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A NOTE ON A DISTANCE BOUND USING EIGENVALUES OF THE
NORMALIZED LAPLACIAN MATRIX*

STEVE KIRKLANDT

Abstract. Let G be a connected graph, and let X and Y be subsets of its vertex set. A previously
published bound is considered that relates the distance between X and Y to the eigenvalues of the
normalized Laplacian matrix for G, the volumes of X and Y, and the volumes of their complements.
A counterexample is given to the bound, and then a corrected version of the bound is provided.
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1. Introduction. Suppose that G is a connected graph on n vertices; let A be
its adjacency matrix, and let D denote the diagonal matrix of vertex degrees. The
normalized Laplacian matriz for G, denoted L, is given by £ = I — DT AD= . Tt
turns out that £ is a positive semidefinite matrix, having 0 as a simple eigenvalue (see
[1]). Denote the eigenvalues of L by 0 = Ao < A1 < A2 < ... < A\,_1. The relationship
between the structural properties of G and the eigenvalues of £ has received much
attention, and the monograph [1] provides a comprehensive survey of results on that
subject.

Given two nonempty subsets X, Y of the vertex set of GG, the distance between X
and Y is defined as d(X,Y) = min{d(z, y)|z € X,y € Y}, where for vertices z and y,
d(x,y) is the length of a shortest path between x and y. The volume of X, denoted
vol(X), is defined as the sum of the degrees of the vertices in X, while vol(G) denotes
the sum of the degrees of all of the vertices in G. We use X to denote the set of
vertices not in X.

The following inequality relating d(X,Y") to the eigenvalues of L, appears in [1].

ASSERTION 1.1. ([1], Theorem 3.1) Suppose that G is not a complete graph. Let
X and Y be subsets of the vertex set of G with X #Y,Y. Then we have

vol (X )vol(Y)

0g vol(X)vol(Y)
(1.1) d(X,Y) 4 Tog 2n1th
0g An—1—A1

Unfortunately, Assertion 1.1 is in error, as the following example shows.

EXAMPLE 1.2. Suppose that p,q € IN, and let H(p,q) = O, V K,, where O,
is the graph on p vertices with no edges, and where G V G2 denotes the join of the
graphs Gy and G3. Evidently H(p,q) has p vertices of degree ¢ and ¢ vertices of
degree p + ¢ — 1. Let J denote an all-ones matrix (whose order is to be taken from
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the context). The normalized Laplacian for H(p, q) is given by

1 —1L 7
a(p+gq—1)

—1 PTq _ 1 7
Valp+q—1) p+q—1 pt+q—1

The eigenvalues are readily seen to be 0,1 (with multiplicity p — 1), 259 (with

p+q—1
An—1+A 20—2
—72—- Hence, for H(p,q) we have £*==51 = 3 + ==,
Suppose that p is even. Let X denote a set of % vertices of degree ¢, and let

Y denote the set of the remaining £ vertices of degree q. Note that X # Y and

that d(X,Y) = 2. We have vol(X) = £ = vol(Y) and vol(X) = q(%” +q -
o X vol(X)vol(Y) __ (3P +q-1) _ 2q—2
1) = vol(Y). Consequently, 4/ uolgxguolgyg - e %q =3+ qT. Hence we have

vol(X)vol(Y)
log {/ ot vol(v)

{W}Z 1<2=4d(X,Y), contrary to Assertion 1.1.

An—1—A1

Our goal in this paper is to adapt the approach to Assertion 1.1 outlined in [1]
so as to produce an amended upper bound on d(X,Y). It will transpire that only a
minor modification of (1.1) is needed. Needless to say, the line of thought pursued in
[1] is fundamental to the present work.

Henceforth, we take G to be a connected graph on n vertices, and we take XY
to be nonempty subsets of its vertex set, such that X #Y,Y. Let £ =1 — DT AD=
be the normalized Laplacian matrix for GG, where A is the adjacency matrix and D is
the diagonal matrix of vertex degrees; denote the eigenvalues of £ by 0 = Ay < A1 <
... < Ap—1, and let vg,...,v,—1 denote an orthonormal basis of eigenvectors of L,
where for each j, v; corresponds to A;. Let ¥ x denote the vector of order n with a 1
in the position corresponding to vertex ¢ if ¢ € X and a 0 there otherwise. We define
1y analogously. Let 1 denote an all-ones vector of order n.

multiplicity ¢ — 1) and 1 +

2. Amending the bound. We begin by analysing the argument in [1] advanced

to support Assertion 1.1. We express D%wx and D%wy as linear combinations of
. 1 _ 1 _ K

eigenvectors, say D2vx = agvg + E?:ll a;v; and D21y = bovg + Z?:ll b;v;. Since

vy = \/%D% 1, it is straightforward to see that ag = \;‘% and by = \;%
VO Vo Vo
Let pe(z) = (1 — ﬁ)t, and for each ¢t € IV, let p;(£) denote the matrix
(I - ﬁﬁ)t. The argument in [1] proceeds via the following approach: if for

some t € IN, the inner product < Déwy,pt(ll)D%wX > is positive, then we can

t
conclude that d(X,Y) < t. Note that for each x € [A1, An—_1], [pe(2)] < (ﬁ) .
Observe that
1 1 n—
< D2y, py(L)D2hx >= agho + Y1y pe(Ni)asb;

)\n—l - )\1>t

2.1 > agbg —
21) = 0% <)\n—1+)\1
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_ vol(X)vol(Y)  [An—1—M1 \/UOl(X)UOl(X)UOZ(Y)UOZ(Y)
- vol(G) An—1+A1 vol(G)

At this point, it is stated in [1] (erroneously) that the inequality in (2.1) must be
strict, since if equality were to hold, then there would be some constant ¢ such that
b; = ca; for alli = 1,...,n—1, which would then imply that either X =Y or X =Y,
contrary to hypothesis. (It turns that there are circumstances other than X =Y or
X =Y under which strict inequality in (2.1) fails to hold, as illustrated by Example

2.) Under the assumption that (2.1) is strict, it is then enough to take

vol (X)vol(Y)
1Og vol (X )vol(Y)

in order to conclude that < D%wy,pt(ﬁ)D%wX > is strictly positive.
Next, we discuss the case of equality in (2.1).

vol (Y)vol(Y)

THEOREM 2.1. Suppose that X #Y,Y, and let c = ol (Xyvol( 7

Suppose that

Z;:ll pe(Ai)aib; = — ( = 1_&‘1) \/Zz Laiyn 11 b2. Then there are constants a, 3,
and unit eigenvectors w and u, correspondmg to A1 and \,_1, respectively, such that

(2.2) D%wx = agug + aw + Bu, and

(2.3) D%wy = bovg — caw + cBu.

Further, t is odd.
Proof: Since

t
-1 n A -1
S pOab = - (32255 ) S0 fallb)

our hypothesis implies that equality must hold throughout (2.4). In particular, since
equality holds in the second inequality of (2.4), there is a constant ¢ > 0 such that
for each i = 1,...,n — 1 either b; = ¢a; or b; = —¢éa,;. Since X # Y,Y, it cannot be

the case that b; = ¢a; for all i = 1,...,n — 1, nor can it be the case that b; = —¢ca;
foralli=1,...,n— 1. In particular, we see that ¢ must be positive.

Further, since equality holds in the first inequality of (2.4), we must also have

t
pe(Ni)ab; = — (%) |a;||b;| for each @ = 1,...,n — 1. Hence for each i such
t

that A\; # A1, An—1, we have a; = b; = 0. Since p;(\1) = (ﬁ) , we find that
for each index ¢ such that A; = Ay, we must have b; = —éa;. Also, since ps(Ap—1) =

t
(—1)¢ (ﬁ) , and since there is at least one index ¢ such that \; = \,_1 and
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b; = ¢éa; # 0, we find that ¢ must be odd. It now follows that for every 4 such that
>\i = )\nfl, we have bz = éai.

Consequently, there is a Aj-eigenvector w of norm 1 and a \,_j-eigenvector u
of norm 1 and constants «, 3 such that D%wx = agvg + aw + Bu and D%wy =
bovg — caw + ¢Pu. Note that a # 0 and B # 0, otherwise it follows that either

X =Y or X =Y. It is straightforward to determine that o + 3% = %&Of)@ and

. 222 wol(Y)vol(Y) . . s [ wol(Mwol(Y) _
02a2 + 0252 = T(G)’ Wthh ylelds CcC = m = C. D

REMARK 2.2. Suppose that X NY = (), and that (2.2) and (2.3) hold. Since
< D%wx, D%Q/JY >= 0, we have apby—c(a? — 3?) = 0. Substituting our expressions for

. _ wol(X)vol(Y) [wol(X)vol(X)
ap and by yields o2 — 32 = ol (G ool(¥ w0l (V)

_ vol(X)vol(X) _ wol(X)vol(X) L(X)vol(Y)
2.1, 0’432 = %, and so we find that a? = % (1 + ,/%)
vol(X)vol (X vol(X)vol(Y .
and 32 = W (1 — W) . In particular, o > 32.
Since X and Y are disjoint, it follows that d(X,Y) is the minimum k € IN such
that < D2y, LFD2epx ># 0. For each k € IN we have < D2epy, LED2epy >=
—ca?\¥ + ef2NE_ U Tf d(X,Y) # 1, then we have —ca®); + ¢B%\,—1 = 0, so that

AL = g—z/\n_l. Hence —ca?\2+cf%)\2_, = c)\%_lg—Z(OzQ—BQ) > 0. Thus, if d(X,Y) #1
then necessarily d(X,Y) = 2, or equivalently, d(X,Y) < 2.

We are now able to provide an upper bound on d(X,Y’) that serves as a corrected
version of Assertion 1.1. From the bound below, we see that in fact (1.1) can only
vol (X)vol(Y) < An—1+A1
vol(X)vol(Y) — Ap_1—A1"

THEOREM 2.3. Suppose that G is not a complete graph. Let X and Y be subsets

. As noted in the proof of Theorem

fail when

- log y/ Fercver)
of the vertex set of G with X #Y,Y. Then d(X,Y) < max{ [#] ,2}.

log An—1—A1

log ’”"5@”“?@ log ’”"5@”“?@
Proof: Let t =| ———|. Ift > 1'—', then it follows from (2.1) that

log Ap—1+A1 —I An—11+XM1

An—1—A1 An—1—21
< Déwy,pt(E)D%wX >> 0, and hence that d(X,Y) < t.
1 vol (X)vol(Y)
. . 08 |/ ol (X)vol (V) ..
Henceforth we assume that the integer ¢ is equal to o Reu If strict in-
og

Ap—1—A1

equality holds in (2.1), then again we conclude that d(X,Y’) < t. On the other hand, if
equality holds in (2.1), then from Theorem 2.1 and Remark 2.2, we have d(X,Y") < 2.
The conclusion now follows. g
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