n) \\(a, n)_{\imath}=1}}(a-1, n)=\phi_{\imath}(n) \sum_{d \mid n} \frac{\phi(d) n_{d}}{d \phi_{\imath}\left(n_{d}\right)},
$$

where $n_{d}=\prod_{p \mid d} p^{n(p)}$.
Proposition 3.2. We have

$$
\sum_{\substack{a(\text { mod } n) \\(a, n) \otimes=1}}(a-1, n)=\phi_{\otimes}(n)\left[\tau(n)-\frac{1}{2} \tau_{2}(n)\right],
$$

where $\tau_{2}(n)$ is the number of even divisors of n.
Proof. It is straightforward to check that the relation $\left.\right|_{\otimes}$ is a Haukkanen's generalized divisibility relation of type $f=\left(0_{2}, \zeta, \zeta, \cdots\right)$, where $0_{2}(a)=0$ for any positive integer a. Since

$$
\begin{gathered}
\sum_{\substack{d \mid n \\
d \in 2 \mathbb{Z}^{+}-1}} \frac{\phi(d) n_{d}}{d \phi_{\otimes}\left(n_{d}\right)}=\sum_{\substack{d \mid n \\
d \in 2 \mathbb{Z}^{+}-1}} \frac{\phi(d) n_{d}}{d \phi\left(n_{d}\right)}=\sum_{\substack{d \mid n \\
d \in 2 \mathbb{Z}^{+}-1}} 1= \\
=\text { the number of odd divisors of } n,
\end{gathered}
$$

and

$$
\begin{gathered}
\sum_{\substack{d \mid n \\
d \in 2 \mathbb{Z}^{+}}} \frac{\phi(d) n_{d}}{d \phi_{\otimes}\left(n_{d}\right)} \stackrel{\left(n_{d}=2^{n(d)} m_{d}\right)}{=} \sum_{\substack{d \mid n \\
d \in 2 \mathbb{Z}^{+}}} \frac{\phi(d) n_{d}}{d 2^{n_{d}(2)} \phi\left(m_{d}\right)}= \\
=\sum_{\substack{d \mid n \\
d \in 2 \mathbb{Z}^{+}}} \frac{n_{d} d \prod_{p \mid d}\left(1-\frac{1}{p}\right)}{d 2^{n_{d}(2)} m_{d} \prod_{p \mid d ; p \neq 2}\left(1-\frac{1}{p}\right)}=\sum_{\substack{d \mid n \\
d \in 2 \mathbb{Z}^{+}}}\left(1-\frac{1}{2}\right)=\frac{1}{2} \tau_{2}(n),
\end{gathered}
$$

it follows that

$$
\begin{gathered}
\sum_{\substack{a(m o d n) \\
(a, n) \otimes=1}}(a-1, n)=\phi_{\otimes}(n) \sum_{d \mid n} \frac{\phi(d) n_{d}}{d \phi_{\otimes}\left(n_{d}\right)}= \\
=\phi_{\otimes}(n)\left[\sum_{\substack{d \mid n \\
d \in 2 \mathbb{Z}^{+}-1}} \frac{\phi(d) n_{d}}{d \phi_{\otimes}\left(n_{d}\right)}+\sum_{\substack{d \mid n \\
d \in 2 \mathbb{Z}^{+}}} \frac{\phi(d) n_{d}}{d \phi_{\otimes}\left(n_{d}\right)}\right]= \\
=\phi_{\otimes}(n)\left[\tau(n)-\frac{1}{2} \tau_{2}(n)\right] .
\end{gathered}
$$

References

[1] Content, M., F. Lemay, P. Leroux, Catégories de Möbius et fonctorialités: Un cadre général pour l'inversion de Möbius, J. Combin. Theory Ser. A, Vol. 28, 1980, 169-190.
[2] Davison, T. M. K. On arithmetic convolutions, Canad. Math. Bull., Vol. 9, 1966, 287-296.
[3] Haukkanen, P. On the Davison convolution of arithmetical functions, Canad. Math. Bull., Vol. 32, 1989, 467-473.
[4] Haukkanen, P. On a formula for Euler's totient function, Nieuw Arch. Wisk., Vol. 17, 1999, 343-348.
[5] Haukkanen, P. Menon's identity with respect to a generalized divisibility relation, Aequationes Math., Vol. 70, 2005, 240-246.
[6] Kesava Menon, P. On the sum $\sum(a-1, n)[(a, n)=1]$, J. Indian Math. Soc., Vol. 29, 1965, 155-163.
[7] Lawvere, F. W., M. Menni, The Hopf algebra of Möbius intervals, Theory and Appl. of Categories, Vol. 24, 2010, 221-265.
[8] Leinster, T. Notions of Möbius inversion, arXiv: 1201.0413 (2012).
[9] Leroux, P. Les catégories de Möbius, Cah. Topol. Géom. Diffé. Catég., Vol. 16, 1975, 280-282.
[10] McCarthy, P. J. Introduction to Arithmetical Functions Springer-Verlag, 1986.
[11] Schwab, E. D. Complete multiplicativity and complete additivity in Möbius categories, Italian J. Pure and Appl. Math., Vol. 3, 1998, 37-48.
[12] Schwab, E. D. Dirichlet convolution, bicyclic semigroup and a breaking process, Int. J. Number Th., Vol. 9, 2013, 1961-1972.

