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Abstract A specific Hordenski scalar-gravity mimetic
model is investigated within a FLWR space-time. The
mimetic scalar field is implemented via a Lagrangian multi-
plier, and it is shown that the model has equations of motion
formally similar to the original simpler mimetic matter model
of Chamseddine–Mukhanov–Vikman. Several exact solu-
tions describing inflation, bounces, and future-time singu-
larities are presented and discussed.

1 Introduction

It is well known that General Relativity (GR) with additional
suitable cosmological positive constant and Dark Matter,
describes quite well a large part of the history of the Uni-
verse, including Dark Energy era. With an additional scalar
degree of freedom, this model may also describe the pri-
mordial inflationary period, which is necessary for solving
the horizon and flatness problem. This is essentially the so-
called �-CDM model, or standard cosmological model, and
it has been recently tested with high accuracy [1,2].

For later comparison, we recall that in a flat FLRW space-
time

ds2 = −dt2 + a(t)2δi jdx
idx j , i, j = 1, 2, 3, (1)

and GR plus ordinary matter with an equation of state p =
ωρ, ρ density of radiation or matter, lead to the continuity
equation

ρ̇ + 3H(1 + ω)ρ = 0 (2)

and

2Ḣ + 3H2 = −ωρ, (3)

where H(t) is the usual Hubble parameter. When the solu-
tion of Eq. (2), namely ρ(t) = ρ0a(t)−3(1+ω), is taken into
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account, one has a non-linear second order differential equa-
tion for a(t). Of course, in GR, one may make use of the
Friedmann equation to arrive directly at the explicit solution
for a(t), a textbook result. In the presence of a scalar field,
things are not so simple, and, in general, it is not easy to find
exact solutions (see, for example [3,4]).

Furthermore, in the standard cosmological model, Dark
Matter and Dark energy issues are still under investigation,
since one has no clue what they are. In fact, it is well known
that the dark energy effect is well parametrized by the inclu-
sion of a tiny positive cosmological constant, but the coin-
cidence and cosmological constant problems arise. In the
physics of elementary particles there exist a few candidates
for dark matter, but experimental verification is still lacking,
and other alternatives are possible.

For these reasons, in this paper, we would like to consider
a generalization of the so called mimetic dark matter-gravity
models [5–7]. This proposal may be considered a minimal
modification of GR, in which cosmological dark matter may
be described. Soon it had also been realized [8,9] that this
class of models are related to GR by singular disformal trans-
formations. In particular the models [5–7] have been intro-
duced by making use of a singular conformal transformation.

Disformal transformations were introduced by Bekenstein
[10]. He was able to show that as a consequence of the diffeo-
morphism invariance of GR, any metric tensor gμ,ν may be
parametrized by a fiducial matrix lμ,ν and by a scalar field φ.
As a consequence, φ seems to describe a new gravitational
degree of freedom, but as soon as the disformal transfor-
mation is invertible, it turns out that no additional degrees of
freedom are present, and GR is recovered. However, if the dis-
formal transformation is singular, then the scalar φ becomes
a new degree of freedom. This is a general fact [11]. We will
not make use of this very powerful approach and we refer
to the original papers. In fact, another equivalent approach
is possible [9,11,12], and within this approach a Lagrange
multiplier is introduced [13,14] in order to implement the
“mimetic” constraint
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∂μφ∂μφ = −1. (4)

Very recently, a general Horndeski scalar–tensor mimetic
theory has been considered, and the two possible approaches,
the singular disformal transformation and the Lagrange mul-
tiplier approach have been shown to be equivalent [11]. Con-
cerning different aspects and generalization of mimetic grav-
ity see, for example [15–20].

In this paper, in order to deal with the mimetic field φ, we
shall follow the Lagrange multiplier approach.

The outline of the paper is the following. In Sect. 2, the
mimetic model is introduced. In Sect. 3 addresses a solution
in the absence of matter, while in Sect. 4 matter or radia-
tion is included. The paper ends with the conclusions and an
Appendix.

We use units in which the reduced Planck mass is M2
P = 1.

2 Mimetic scalar–tensor gravity model

In this section we start with the following mimetic scalar
tensor gravity model:

I =
∫
M

d4x
√−g

(
R

2
+ λ

(
X − 1

2

)
− V (φ)

)
+ IH + Im

(5)

where Im is the usual matter–radiation action and the higher
order contribution is given by

IH =
∫
M

d4x
√−g(α(XR + (∇μ∇μφ)2 − ∇μ∇νφ∇μ∇νφ)

+ γφGμν∇μ∇νφ − βφ∇μ∇μφ) (6)

with X = − 1
2g

μν∂μφ∂νφ; λ is a Lagrange multiplier and φ

is the mimetic scalar field, and β, α, and γ are constants.
The above Lagrangian is a particular case of the general
Horndeski Lagrangian [21–23]. Some examples of Horn-
deski mimetic gravity models have been considered recently
in [11].

When the constants β, α, and γ are vanishing, and in the
absence of matter, the above model reduces to the original
mimetic gravity proposed by Chamseddine and Mukhanov
[5]. When α and β are vanishing, the model reduces to the
one studied in [24,25]; see also [20] for other aspects.

In order to study the dynamics of the above model in a flat
FLRW space-time, one has to make use of

ds2 = −e2b(t)dt2 + a(t)2δi jdx
idx j , i, j = 1, 2, 3, (7)

here, for the sake of convenience, we write the lapse function
as eb(t), where b(t) is an arbitrary dynamical variable which
takes the value b = 0 after variations. The action (5) may
be written as a functional of a(t), b(t), and λ. Variation with
respect to λ and assuming φ to depend only on t give

φ̇2 = 1. (8)

Thus, in the following, one may take φ = t . Variation with
respect to b gives the generalized Friedmann equation and
reads

3H2(1 − 3α + 3γ ) − V + β − ρ = λ. (9)

Here H = ȧ
a , the Hubble parameter, and ρ is the matter–

radiation density.
Making use of the equation of state p = ωρ, a variation

with respect to a leads to

c1(2Ḣ + 3H2) = V + β − ωρ, (10)

where

c1 = (1 − α + γ ). (11)

Furthermore, the diffeomorphism invariance leads to the con-
tinuity equation

ρ̇ + 3H(1 + ω)ρ = 0. (12)

Finally, the equation of motion associated with φ is also
present, but it is a consequence of the other equations of
motion, thus it is trivially satisfied.

A remark is in order. The equation of motion (10) in this
Hordenski mimetic model does not contain the Lagrange
multipliers, and it is similar to the one valid in GR plus ordi-
nary matter. However, here the mimetic potential V appears
in a very peculiar way, and this helps a lot in the search for
exact solutions. In fact, one is dealing with a non-linear first
order Riccati differential equation.

Furthermore, as in GR, one may have the de Sitter solution
H = H0 if and only if the potential is a constant, and ω = −1
or ρ = 0. Furthermore, one may have the de Sitter solution
with vanishing potential and in the absence of matter, but
with the constant β �= 0. The effective cosmological constant
depends on the ratio β

c1
. Thus, in the presence of a non-trivial

potential, one may have only a quasi-de Sitter solution, and
inflation and the current acceleration may be described. With
regard to other solutions, there exist several possibilities.

3 Absence of matter

In the absence of matter, the Riccati equation may be recast in
an homogeneous linear second order differential equation. In
fact, introducing the new variable y = a3/2, one has H = 2 ẏ

3y ,
and

ÿ − 3

4c1
(V (t) + β)y = 0. (13)

The general solution of this kind of equation is not known.
Approximate solutions may be investigated by the WKB
method. Alternatively, one may use another approach, the so
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called adiabatic invariant method, and for the sake of com-
pleteness we report it in the Appendix. The reconstruction
method is also possible and it has been investigated in [16].
In the following, we shall discuss some exact solutions.

As a first example, let us consider a quadratic potential,

V = −β + 2V0 + 3V 2
0

c1
(φ − φ0)

2. (14)

This choice gives

V (t) = −β + 2V0 + 3V 2
0

c1
(t − t0)

2. (15)

Then it is easy to show that the solution is

y(t) = y
3V0
4c1

(t−t0)2

0 , (16)

and, in terms of the Hubble parameter, one has

H(t) = V0

c1
(t − t0). (17)

Since H(t0) = 0 and Ḣ(t0) > 0, this is an example of
a regular “bounce” solution. A solution of this kind for an
extension of the Starobinski model has been found in [26],
and for other bounce solutions, see [27].

Another bounce solution may be obtained by the following
choice of β = −2c1b2 and for the potential:

V (φ) = b2c1
sinh2 bφ

cosh2 bφ
, (18)

with b a real parameter. In this case, the bounce solution is

a(t) = a0 cosh bt, (19)

with

H(t) = b
sinh bt

cosh bt
. (20)

The bounce is at t = 0. This kind of bounce solution may be
obtained in a specific model of non-local gravity in FLRW
space-time [28,29]. Here the bounce has been related to a
simple potential in the mimetic scalar field.

Other exact solutions have been presented in [6].

4 Presence of matter

If matter is present, one may introduce the e-fold time N =
ln a. As a result, the continuity equation becomes

dρ

dN
= −3(1 + ω)ρ (21)

with solution

ρ(N ) = ρ0e−(1+ω)N . (22)

Furthermore, the equation of motion for H becomes

c1

(
dH2

dN
+ 3H2

)
= V + β − ωρ(N ). (23)

If

c1 = (1 + γ − α) �= 0, (24)

the solution is

H2(N )

= e−3N

(
C +

∫
dNe3N V (N ) + β − ωρ0e−(1+ω)N

c1

)
,

(25)

where C is an integration constant. Furthermore, if ω + 1 is
non-vanishing, one has

H2(N ) = Ce−3N + β

3c1
− ρ0ω

ω + 1
e−3ωN

+
∫

dNe3N V (N )

c1
. (26)

In the case ω = −1, one instead has

H2(N ) = Ce−3N + β

3c1
+ ρ0

c1
+ e−3N

∫
dNe3N V (N )

c1
.

(27)

Some comments are in order. Since

t (N ) =
∫

dN

H(N )
(28)

we may obtain N = N (t) and a(t) = eN (t). The contribu-
tion depending on C is the contribution associated with the
mimetic dark matter. The term depending on β

c1
acts again as

an effective cosmological constant. Another constant contri-
bution may be obtained by the simplest choice for the poten-
tial V = V0, namely a constant potential. In this case, we
have

H2(N )=Ce−3N + β

3c1
− ρ0(1+ω)

ω
e−3(1+ω)N + V0

c1
(29)

and

H2(N ) = Ce−3N + β

3c1
+ ρ0N

c1
e−3N + V0

c1
. (30)

For consistency, we have to assume β + V0 >. Thus, these
solutions tend for large N to the de Sitter space-time.

Another interesting example of the potential is

V (N ) = 3g(N ) + dg

dN
(31)

with g(N ) a known function. In this case, the solution is

H2(N ) = Ce−3N + β

3c1
− ρ0(1 + ω)

ω
e−3(1+ω)N + V0

c1
g(N ).

(32)
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As an example, take

V (N ) = V0(N − N0)
b−1(3(N − N0) + b), (33)

with b �= 2. As a result

H2(N ) = Ce−3N + β

3c1
− ρ0(1 + ω)

ω
e−3(1+ω)N

+ V0

c1
(N − N0)

b. (34)

The nature of the solution may depend on the sign of b. To
simplify the discussion, assume C = β = ρ0 = 0, and
V0
c1

> 0 Thus

H(N ) =
(
V0

c1

)1/2

(N − N0)
b/2. (35)

As a consequence

t − t0 =
(
V0

c1

)−1/2 2

2 − b
(N − N0)

1−b/2 (36)

and

N − N0 =
(
V0

c1

)1/(2−b) (
2 − b

2
(t − t0)

)2/(2−b)

. (37)

The Hubble parameter reads

H(t) = A(t − t0)
b/(2−b). (38)

If b > 2, as well as for b < 0, there exists a future-time singu-
larity (see, for example [30,31] and the references therein).
If 0 < b < 2, there is a bounce solution. For example, for
b = 1, one has the bounce solution

H(t) = V0

c1
(t − t0). (39)

In this case the potential is

V (φ) = V0

(
1 + 3V0

c1
(φ − φ0)

2
)

, (40)

in agreement with the result discussed in Sect. 3.

5 Conclusions

In this paper, a specific cosmological Hordenski scalar-
gravity mimetic model has been investigated within a FLWR
space-time. The mimetic scalar field has been implemented
making use of a Lagrange multiplier, and it has been shown
that the model leads to equations of motion formally similar
to the original simpler mimetic matter model of the so-called
mimetic matter model [5]. Several exact solutions describing
inflation, bounces, and future-time singularities have been
presented and discussed.

It should be interesting to investigate a spherically sym-
metric static solution of this generalized mimetic model along
the lines of Ref. [32].

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix

In the following we briefly discuss an alternative method to
find the solution of a differential equation of the kind

ÿ + Q(t)y = 0. (41)

The above linear homogeneous differential equation can be
associated with the following non-linear differential equa-
tion, dubbed the Ermakov–Pinney equation (see [33–35]),
namely:

ü + Q(t)u = h2

u3 . (42)

In fact, the following result holds true; the solutions y and u
are related by

y = u sin θ, θ =
∫

h

u2 dt, (43)

and the constant h is given by the so-called Lewis adiabatic
invariant

h2 = h2y2

u2 + (u ẏ − u̇x)2. (44)

As an example, let us consider

Q(t) = q

t4 , q > 0. (45)

Then it is easy to show that an exact solution of the Ermakov–
Pinney equation is

u(t) =
(
h2

q

)1/4

t (46)

and

θ(t) = θ0 − q1/2

t
. (47)

As a result, the solution is

y(t) =
(
h2

q

)1/4

t sin

(
θ0 − q1/2

t

)
, (48)
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a non-trivial result. As a result, we may obtain an exact solu-
tion associated with a singular potential

V (φ) ≡ φ−4. (49)

Other exact solutions of the Ermakov–Pinney equation can
be found in [33–35].
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