# A NOTE ON A DISTANCE BOUND USING EIGENVALUES OF THE NORMALIZED LAPLACIAN MATRIX* 

STEVE KIRKLAND ${ }^{\dagger}$


#### Abstract

Let $G$ be a connected graph, and let $X$ and $Y$ be subsets of its vertex set. A previously published bound is considered that relates the distance between $X$ and $Y$ to the eigenvalues of the normalized Laplacian matrix for $G$, the volumes of $X$ and $Y$, and the volumes of their complements. A counterexample is given to the bound, and then a corrected version of the bound is provided.


Key words. Normalized Laplacian matrix, Eigenvalue, Distance.
AMS subject classifications. 05C50, 15A18.

1. Introduction. Suppose that $G$ is a connected graph on $n$ vertices; let $A$ be its adjacency matrix, and let $D$ denote the diagonal matrix of vertex degrees. The normalized Laplacian matrix for $G$, denoted $\mathcal{L}$, is given by $\mathcal{L}=I-D^{\frac{-1}{2}} A D^{\frac{-1}{2}}$. It turns out that $\mathcal{L}$ is a positive semidefinite matrix, having 0 as a simple eigenvalue (see [1]). Denote the eigenvalues of $\mathcal{L}$ by $0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n-1}$. The relationship between the structural properties of $G$ and the eigenvalues of $\mathcal{L}$ has received much attention, and the monograph [1] provides a comprehensive survey of results on that subject.

Given two nonempty subsets $X, Y$ of the vertex set of $G$, the distance between $X$ and $Y$ is defined as $d(X, Y)=\min \{d(x, y) \mid x \in X, y \in Y\}$, where for vertices $x$ and $y$, $d(x, y)$ is the length of a shortest path between $x$ and $y$. The volume of $X$, denoted $\operatorname{vol}(X)$, is defined as the sum of the degrees of the vertices in $X$, while $\operatorname{vol}(G)$ denotes the sum of the degrees of all of the vertices in $G$. We use $\bar{X}$ to denote the set of vertices not in $X$.

The following inequality relating $d(X, Y)$ to the eigenvalues of $\mathcal{L}$, appears in [1].
Assertion 1.1. ([1], Theorem 3.1) Suppose that $G$ is not a complete graph. Let $X$ and $Y$ be subsets of the vertex set of $G$ with $X \neq Y, \bar{Y}$. Then we have

$$
\begin{equation*}
d(X, Y) \leq\left\lceil\frac{\log \sqrt{\frac{\operatorname{vol}(\bar{X}) \operatorname{vol}(\overline{\bar{Y})}}{\operatorname{vol}(X) \operatorname{vol}(Y)}}}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}\right\rceil \tag{1.1}
\end{equation*}
$$

Unfortunately, Assertion 1.1 is in error, as the following example shows.
Example 1.2. Suppose that $p, q \in \mathbb{N}$, and let $H(p, q)=O_{p} \vee K_{q}$, where $O_{p}$ is the graph on $p$ vertices with no edges, and where $G_{1} \vee G_{2}$ denotes the join of the graphs $G_{1}$ and $G_{2}$. Evidently $H(p, q)$ has $p$ vertices of degree $q$ and $q$ vertices of degree $p+q-1$. Let $J$ denote an all-ones matrix (whose order is to be taken from

[^0]the context). The normalized Laplacian for $H(p, q)$ is given by
\[

\left[$$
\begin{array}{c|c}
I & \frac{-1}{\sqrt{q(p+q-1)}} J \\
\hline \frac{-1}{\sqrt{q(p+q-1)}} J & \frac{p+q}{p+q-1} I-\frac{1}{p+q-1} J
\end{array}
$$\right] .
\]

The eigenvalues are readily seen to be 0,1 (with multiplicity $p-1$ ), $\frac{p+q}{p+q-1}$ (with multiplicity $q-1$ ) and $1+\frac{p}{p+q-1}$. Hence, for $H(p, q)$ we have $\frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}=3+\frac{2 q-2}{p}$.

Suppose that $p$ is even. Let $X$ denote a set of $\frac{p}{2}$ vertices of degree $q$, and let $Y$ denote the set of the remaining $\frac{p}{2}$ vertices of degree $q$. Note that $X \neq \bar{Y}$ and that $d(X, Y)=2$. We have $\operatorname{vol}(X)=\frac{q p}{2}=\operatorname{vol}(Y)$ and $\operatorname{vol}(\bar{X})=q\left(\frac{3 p}{2}+q-\right.$ $1)=\operatorname{vol}(\bar{Y})$. Consequently, $\sqrt{\frac{\operatorname{vol}(\bar{X}) \operatorname{vol}(\bar{Y})}{\operatorname{vol}(X) \operatorname{vol}(Y)}}=\frac{q\left(\frac{3 p}{2}+q-1\right)}{\frac{q p}{2}}=3+\frac{2 q-2}{p}$. Hence we have $\left\lceil\frac{\log \sqrt{\frac{v o l(\bar{X}) \text { vol }(\bar{Y})}{\text { vol }(X) \text { vol }(Y)}}}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}\right\rceil=1<2=d(X, Y)$, contrary to Assertion 1.1.

Our goal in this paper is to adapt the approach to Assertion 1.1 outlined in [1] so as to produce an amended upper bound on $d(X, Y)$. It will transpire that only a minor modification of (1.1) is needed. Needless to say, the line of thought pursued in [1] is fundamental to the present work.

Henceforth, we take $G$ to be a connected graph on $n$ vertices, and we take $X, Y$ to be nonempty subsets of its vertex set, such that $X \neq Y, \bar{Y}$. Let $\mathcal{L}=I-D^{\frac{-1}{2}} A D^{\frac{-1}{2}}$ be the normalized Laplacian matrix for $G$, where $A$ is the adjacency matrix and $D$ is the diagonal matrix of vertex degrees; denote the eigenvalues of $\mathcal{L}$ by $0=\lambda_{0}<\lambda_{1} \leq$ $\ldots \leq \lambda_{n-1}$, and let $v_{0}, \ldots, v_{n-1}$ denote an orthonormal basis of eigenvectors of $\mathcal{L}$, where for each $j, v_{j}$ corresponds to $\lambda_{j}$. Let $\psi_{X}$ denote the vector of order $n$ with a 1 in the position corresponding to vertex $i$ if $i \in X$ and a 0 there otherwise. We define $\psi_{Y}$ analogously. Let $\mathbf{1}$ denote an all-ones vector of order $n$.
2. Amending the bound. We begin by analysing the argument in [1] advanced to support Assertion 1.1. We express $D^{\frac{1}{2}} \psi_{X}$ and $D^{\frac{1}{2}} \psi_{Y}$ as linear combinations of eigenvectors, say $D^{\frac{1}{2}} \psi_{X}=a_{0} v_{0}+\sum_{i=1}^{n-1} a_{i} v_{i}$ and $D^{\frac{1}{2}} \psi_{Y}=b_{0} v_{0}+\sum_{i=1}^{n-1} b_{i} v_{i}$. Since $v_{0}=\frac{1}{\sqrt{\operatorname{vol}(G)}} D^{\frac{1}{2}} \mathbf{1}$, it is straightforward to see that $a_{0}=\frac{\operatorname{vol}(X)}{\sqrt{\operatorname{vol}(G)}}$ and $b_{0}=\frac{\operatorname{vol}(Y)}{\sqrt{\operatorname{vol}(G)}}$.

Let $p_{t}(x)=\left(1-\frac{2 x}{\lambda_{n-1}+\lambda_{1}}\right)^{t}$, and for each $t \in \mathbb{N}$, let $p_{t}(\mathcal{L})$ denote the matrix $\left(I-\frac{2}{\lambda_{n-1}+\lambda_{1}} \mathcal{L}\right)^{t}$. The argument in [1] proceeds via the following approach: if for some $t \in \mathbb{N}$, the inner product $<D^{\frac{1}{2}} \psi_{Y}, p_{t}(\mathcal{L}) D^{\frac{1}{2}} \psi_{X}>$ is positive, then we can conclude that $d(X, Y) \leq t$. Note that for each $x \in\left[\lambda_{1}, \lambda_{n-1}\right],\left|p_{t}(x)\right| \leq\left(\frac{\lambda_{n-1}-\lambda_{1}}{\lambda_{n-1}+\lambda_{1}}\right)^{t}$. Observe that

$$
<D^{\frac{1}{2}} \psi_{Y}, p_{t}(\mathcal{L}) D^{\frac{1}{2}} \psi_{X}>=a_{0} b_{0}+\sum_{i=1}^{n-1} p_{t}\left(\lambda_{i}\right) a_{i} b_{i}
$$

$$
\begin{equation*}
\geq a_{0} b_{0}-\left(\frac{\lambda_{n-1}-\lambda_{1}}{\lambda_{n-1}+\lambda_{1}}\right)^{t} \sqrt{\sum_{i=1}^{n-1} a_{i}^{2} \sum_{i=1}^{n-1} b_{i}^{2}} \tag{2.1}
\end{equation*}
$$

$$
=\frac{\operatorname{vol}(X) \operatorname{vol}(Y)}{\operatorname{vol}(G)}-\left(\frac{\lambda_{n-1}-\lambda_{1}}{\lambda_{n-1}+\lambda_{1}}\right)^{t} \frac{\sqrt{\operatorname{vol}(X) \operatorname{vol}(\bar{X}) \operatorname{vol}(Y) \operatorname{vol}(\bar{Y})}}{\operatorname{vol}(G)} .
$$

At this point, it is stated in [1] (erroneously) that the inequality in (2.1) must be strict, since if equality were to hold, then there would be some constant $c$ such that $b_{i}=c a_{i}$ for all $i=1, \ldots, n-1$, which would then imply that either $X=Y$ or $X=\bar{Y}$, contrary to hypothesis. (It turns that there are circumstances other than $X=Y$ or $X=\bar{Y}$ under which strict inequality in (2.1) fails to hold, as illustrated by Example 1.2.) Under the assumption that (2.1) is strict, it is then enough to take

$$
t \geq \frac{\log \sqrt{\frac{\operatorname{vol}(\bar{X}) \text { vol }(\bar{Y})}{\operatorname{vol}(X) \text { vol }(Y)}}}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}
$$

in order to conclude that $<D^{\frac{1}{2}} \psi_{Y}, p_{t}(\mathcal{L}) D^{\frac{1}{2}} \psi_{X}>$ is strictly positive.
Next, we discuss the case of equality in (2.1).
Theorem 2.1. Suppose that $X \neq Y, \bar{Y}$, and let $c=\sqrt{\frac{\operatorname{vol}(Y) \operatorname{vol}(\bar{Y})}{\operatorname{vol}(X) \operatorname{vol}(\bar{X})}}$. Suppose that $\sum_{i=1}^{n-1} p_{t}\left(\lambda_{i}\right) a_{i} b_{i}=-\left(\frac{\lambda_{n-1}-\lambda_{1}}{\lambda_{n-1}+\lambda_{1}}\right)^{t} \sqrt{\sum_{i=1}^{n-1} a_{i}^{2} \sum_{i=1}^{n-1} b_{i}^{2}}$. Then there are constants $\alpha, \beta$, and unit eigenvectors $w$ and $u$, corresponding to $\lambda_{1}$ and $\lambda_{n-1}$, respectively, such that

$$
\begin{gather*}
D^{\frac{1}{2}} \psi_{X}=a_{0} v_{0}+\alpha w+\beta u, \text { and }  \tag{2.2}\\
D^{\frac{1}{2}} \psi_{Y}=b_{0} v_{0}-c \alpha w+c \beta u . \tag{2.3}
\end{gather*}
$$

Further, $t$ is odd.
Proof: Since

$$
\begin{align*}
& \sum_{i=1}^{n-1} p_{t}\left(\lambda_{i}\right) a_{i} b_{i} \geq-\left(\frac{\lambda_{n-1}-\lambda_{1}}{\lambda_{n-1}+\lambda_{1}}\right)^{t} \sum_{i=1}^{n-1}\left|a_{i}\right|\left|b_{i}\right| \\
& \quad \geq-\left(\frac{\lambda_{n-1}-\lambda_{1}}{\lambda_{n-1}+\lambda_{1}}\right)^{t} \sqrt{\sum_{i=1}^{n-1} a_{i}^{2} \sum_{i=1}^{n-1} b_{i}^{2}}, \tag{2.4}
\end{align*}
$$

our hypothesis implies that equality must hold throughout (2.4). In particular, since equality holds in the second inequality of (2.4), there is a constant $\hat{c} \geq 0$ such that for each $i=1, \ldots, n-1$ either $b_{i}=\hat{c} a_{i}$ or $b_{i}=-\hat{c} a_{i}$. Since $X \neq Y, \bar{Y}$, it cannot be the case that $b_{i}=\hat{c} a_{i}$ for all $i=1, \ldots, n-1$, nor can it be the case that $b_{i}=-\hat{c} a_{i}$ for all $i=1, \ldots, n-1$. In particular, we see that $\hat{c}$ must be positive.

Further, since equality holds in the first inequality of (2.4), we must also have $p_{t}\left(\lambda_{i}\right) a_{i} b_{i}=-\left(\frac{\lambda_{n-1}-\lambda_{1}}{\lambda_{n-1}+\lambda_{1}}\right)^{t}\left|a_{i}\right|\left|b_{i}\right|$ for each $i=1, \ldots, n-1$. Hence for each $i$ such that $\lambda_{i} \neq \lambda_{1}, \lambda_{n-1}$, we have $a_{i}=b_{i}=0$. Since $p_{t}\left(\lambda_{1}\right)=\left(\frac{\lambda_{n-1}-\lambda_{1}}{\lambda_{n-1}+\lambda_{1}}\right)^{t}$, we find that for each index $i$ such that $\lambda_{i}=\lambda_{1}$, we must have $b_{i}=-\hat{c} a_{i}$. Also, since $p_{t}\left(\lambda_{n-1}\right)=$ $(-1)^{t}\left(\frac{\lambda_{n-1}-\lambda_{1}}{\lambda_{n-1}+\lambda_{1}}\right)^{t}$, and since there is at least one index $i$ such that $\lambda_{i}=\lambda_{n-1}$ and
$b_{i}=\hat{c} a_{i} \neq 0$, we find that $t$ must be odd. It now follows that for every $i$ such that $\lambda_{i}=\lambda_{n-1}$, we have $b_{i}=\hat{c} a_{i}$.

Consequently, there is a $\lambda_{1}$-eigenvector $w$ of norm 1 and a $\lambda_{n-1}$-eigenvector $u$ of norm 1 and constants $\alpha, \beta$ such that $D^{\frac{1}{2}} \psi_{X}=a_{0} v_{0}+\alpha w+\beta u$ and $D^{\frac{1}{2}} \psi_{Y}=$ $b_{0} v_{0}-\hat{c} \alpha w+\hat{c} \beta u$. Note that $\alpha \neq 0$ and $\beta \neq 0$, otherwise it follows that either $X=Y$ or $X=\bar{Y}$. It is straightforward to determine that $\alpha^{2}+\beta^{2}=\frac{\operatorname{vol}(X) \operatorname{vol}(\bar{X})}{\operatorname{vol}(G)}$ and $\hat{c}^{2} \alpha^{2}+\hat{c}^{2} \beta^{2}=\frac{\operatorname{vol}(Y) \operatorname{vol}(\bar{Y})}{\operatorname{vol}(G)}$, which yields $\hat{c}=\sqrt{\frac{\operatorname{vol}(Y) \operatorname{vol}(\bar{Y})}{\operatorname{vol}(X) \operatorname{vol}(\bar{X})}}=c$.

Remark 2.2. Suppose that $X \cap Y=\emptyset$, and that (2.2) and (2.3) hold. Since $<D^{\frac{1}{2}} \psi_{X}, D^{\frac{1}{2}} \psi_{Y}>=0$, we have $a_{0} b_{0}-c\left(\alpha^{2}-\beta^{2}\right)=0$. Substituting our expressions for $a_{0}$ and $b_{0}$ yields $\alpha^{2}-\beta^{2}=\frac{\operatorname{vol}(X) \operatorname{vol}(Y)}{\operatorname{vol}(G)} \sqrt{\frac{\operatorname{vol}(X) \operatorname{vol}(\bar{X})}{\operatorname{vol}(Y) \operatorname{vol}(\bar{Y})}}$. As noted in the proof of Theorem 2.1, $\alpha^{2}+\beta^{2}=\frac{\operatorname{vol}(X) \operatorname{vol}(\bar{X})}{\operatorname{vol}(G)}$, and so we find that $\alpha^{2}=\frac{\operatorname{vol}(X) \operatorname{vol}(\bar{X})}{2 \operatorname{vol}(G)}\left(1+\sqrt{\frac{\operatorname{vol}(X) \operatorname{vol}(\bar{Y})}{\operatorname{vol}(\bar{X}) \operatorname{vol}(\bar{Y})}}\right)$ and $\beta^{2}=\frac{\operatorname{vol}(X) \operatorname{vol}(\bar{X})}{2 \operatorname{vol}(G)}\left(1-\sqrt{\frac{\operatorname{vol}(X) \operatorname{vol}(\bar{Y})}{\operatorname{vol}(\bar{X}) \operatorname{vol}(\bar{Y})}}\right)$. In particular, $\alpha^{2}>\beta^{2}$.

Since $X$ and $Y$ are disjoint, it follows that $d(X, Y)$ is the minimum $k \in I N$ such that $<D^{\frac{1}{2}} \psi_{Y}, \mathcal{L}^{k} D^{\frac{1}{2}} \psi_{X}>\neq 0$. For each $k \in \mathbb{N}$ we have $<D^{\frac{1}{2}} \psi_{Y}, \mathcal{L}^{k} D^{\frac{1}{2}} \psi_{X}>=$ $-c \alpha^{2} \lambda_{1}^{k}+c \beta^{2} \lambda_{n-1}^{k}$. If $d(X, Y) \neq 1$, then we have $-c \alpha^{2} \lambda_{1}+c \beta^{2} \lambda_{n-1}=0$, so that $\lambda_{1}=\frac{\beta^{2}}{\alpha^{2}} \lambda_{n-1}$. Hence $-c \alpha^{2} \lambda_{1}^{2}+c \beta^{2} \lambda_{n-1}^{2}=c \lambda_{n-1}^{2} \frac{\beta^{2}}{\alpha^{2}}\left(\alpha^{2}-\beta^{2}\right)>0$. Thus, if $d(X, Y) \neq 1$ then necessarily $d(X, Y)=2$, or equivalently, $d(X, Y) \leq 2$.

We are now able to provide an upper bound on $d(X, Y)$ that serves as a corrected version of Assertion 1.1. From the bound below, we see that in fact (1.1) can only fail when $\sqrt{\frac{\operatorname{vol}(\bar{X}) \operatorname{vol}(\bar{Y})}{\operatorname{vol}(X) \operatorname{vol}(Y)}} \leq \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}$.

Theorem 2.3. Suppose that $G$ is not a complete graph. Let $X$ and $Y$ be subsets of the vertex set of $G$ with $X \neq Y, \bar{Y}$. Then $d(X, Y) \leq \max \left\{\left\lceil\frac{\log \sqrt{\frac{v o l(\bar{X} \text { vol }(\bar{Y})}{\text { vol }(X) \text { vol(Y) }}}}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}\right\rceil, 2\right\}$. Proof: Let $t=\left\lceil\frac{\log \sqrt{\frac{\text { vol }(\bar{X}) \text { vol }(\bar{Y})}{\text { vol }(X) \text { ool }(Y)}}}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n}-1-\lambda_{1}}}\right\rceil$. If $t>\frac{\log \sqrt{\frac{\text { vol }(\bar{X}) \text { vol }(\bar{Y})}{\text { vol(X)ol(Y) }}}}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}$, then it follows from (2.1) that $<D^{\frac{1}{2}} \psi_{Y}, p_{t}(\mathcal{L}) D^{\frac{1}{2}} \psi_{X} \gg 0$, and hence that $d(X, Y) \leq t$.

Henceforth we assume that the integer $t$ is equal to $\frac{\log \sqrt{\frac{v o l(\bar{X}) \text { vol }(\bar{Y})}{v o l(X) \text { vol(Y) }}}}{\log \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}$. If strict inequality holds in (2.1), then again we conclude that $d(X, Y) \leq t$. On the other hand, if equality holds in (2.1), then from Theorem 2.1 and Remark 2.2, we have $d(X, Y) \leq 2$. The conclusion now follows.

## REFERENCES

[1] F. Chung. Spectral Graph Theory. CBMS Regional Conference Series in Mathematics 92, AMS, Providence, 1997.


[^0]:    * Received by the editors 29 March 2007. Accepted for publication 5 August 2007. Handling Editor: Michael Neumann.
    ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, S4S 0A2 Canada (kirkland@math.uregina.ca). Research partially supported by NSERC under grant number OGP0138251.

