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A NOTE ON A BROKEN LAYER

IN AN ORTHOTROPIC LAMINATE COMPOSITE

K. ARIN

Lehigh *University, Bethlehem, Pa., 18015, U.S.A.

ABSTRACT

An orthotropic laminate composite containing a completely

broken layer is considered. The problem is formulated in

terms of integral transforms and then reduced to a singular

integral equation which is solved numerically. The strength

of stress singularity at the crack tip is determined from a

characteristic equation which is obtained by studying the dom-

inant part of the singular integral equation near the end points.

The stress intensity factors are given for various material

properties.

1. INTRODUCTION

In a previous work by Arin [1), the problem of an ortho-

tropic laminate composite containing a layer with a crack and

bonded to two half-planes of dissimilar materials has been

solved and the effect of the material properties as well as

various crack sizes on the stress intensity factor at the tip

of the crack illustrated. It has been shown that there are

basically two types of•orthotropic materials. The results were

given for two different cases (Materials Type I and II). It

was concluded that the decrease in the stress intensity factors
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was apparent in the case of a matrix of stiffer material.

This is meaningful from the point of view of crack arrest.

In this paper, the limiring case for which the crack

reaches the interface will be investigated. It can be shown

that the Fredholm kernels in [1] become unbounded as the crack

touches the interface, hence requiring a separate treatment

of the problem. Extracting the additional singularities, the

singular integral equation of [1] can be solved in a similar

manner. Here, only the material Type I will be considered.

The solution for material Type II can be obtained similarly.

The notation and certain results of [1] wiwl be used wherever

necessary. Both the plane strain and the generalized plane

stress conditions are studied simultaneously.

The isotropic counterpart of this problem has been solved

by Gupta [2] and Ashbaugh [3].

2. FORMULATION OF THE PROBLEM AND THE SOLUTION

The singular integral equation of the problem of an or-

thotropic laminate composite containing a layer with a crack

of length ?.a is given as (1]:

1 a f(t)dta	 (1-VxyVyx)
F fa	 t-x + fa k(x,t)f(t)dt = - 2Y2 E	 p(x), JxJ<a0 y

subject to

fa ^(t)dt = 0
	

(2.1)
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and v1 (x,y) is the displacement component in y direction corre-

sponding to the layer. Here, Ex, Ey are the Young's Moduli;

vxyP Vyx are Poisson's ratios and Gxy is the shear modulus. The

bielastic constants Y i are given in Appendix A and [1) and the

kernel k(x,t) is given in Appendix B. The input function p(x)

is the crack surface pressure and corresponds to the perturbation

problem. (2.1) is given for the generalized plane stress. The

plane strain case is obtained by simply interchanging certain

constants (see [11).

However, the Fredholm kernel k(x,t) becomes unbounded for

a = h which represents a broken laminate. It can easily be

shown that in thie case, the part of k(x,t) which contributes

to further singularities can be expressed as (see Appendix B)

k (x,t) = 1 f[k*(x,n)e-(h—t)n Wl wlI
s	

xY20 o 1

+ k*(x,n)e-(h-t)n s5/jw3lldn	 (2.3)
2

where k*(x,n) and k,*^(x,n) are the asymptotic expressions of

kl(x,n) and k 2 (x,n) as n + ^.

Hence, equations (2.1) can now be written as

1 f  ^Wdt + f'`' k `.,t)^(t)dt + f  k (x,t)^Mdtr -h	 t-x	 , L	 h f

(1•VxyVyx)

P(x)	 lxl<h2v20Ey 

Ih ^(t)dt = 0	 (2.4)
3
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_	 1

kf (x,t) = k( x ,t) - ks (x,t) = 1ry	 t ( [kl ( x ,n) - k*(x,n)l
20 0	 1

e- (h-t)n 05/ jw1I + [k2 (x,n) - k2(x ,
n)le-(h-t ) n^/Iwgl

t

where
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It is quite easy to show that k f (x,t) is a bounded kernel and

thus can be evaluated numerically from (2.5).

On the other hand, k s (x,t) can be obtained in closed form.

From the Appendix S, the asymptotic expressions of k l (x,n) and

k2 (x,n) can be given as follows:

k*(x,n) = Y
51e

-Iwllnhcosh ( wlnx ) + Y52e-Iw3lnhcosh(w3nx)

-Iw l lnh	 -Iw31nh
k*(x,n) = Y 53 e	 coch(wlnx) + Y 54 e	 cosh(w3nx) (2.6)
2

Hence, after intermediate manipulations we arrive at

ks (x,t) = 2rrY20 3=1 
e j [ t- ( aj h+b j x) + t- aj -bjx)l

	

j= 1,..4
	

(2.7)

where bielastic constants a j ,b j and cj are given in Appendix A.

In dimensionless variables ( 2.4) becomes

3
7T I1 {TlX + 2y 2o. =1cj[ T- (aj+b j X) + T-(a.-bjX)l}

00 (T)dT + hfi k f (hX, hr) ^0 ( T ) dT = 9(X)	 ,	 IXI^1

f l ^0(T)dT = 0
	

(2.8)
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T = t/h , X = x/h

(1-vxyvyx)
(2.9)(hX)^o (T) = a(t)	 g(X) _ -	 2y F	 P	 r

20 y

The solution of (2.8) can be expressed as follows [5]:

	

F(T)	 h2YF(t/h)e:riy
^o ( T ) =	 2	 _ 	 r	 'TI<1	 (2.10)

	

(].-T )	 .(t- h)Y(t+h)Y

where the unknown function F(T) is Holder continuous in the in-

terval -1<T<l and o<Re(y)<l.

The strength of singularity Y can be determined by investi-

gating the dominant part of (2.8) or (2.4) near the end b ints

(see [51). Defining the sectionally holomorphic function

(D(z) = 1 fh I(t)dt	
(2.11)

:r -h	 t-z

following results can be obtained:

Y
_ (2) cot^ry[ F(-l) _ F(1) Y] + (1(zl)	 h<zl=x<h^(zl)

(h+x)	 (h-x)

	

Y	
h < z	 ..^(z2j ) - (-25j ) 

F(1)	 + fi 2 ( z2 )	 2j
=ah+bx <

7	 7 sinny(h+x)

(1 + 2bj)h

h(D (z	 Y	 F (1)	 + ID (z )	 h < z 3j=a jh-b j x <37 ) -	 (2bj) sinRy(h-x)Y	
3 3j

(1 + 2b j )h	 (2.12)

A = 1,2,3

where (P i , i = 1,2,3 are bounded functions everywhere except the

d of is where the behave as follows:en p n	 Y	 ) .,

^^ (z D1)

^1 (z l ) < z+Lh a ' 
0 2 (z 2j ) < z -h a

	

1-	 1 2i	 2
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0 3 (z 3j )	 < z D2—h a	
(2.13)

37	
3

where aj and Dj are real constants and a j <Re(y)• Also, ,D*(zl)

satisfies the Holder condition near and at the end points.

Substitution from (2.12) into the dominant part of either

(2.4) or (2.8) and considering that F(T) is an odd function,

the following characteristic equation is obtained to determine y:

cosnY + 1 E	 fL = 0	 (2.14)
2Y 20 j=1 bjY

which can be shown to have at least one real root.

After determining y, (2.8) can be solved using the numeri-

cal method given in (4), i.e.

N

7 E
	 F(Tj)Wj(T 

j 

1X 

i 

+ 7rhk s (hX i ,hr j ) + frhkf(hXi,hTj)l
j=1 

9(Xi)	 i = 1,..,N-1

N
E	 W.F(Tj) = 0
j=l	 (2.15)

where

PN(-Y,-Y)(Tj) = 0	 j = 1,..,N

PN-1
(1-Y,l-Y) (X i ) = 0	 i = 1,..,N-1	 (2.16)

and the Wj are the corresponding weights. From (2.15) N unknowns

F(T j ), j = 1,..,N can be determined.

3. THE STRESS INTENSITY FACTOR

The stress intensity factor at the crack tip will be de-
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fined as follows	 [txy2 (x,0)	 = 0]:

J	 K = lim	 [2(x-h)] ya	 (x,0)	 (3.1)
x+h
x>h a,

y
l^	 where ay2 (x,y) corresponds to the matrix.	 aY2 (x,0)	 can be ob-

tained in terms of ^(t) starting from the expressions given in
]

[1].	 Hence, after intermediate steps we obtain,

'Y 19 (1-vxYVyx )	 h	
do

-	 aY2(x,0) = f
h f(t)dt o fT]

I

E*
Y i

-(h-t)nS5/Iw 1 I	 -Iw3I(x-h)n	 Y15 	-Iw11(x-h)n a

{e	 [Y16fl3(n)e	 + Y21 f17(n)e	 ]

- (h-t)n 05/I w 3 I	 -Iw3I(x-h)n 	 Y15
+ e	 [Y* fl4(n)e	 + . — f1.(n)

Y2116

-Iw*I(x-h)n	 (3.2)
@	

e	 1	 ] }.8 
where

^^ 5y
fll(n) = Y21 +Y22 tanh(winh)

5
f12(n) = — + Y22 tanh(w3nh)

21

f 13 (11)	 = Y 53 f(n)	 + f 7 (n)f11 (n)	 + f8(n)f12(n)

f 14 (n?	 = Y 54 f(n)	 + f9 (TO f ll( n )	 + f 10 (n)f12 (n)	 (3.3)

f15(n) = R7 + S8 sign(w3)'tanh(winh)

f16 (TI) = Sa + p**	 sign(w3)	 tanh(w3nh)

t	 f17 (n)	 = Y 51 f(TO	 -	 f 7 (n)f15 (n)	 -	 f$(n)f16(n)
a

f 16 (n)	 = 'Y	 f(n)	 -	 f 9 (n)f 15 (n)	 -	 f 10 (n)f 16 (n)	 (3.4)52
I
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However, the right hand side of (3.2) becomes unbounded

near the tip of the crack. Hence, the dominant part which con-

tributes to the singular behavior can be extracted in a manner

similar to the procedure used to obtain (2.4). Thus, ay2(x,0)

can be expressed as:

(1-

vx^x) a (x,o) = E  	 !h — (t)dt - + a° (x,o)
Gy	 Y2	 j=1 r _h t-(ash+box)	 Y2

(3.5)

where aY 2 (x,0) is a bounded function.

To determine the stress intensity factor K, the behavior

of the Cauchy integral in (3.5) near the end points has to be

investigated. Following the method given by Muskhelishvili (5),

the sectionally holomorphic function defined in (2.11) can be

expressed near x = h as follows (h<x<-):

4)(z	 ) _ _ ( h )Y	 F(1)	 + (D (z	 )	 r
4	 2b3*.	 sinTry (x-h)Y	 o 4i

h < z 4j =ash+box < m	 (3.6)

Here, 4)o (z4. j ) is bounded everywhere except the end points, and

near x = h

$° (z4 ) I <	 C a 	 ao <Re (Y)
Iz4.1-h^ o

where C and a  are real constants. Hence from (3.1), (3.5) and

(3.6) we obtain

i

8



-	 OF(1)E*	 4	 c*
K = * --Y-- £ ---- , generalized (3.7)

(1-vxyvYx ) siniry	 j=1 (bj ) y 	 plane stress

1-vXYVYXFor plane strain	 *	 = Ex 0 should be replaced by 1/A22

M	 (see (11).•'	 EY^ 

4. NUMERICAL RESULTS AND CONCLUSION

The numerical results will be given for p(x) = po = constant

which corresponds to uniform crack surface pressure. K/pohy

values as well as y will be given for different material combi-

nations.

The following materials will be selected:

(A) Boron-Epoxy:

Ex = 3.5 x 10 6psi	 Ey = 3.24 x 107psi

vyx = 0.23	 G,Y = 1.23 x 106psi

and for the plane strain

E z = 3.5 x 106psi	 vzx = v zy = 0.23

(B) Boron-Epoxy:

Ex = 2.72 x 10 7psi, EY = 5.5 x 106psi

vyx = 0.22	 GxY.= 7.0 x 10
5 psi

and for the plane strain

E Z = 2.72 x 10 7psi v zX = vzy = 0.22

(C) Boron-Epoxy:

Ex = 5.5 x 10 6psi , By = 2.72 x 107psi

vyx = 0.1084	 Gxy = 7.0 x 105psi

and for the plane strain

E z = 5.5 x 10 6psi , vzx = vzY = 0.1084

(D) Glass-Fiber (208 volume fraction):

Ex = 6.6 x 10 5psi	 Ey = 2.52 x 106psi

vyx = 0.32	 Gxy = 2.9 x 105psi

and for the plane strain

Ez = 6.6 x 10 5 psi, vzX = vzy = 0.32

9
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Both y and K/pohy are given in Table 1 for various material

combinations, As seen from the equation (3.7), the stress in-

tensity factor is determined in terms of F(1). Since the un-

knowns obtained from (2.15) are F(T j )(j = 1,..,N), F(1) is found

by an extrapolation. Hence, three different values for K/pohy

are given in Table 1 to illustrate the effect of extrapolation.

Columns 1, 2 and 3 are obtained by extrapolating F(T j ) ( j = 1,..,N),

(j = 1,2,3) and (j = 2,3,4) respectively. From these results, it

appears that F(T 1) (as well as F(TN )) has a significant effect on

the stress intensity factor. It is also observed that the y

and the K/pohy values are quite sensitive to the material properties.
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APPENDIX P,

For Material Type I:

Dimensionless bielastic constants y. (i = 46,70):
(see reference [1] for the constants 

Y 1 - Y45)'

Y46 = IY 27 + Y26 sign( w l )][Y25 + Y24 sign(w3)]

- [Y 29 + y28 sign(w 3 )][Y 23 + Y 24 sign(wl))

Y47 = Y 38 + Y 39 pign(w3)

Y48 = Y40 + Y41 sign(wl)

Y49 = Y42 + Y43 sign(w3)

Y50 = Y44 + Y45 sign(wl)

Y 51 = Y 7 Y47/(Y19•Y46)

Y52	 '8 Y48/(y19y46)

Y53 = Y7 Y49/(Y19y46)

Y54 = Y8 Y50/(Y19y46)

Y 55 = R9 sign(w l )	 -	 R$ sign(w3) a

k
Y56 Yll

Y12
IR8 sign(w3)	 - R10 sign(w3)]

d
S	 Y57

_
- Y22 - Y1 R9 sign (w l)

21

Y 58 = y11
12

I- Y22 +1
	
R10	 sign(w 3 )I

21
ryry
S

7

_s
Y 59 y21

+ Y22 sign(wl)

r12
"]

i^

0

{

t

i
8

j

i
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Y60 = t3^Y21 + Y22 sign(w 3)

e

Y61 = 07 + 0 * slgn(w*3 ) sign(w1)

Y62 = $8 + 0** sign(w3) sign(w3)

!	 Y63 = Y57 Y46 + Y47 Y59 + Y48Y60

Y64 = Y58 Y46 + Y49 Y59 + Y50Y60

i
Y65 = Y55 Y46 - Y61 r 47 - Y62Y48

Y66 = Y 56 Y46 - Y61Y49 - Y62Y50

X67 = Y16Y63/(Y46Y19)

Y68 - Y65•Yi5/(Y46Y19Y21)

Y69 - Y16 Y64 / (Y46Y19)

Y70 - Y66Y15/(Y46Y19Y21)

Bielastic constants c i , b i , and a  (i = 1,3):

w1 	w12
c 1 = - S Y51 , b^

S	 5
^ w1 Y 52 + 1 31 Y 53	 _ wl fD3c2 =	 5	 ^ b 2	 5

X31	 w32
c3 - S5 Y54 ' b3 =

5

ai=1+-Di

13 6

I ;a
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Sielastic constants c, bi, ai (i = 1,4):

w	 ^
C*	

^
= 	

Y67 , b1 =	 1	
x
3

41-5 	 5
02 = - B Y68 b2 = ^^ U

5

°3 = -	 Y69	 b3 = *-31-1-3-1

5	 5
C* L= -	 l Y70 , b4 = 

L 3  Ij w 1

5	 5
^1 = 1-bi

14



AP?DNDIX B

Fredholm kernel (Bielastic constants Y  are defined in [13):

k(x,t) = ny	 l [kl(x,n)e
20 0

-(h-t)n s5/Iw3I
+ k 2 (x,n)e	 ] do

k 1 (x,n) = 2y19 n [Y 7f5 (x ,n) f 7 (n) + Y8f6(x,n)f8(n)I

k2 (x,n) = 2y19 (n [Y 7 f5 (x,n) f9 (n) + Y8f6(x,n)f10(n)1

f(n) = f 3 (n)f1 (n) - f2(n)f4(n)

f1 (n) = Y25 + Y24tanh(w3nh)

f 2 (n) = Y29 + Y28tanh(w3nh)

f3 (n) = Y 27 + Y26tanh(wlnh)
a

f4(n) = Y 23 + Y24tanh(wlnh)
i,

f5(n,x) = cosh(wlnx)/cosh(wlnh)

f6 (n,x) = cosh(w3nx)/cosh(w3nh)

f 7 (n) = Y 38 + Y39tanh(w3nh)

f 8 (n) = Y40 + Y4ltanh(wlnh)

f9 (n) = Y42 + Y43tanh(w3nh)
i

f10(n) = Y 94 + Y45tanh(wlnh)

15
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Figure 1. Geometry of the problem.

^,
ii


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf

