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A note on a discrete

analytic function

C.J. Harman

An unsolved problem in discrete analytic function theory has

teen to find a suitable analogue of the function fz . An

analogue z , of the function z , is found here for discrete

analytic functions of the first kind (or monodiffria functions).

This function resolves a conjecture of Isaacs in the negative,

and at the same time it introduces multi-valued functions into

the discrete analytic theory.

1. Introduction

In [3, Problem 1] it was stated that a discrete analytic analogue of

the function fz had not been found, and a result has been obtained by the

author [7] in connection with a discrete analytic theory for ^-difference

(a)
functions. In this note the monodiffric analogue z , of the classical

(X

function z , is found.

Isaacs [9, 70] conjectured that there were no rational monodiffric

functions other than polynomials, and in the following, i t is shown that

the function z resolves this conjecture in the negative. Also, multi-

valued functions are introduced into the theory.

Monodiffric functions were defined by Isaacs [9, 10] and further

developed by Kurowski [7 7] and Berzsenyi [7, 2]. They are defined on the

set of gaussian integers and satisfy the forward-difference equation,
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(1.1)

The monodiffric function corresponding to a (n a non-negative integer)

is denoted by z and was found by Isaacs to be

(1.2) z(n> = I

where s = (x, y) and x = x(x-l) . . . (x-j+l) ; xl = 1 .

Discrete analytic functions of the second kind were introduced by

Ferrand [5] and extensively developed by Duff in [4] and others. They are

defined by the difference quotient equality,

1+i l-i

In this latter theory however, the corresponding function 2 does not

have a simple algebraic form.

2. Preliminaries

In monodiffric theory i t is usual to employ forward-differences but i t

will be more convenient here to utilize backward-differences, tile results

obtained applying equally well to the standard monodiffric scheme.

Accordingly the following definitions of the operators E , E , A and A

are made:

(2.1) Exf(z) = f(z-l) , E^iz) = f(z-i) ,

A^s) = [l-E^fiz) = /(a) - /(a-1) ,

h2f{2) = tilnz) = M-f(z-i) .

If A f(z) = A2/(s) , then / is said to be monodiffric at the point z ,

and a common operator A can be used, where

( 2 . 2 ) A i Ax = A2 .

The domain of definition is to be restricted to the set G of
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gaussian integers. Hence,

G = {z; z = xHy , where x, y are integers} .

Subsequently a complex number z will be used synonymously with i t s

components (x, y) .

Subsets of G in the four quadrants of the complex plane are defined

as follows:

G = {s; z € G, x > 0, y > 0} , G = {z; z € G, x < 0, y > 0} ,

G = {s ; s € G, x < 0 , y < 0} , G^ = {z; z € G, x > 0 , t/ < 0} ,

and on the axes ,

X+ = {z; z € G, x > 0 , y = 0} , *~ = {s ; z € G, x £ 0 , y = 0} ,

I = {s ; z € G, x = 0, i/ > 0} , J~ = {z; z € G, x = 0 , y S 0} .

Before proceeding to the derivation of z it will be shown that if

a function is defined for points of G on the axes (on X , X , X and

Y ), then it can be extended as a monodiffric function into G .

Kurowski [7/] constructed an operator E which provides the

extension of a function, defined on the X-axis, to a monodiffric function

defined on a half plane.

Defining the operators (l-tA ) and (l-A_) by

(i-iA1)
m= I [i\(-i)k^ ; (1-^)° = J ,

m

2 k=0

where m is a positive integer, A and A are as defined in (2.1), and

I is the identity operator; then the following two theorems are

equivalent to Kurowski's result and will only be stated.

THEOREM 2.1. If z = (x, y) € G , and a function f ie defined for

z € X u X (on the X-axia)y -then a monodiffria function with these
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prescribed values is determined uniquely for z € G_ u G, u Y~ (below the

X-axis) and is given by

f(z) = [l-UXyf(x, 0) = I [~y}(-i)dd[f{x, 0)] .

THEOREM 2.2. The function f defined by

f ( z ) = ( l - A y X f ( O , y) = ~f H 1 ( - 1 ) J A ^ [ / ( O , y ) }

is the unique monodiffric function for z € G u G u X~ (to the left of

the Y-axis)3 with prescribed values f{0, y) on Y u Y~ .

On the other hand, if / is defined on the positive-half X and Y
axes, then a monodiffric function is determined explicitly for al l z € G

in the first quadrant, as the following theorem shows.

THEOREM 2.3. If a function f is defined on X* and Y* 3 then
it has a unique monodiffric extension into G. , and in fact for
z = (x, y) € G± ,

|
V=0

Proof. From (2 .2 ) , i f / is monodiffric at z € G ,

) = A2/(2) , and so by (2.1) ,

f(z) = (

= (

Similarly,

f(z) =

and in general,

then
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/(a)

so that for n = x + y ,

f(z) = (l-i)~

3=0 l '

When 0 < 3 5 x , the argument of / lies in G, and when x 5 j 5 x+y

i t lies in <?2 . Hence by Theorems 2.1 and 2.2 the expression for f(z)

in the above statement of the theorem is obtained. Uniqueness follows from
the constructive method used, completing the proof of the theorem.

As a consequence of the above three theorems, i t follows that if a
function is defined on the axes, then i t has a monodiffric extension to all
points of G , the resulting function being unique at least in G , G and

An alternative form of the above theorem, which is given by the case
n = x + y - 1 , proves useful and is now stated.

THEOREM 2.4. For z (. G and with f defined on the positive-half

axes as in the above theorem, then

•3=0 V ° '

j=x

3. The function z^

A monodiffric function z is said to be an analogue of the

classical function s if
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(3-D

( i )

(ii)

l(iii)

where A i s def ined by ( 2 . 2 ) .

= o ^ " 1 *

= 0 ; a > 0 ,

- 1 .

When a = n , a non-negative integer, z is given by Isaacs's
function (1.2), where for the backward-difference case,

x = x(x+l) (x+j-l) . A general form is now obtained for 3 (a

not a negative integer - but otherwise an arbitrary constant) which is

consistent with Isaacs's function when a is a non-negative integer.

(3-2)

For x € X u X on the X-axis, the function x is defined by

(a) _ r(s+a)
X ~ r(x) '

where a is not a negative integer, and where T is the classical gamma
function. This function satisfies (3-1) with A = A .

(a)
When a = n , a non-negative integer, x reduces to ,

X ( M ) = x(x+l) . . . (x+n-1) ; x ( 0 ) = 1 ,

so that x = 0 ; x = 0, - 1 , -2, . . . , -n+1 . When a is not an
integer, then since F(x) has a pole when x is a negative integer, i t
follows that

(3.3) X ( O ) = 0 ; x € X- .

For points of G on the Y-axis {iy t Y u Y ) , the function

(iy) is defined by

(3.U)

where y i s given by ( 3 - 2 ) . This function s a t i s f i e s ( 3 - l ) wi th

A = A_ .
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The case when a is a non-negative integer has been solved by Isaacs.

When a is a negative integer, the function x , as defined by (3.2),

has a singularity at each of the points x = 1, 2, . . . , -ot . Subsequently

i t will be assumed that a is not an integer.

From Theorem 2.1 i t follows that the function

is the unique monodiffric function in this region, with prescribed values

x on the #-axis. Hence,

3=0

A (°0 (ot-l) Aj (a) , , . , . ,> ( a - j )and s ince & x = otx , t±-X = ct̂ ct—1^ . . . \Ct—J+IJX , it1 1 /

follows on simplification that

3=0 W J

From (3-3) i t follows that

(3.6) z ^ = 0 ; z t G u y " u X~ .

Similarly,

z ^ = [l-b2y
X(iy)W ; 3 = (x, z/) € G2 u C3 u r ,

is the unique monodiffric function with values (iy) on the y-axis,

and this reduces to

3=0 V>

Once again z = 0 ; z Z G v X~ u X~ , and so this definition is

consistent with (3-5).

By construction, the function z (given by (3.5), (3-6) and

(3.7)), is monodiffric and i t can be readily verified that i t sat isf ies
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conditions ( i ) and ( i i ) of (3 .1) . /

For the remaining region G , i t follows from Theorem 2.3 that for

and so by (3-5) and ( 3 . 7 ) ,

/_ o» (a) . . . -

3=0

where for j = 0, 1 , . . . . x , (x-j, j-x) i s given by ( 3 - 5 ) , and by

(3-7) when 2 = x+1 , x+2, . . . , x+y . The funct ion i s monodiffr ic by

(a)
Theorem 2 .3 and i t s a t i s f i e s 0 = 0 . I t remains t o be v e r i f i e d t h a t

THEOREM 3 .1 . For 2 € G± 3 the function z^a' as defined by (3.8)

satisfies the condition

Proof. Let z € G . From (2 .1) ,

and so by ( 3 - 8 ) ,

{?
y=oy=o *• ̂  J

0=0
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and on combining the f i rs t two sums,

, > x+y-2

3=0

J=0

Now if Z € C or (J, then i t has been shown previously that

, and from this i t follows that

Hence with Z = (x- j , J+l-x) ,

J=O

(from Theorem 2.1*). Since z is monodiffric i t follows that

. (a) . (a) (a-l)
As = A s = as , completing the proof of the theorem.

Hence z has been specified for a l l points of G and i t can be

seen that (3-5) and (3-7) demonstrate an analogy with the binomial

expansion of the function z = (x+iy) . In the region G the

expression for s given by (3-8) is a l i t t l e more complicated, but i t

can be shown that (3.8) becomes
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(3-9) ,(«) =
3=0 K"J • 3=0

where the two divergent series are summable (E, q) for q > 0 in the

Euler sense (see Hardy [6]). This represents a remarkable analogy with the

binomial expansion of z and the proof, being lengthy, is given in [8].

To summarize the preceding results:- the monodiffric function
(X

corresponding t o z i s given by:

(3.10) z (a)

3=0

3=0

0 ; z € G3 u X~

,3=0
U X+

4. Properties and discussion

Isaacs [9, 70] conjectured that there were no monodiffric functions,

rational in x and y , other than polynomials. Now from the definition

of x ^ , it follows that if z t G, (x > 0, y < 0) , then

;|a>-jy.7) =
(x-l)l

(a)
and so for 2 € G, , the function 3 , given in (3-10) by

(a) f«|r(a-j).j (i)
\A\X ^ yL

3=0

is both monodiffric and rational in x and y . This shows that Isaacs's

conjecture is false.

In the classical case, the function z is multi-valued, and in fact

if z. denotes a particular branch, then i t is well known that

. ± 1 , ± 2 , . . . .
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In the region G , z (given in 3.10) is multi-valued due to the

presence of the factor i> , and in fact if z denotes a branch, then

, . # a ( a ) . M = 0 > ± 1 > ± 2 j . . . .

demonstrating a close analogy with the function z

The representation of a in G is promising. It is derived from

a combination of values of z on the positive half axes; i t is multi-

valued; i t is a very good approximation to x on the positive AT-axis

and to (iy) on the positive v-axis.

On the other hand the representation of a in C and G,

illustrates a certain lack of symmetry in the usage of monodiffric

functions. The function is single-valued in G and G, and in fact is

zero in G - a poor analogy vith the classical function z

In view of the above observations, a need is suggested for an

alternative method of defining discrete analyticity, which retains the

algebraic simplicity of monodiffric functions, and which at the same time

introduces a symmetry similar to the Schwarz Reflection Principle. Such a

theory is discussed in [$]•

In the preceding analysis, a backward-difference scheme was used to

define a monodiffric function. However if the more usual forward-

difference scheme is used, al l of the corresponding results, comments and

criticisms apply without loss of generality, where x is defined by
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