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A NOTE ON A DISTANCE BOUND USING EIGENVALUES OF THE
NORMALIZED LAPLACIAN MATRIX∗

STEVE KIRKLAND†

Abstract. Let G be a connected graph, and let X and Y be subsets of its vertex set. A previously
published bound is considered that relates the distance between X and Y to the eigenvalues of the
normalized Laplacian matrix for G, the volumes of X and Y , and the volumes of their complements.
A counterexample is given to the bound, and then a corrected version of the bound is provided.
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1. Introduction. Suppose that G is a connected graph on n vertices; let A be
its adjacency matrix, and let D denote the diagonal matrix of vertex degrees. The
normalized Laplacian matrix for G, denoted L, is given by L = I − D

−1
2 AD

−1
2 . It

turns out that L is a positive semidefinite matrix, having 0 as a simple eigenvalue (see
[1]). Denote the eigenvalues of L by 0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λn−1. The relationship
between the structural properties of G and the eigenvalues of L has received much
attention, and the monograph [1] provides a comprehensive survey of results on that
subject.

Given two nonempty subsets X,Y of the vertex set of G, the distance between X
and Y is defined as d(X,Y ) = min{d(x, y)|x ∈ X, y ∈ Y }, where for vertices x and y,
d(x, y) is the length of a shortest path between x and y. The volume of X , denoted
vol(X), is defined as the sum of the degrees of the vertices in X , while vol(G) denotes
the sum of the degrees of all of the vertices in G. We use X to denote the set of
vertices not in X .

The following inequality relating d(X,Y ) to the eigenvalues of L, appears in [1].
Assertion 1.1. ([1], Theorem 3.1) Suppose that G is not a complete graph. Let

X and Y be subsets of the vertex set of G with X �= Y, Y . Then we have

d(X,Y ) ≤
⌈log

√
vol(X)vol(Y )
vol(X)vol(Y )

log λn−1+λ1
λn−1−λ1

⌉
.(1.1)

Unfortunately, Assertion 1.1 is in error, as the following example shows.
Example 1.2. Suppose that p, q ∈ IN, and let H(p, q) = Op ∨ Kq, where Op

is the graph on p vertices with no edges, and where G1 ∨ G2 denotes the join of the
graphs G1 and G2. Evidently H(p, q) has p vertices of degree q and q vertices of
degree p + q − 1. Let J denote an all-ones matrix (whose order is to be taken from
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the context). The normalized Laplacian for H(p, q) is given by

 I −1√

q(p+q−1)
J

−1√
q(p+q−1)

J p+q
p+q−1I − 1

p+q−1J


 .

The eigenvalues are readily seen to be 0, 1 (with multiplicity p − 1), p+q
p+q−1 (with

multiplicity q − 1) and 1 + p
p+q−1 . Hence, for H(p, q) we have λn−1+λ1

λn−1−λ1
= 3 + 2q−2

p .

Suppose that p is even. Let X denote a set of p
2 vertices of degree q, and let

Y denote the set of the remaining p
2 vertices of degree q. Note that X �= Y and

that d(X,Y ) = 2. We have vol(X) = qp
2 = vol(Y ) and vol(X) = q(3p

2 + q −
1) = vol(Y ). Consequently,

√
vol(X)vol(Y )
vol(X)vol(Y ) = q( 3p

2 +q−1)
qp
2

= 3 + 2q−2
p . Hence we have

⌈log

r
vol(X)vol(Y )
vol(X)vol(Y )

log
λn−1+λ1
λn−1−λ1

⌉
= 1 < 2 = d(X,Y ), contrary to Assertion 1.1.

Our goal in this paper is to adapt the approach to Assertion 1.1 outlined in [1]
so as to produce an amended upper bound on d(X,Y ). It will transpire that only a
minor modification of (1.1) is needed. Needless to say, the line of thought pursued in
[1] is fundamental to the present work.

Henceforth, we take G to be a connected graph on n vertices, and we take X,Y

to be nonempty subsets of its vertex set, such that X �= Y, Y . Let L = I−D
−1
2 AD

−1
2

be the normalized Laplacian matrix for G, where A is the adjacency matrix and D is
the diagonal matrix of vertex degrees; denote the eigenvalues of L by 0 = λ0 < λ1 ≤
. . . ≤ λn−1, and let v0, . . . , vn−1 denote an orthonormal basis of eigenvectors of L,
where for each j, vj corresponds to λj . Let ψX denote the vector of order n with a 1
in the position corresponding to vertex i if i ∈ X and a 0 there otherwise. We define
ψY analogously. Let 1 denote an all-ones vector of order n.

2. Amending the bound. We begin by analysing the argument in [1] advanced
to support Assertion 1.1. We express D

1
2 ψX and D

1
2ψY as linear combinations of

eigenvectors, say D
1
2 ψX = a0v0 +

∑n−1
i=1 aivi and D

1
2ψY = b0v0 +

∑n−1
i=1 bivi. Since

v0 = 1√
vol(G)

D
1
2 1, it is straightforward to see that a0 = vol(X)√

vol(G)
and b0 = vol(Y )√

vol(G)
.

Let pt(x) = (1 − 2x
λn−1+λ1

)t, and for each t ∈ IN, let pt(L) denote the matrix
(I − 2

λn−1+λ1
L)t. The argument in [1] proceeds via the following approach: if for

some t ∈ IN, the inner product < D
1
2 ψY , pt(L)D

1
2ψX > is positive, then we can

conclude that d(X,Y ) ≤ t. Note that for each x ∈ [λ1, λn−1], |pt(x)| ≤
(

λn−1−λ1
λn−1+λ1

)t

.

Observe that
< D

1
2ψY , pt(L)D

1
2ψX >= a0b0 +

∑n−1
i=1 pt(λi)aibi

≥ a0b0 −
(
λn−1 − λ1

λn−1 + λ1

)t

√√√√n−1∑
i=1

a2
i

n−1∑
i=1

b2i(2.1)
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= vol(X)vol(Y )
vol(G) −

(
λn−1−λ1
λn−1+λ1

)t
√

vol(X)vol(X)vol(Y )vol(Y )

vol(G) .

At this point, it is stated in [1] (erroneously) that the inequality in (2.1) must be
strict, since if equality were to hold, then there would be some constant c such that
bi = cai for all i = 1, . . . , n−1, which would then imply that either X = Y or X = Y ,
contrary to hypothesis. (It turns that there are circumstances other than X = Y or
X = Y under which strict inequality in (2.1) fails to hold, as illustrated by Example
1.2.) Under the assumption that (2.1) is strict, it is then enough to take

t ≥
log

√
vol(X)vol(Y )
vol(X)vol(Y )

log λn−1+λ1
λn−1−λ1

in order to conclude that < D
1
2 ψY , pt(L)D

1
2ψX > is strictly positive.

Next, we discuss the case of equality in (2.1).

Theorem 2.1. Suppose that X �= Y, Y , and let c =
√

vol(Y )vol(Y )

vol(X)vol(X)
. Suppose that

∑n−1
i=1 pt(λi)aibi = −

(
λn−1−λ1
λn−1+λ1

)t √∑n−1
i=1 a2

i

∑n−1
i=1 b2i . Then there are constants α, β,

and unit eigenvectors w and u, corresponding to λ1 and λn−1, respectively, such that

D
1
2ψX = a0v0 + αw + βu, and(2.2)

D
1
2ψY = b0v0 − cαw + cβu.(2.3)

Further, t is odd.
Proof: Since ∑n−1

i=1 pt(λi)aibi ≥ −
(

λn−1−λ1
λn−1+λ1

)t ∑n−1
i=1 |ai||bi|

≥ −
(
λn−1 − λ1

λn−1 + λ1

)t

√√√√n−1∑
i=1

a2
i

n−1∑
i=1

b2i ,(2.4)

our hypothesis implies that equality must hold throughout (2.4). In particular, since
equality holds in the second inequality of (2.4), there is a constant ĉ ≥ 0 such that
for each i = 1, . . . , n− 1 either bi = ĉai or bi = −ĉai. Since X �= Y, Y , it cannot be
the case that bi = ĉai for all i = 1, . . . , n − 1, nor can it be the case that bi = −ĉai

for all i = 1, . . . , n− 1. In particular, we see that ĉ must be positive.
Further, since equality holds in the first inequality of (2.4), we must also have

pt(λi)aibi = −
(

λn−1−λ1
λn−1+λ1

)t

|ai||bi| for each i = 1, . . . , n − 1. Hence for each i such

that λi �= λ1, λn−1, we have ai = bi = 0. Since pt(λ1) =
(

λn−1−λ1
λn−1+λ1

)t

, we find that
for each index i such that λi = λ1, we must have bi = −ĉai. Also, since pt(λn−1) =

(−1)t
(

λn−1−λ1
λn−1+λ1

)t

, and since there is at least one index i such that λi = λn−1 and
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bi = ĉai �= 0, we find that t must be odd. It now follows that for every i such that
λi = λn−1, we have bi = ĉai.

Consequently, there is a λ1-eigenvector w of norm 1 and a λn−1-eigenvector u
of norm 1 and constants α, β such that D

1
2 ψX = a0v0 + αw + βu and D

1
2ψY =

b0v0 − ĉαw + ĉβu. Note that α �= 0 and β �= 0, otherwise it follows that either
X = Y or X = Y . It is straightforward to determine that α2 + β2 = vol(X)vol(X)

vol(G) and

ĉ2α2 + ĉ2β2 = vol(Y )vol(Y )
vol(G) , which yields ĉ =

√
vol(Y )vol(Y )

vol(X)vol(X)
= c. �

Remark 2.2. Suppose that X ∩ Y = ∅, and that (2.2) and (2.3) hold. Since
< D

1
2ψX , D

1
2ψY >= 0, we have a0b0−c(α2−β2) = 0. Substituting our expressions for

a0 and b0 yields α2−β2 = vol(X)vol(Y )
vol(G)

√
vol(X)vol(X)

vol(Y )vol(Y )
. As noted in the proof of Theorem

2.1, α2+β2 = vol(X)vol(X)
vol(G) , and so we find that α2 = vol(X)vol(X)

2vol(G)

(
1 +

√
vol(X)vol(Y )

vol(X)vol(Y )

)

and β2 = vol(X)vol(X)
2vol(G)

(
1 −

√
vol(X)vol(Y )

vol(X)vol(Y )

)
. In particular, α2 > β2.

Since X and Y are disjoint, it follows that d(X,Y ) is the minimum k ∈ IN such
that < D

1
2ψY ,LkD

1
2ψX > �= 0. For each k ∈ IN we have < D

1
2ψY ,LkD

1
2ψX >=

−cα2λk
1 + cβ2λk

n−1. If d(X,Y ) �= 1, then we have −cα2λ1 + cβ2λn−1 = 0, so that
λ1 = β2

α2 λn−1. Hence −cα2λ2
1+cβ2λ2

n−1 = cλ2
n−1

β2

α2 (α2−β2) > 0. Thus, if d(X,Y ) �= 1
then necessarily d(X,Y ) = 2, or equivalently, d(X,Y ) ≤ 2.

We are now able to provide an upper bound on d(X,Y ) that serves as a corrected
version of Assertion 1.1. From the bound below, we see that in fact (1.1) can only

fail when
√

vol(X)vol(Y )
vol(X)vol(Y ) ≤ λn−1+λ1

λn−1−λ1
.

Theorem 2.3. Suppose that G is not a complete graph. Let X and Y be subsets

of the vertex set of G with X �= Y, Y . Then d(X,Y ) ≤ max{⌈log

r
vol(X)vol(Y )
vol(X)vol(Y )

log
λn−1+λ1
λn−1−λ1

⌉
, 2}.

Proof: Let t =
⌈log

r
vol(X)vol(Y )
vol(X)vol(Y )

log
λn−1+λ1
λn−1−λ1

⌉
. If t >

log

r
vol(X)vol(Y )
vol(X)vol(Y )

log
λn−1+λ1
λn−1−λ1

, then it follows from (2.1) that

< D
1
2ψY , pt(L)D

1
2 ψX >> 0, and hence that d(X,Y ) ≤ t.

Henceforth we assume that the integer t is equal to
log

r
vol(X)vol(Y )
vol(X)vol(Y )

log
λn−1+λ1
λn−1−λ1

. If strict in-

equality holds in (2.1), then again we conclude that d(X,Y ) ≤ t. On the other hand, if
equality holds in (2.1), then from Theorem 2.1 and Remark 2.2, we have d(X,Y ) ≤ 2.
The conclusion now follows. �
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