
A Note on a Model for the Quasilinear Wave Equation 

J. GREENBERG • G.  HEDSTROM 

Communicated by C. TRUESDELL 

1. Introduction 
Many investigators have attempted to establish the connection between 

solutions of the quasifinear wave equation 

--O-y=-Z-Sxa , - o o  < x < ~ ,  t>O (E) 

Zk -- Zk- t 
h 

and the discrete system 

hzkh=a (Zhk+l--Zkh) - ~  h 

One problem is whether the function 

Z(x, t)-- lim Xkh(t) 
h.-,O + 
k h = x  

k=O, _+1 . . . . .  t > 0 .  * (E)h 

lim (;~, Z~+~-Z~-)=(Zt,Z~ ) 
h~O + 
k h = x  

at those points (x, t) where Z is differentiab[e. 
We shall answer these questions for an equation which models (E). To 

motivate the choice of the model equation we are forced to say a few words 
about the nature of the unknown Z. 

The function Z(x, t) represents the position at time t of a material point which 
was located at x at t=0 .  Similarily, Z~(t) gives the position at time t of a particle 
(of mass h) which was located at kh at t=0 .  We envision these particles as moving 
on a line and therefore insist that the following inequalities be satisfied for all 

* C f .  VON NEUMANN [1], LUDFORD, POLACHEK, & SEEGER [2], GEIRINGER [3]. 

exist and satisfy 

is well defined and satisfies (E) in some generalized sense. Another is whether the 
limits 

lim , Zk+ Zk 
h. -+O + 
k h = x  
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t > 0 :  
g(x2, t ) -g(x l ,  t)>O, x2~_x 1, (1) 

and 
Z~+,(t)>Z~(t ), k=0 ,  _+1 . . . . .  (1)h 

(1) and (1)h are merely the statement that mass points or particles may not pass 
through one another. 

To obtain the discrete model equation, we replace (E)h by 

~ ( t ) = 0  (M)h 
whenever t is such that 

x -i (t) <z +l (t). (2)h 

That (M)h is true whenever (2)h holds amounts to the assumption that inter- 
mollecular forces are zero unless particles are in contact. 

We shall supplement (M)h with the assumption that collisions are elastic. 
Recall, particle k is said to collide with particle k +  1 at time t i f  X~(0 =X~+I (t). 

If we let v/- (v~+l) be the velocity of the k th particle (kq-1 st particle) before 
the collision and v + (v~-+l) the velocity of the k th particle (k+  1 st particle) after 
the collision, then the assumption that collisions are elastic implies 

v~ = Vk-+ I and v~-+l =vs (EC) 

Our main result deals with the limiting behavior of solutions of the initial 
value problem: (M)h, elastic collisions, and the initial conditions: 

a, k=0 ,  - 1 ,  - 2  . . . .  
Z~(0)=kh, k=0 ,_+ l  . . . . .  and ))~(0)= b, k = l , 2  . . . .  

where a > b. We obtain the following results: 

1) The function Z(x, t) = l i m ~ ( t )  is well defined and Lipschitz continous 
h--*O + 
k h = x  

for all x and all t > 0. Z is differentiable in x and t except across the lines 
x = 4- ( a -  b) t, t > 0, satisfies 

Z,(x,t)=O when x4:+_(a-b)t ,  t > 0 ,  

and satisfies the initial conditions: 

a, x<0  
Z(X, 0 ) = x  and Zt(x,O)= b, x > 0 J "  

2) For points (x, t) satisfying I x I > ( a -  b) t; t > 0, the limits 

lira ~( t )  and lira Xhk+1(t)--)~hk(t) 
h _ . 0  + h- . ,O + h 
k h = x  k h = x  

exist and equal ;~t(x, t) and Zx(x, t) respectively. For points (x, t) such 
that I x I < ( a -  b) t, t >  0 the above limits fail to exist. 
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3) The discrete motions Zhk(t) are decomposable by averaging into a slowly 
varying component ~Vkh(t) and a rapidly varying component hr/hk(t); i.e. 

Zkh(t) = 7t~(t) + h r/~(t), 
where 

~'~(t)=O(1), t/~(t)=O(1), and il~,(t)=O(1/h). 

Moreover, ~ has the additional property that 

lim ~kh(0=Z(X, 0 , ; ~ - - o 0  <X<O0, t > 0 ;  
h ~ 0  + 
k h = x  

and 

lim ~kh(t)=z,(X, t) and lim 
h ~ O  + h ~ 0  + 
k h = x  k h = x  

for all x and t > 0  such that x:~ +_(a-b)t. 

h =Zx 

It should be observed that the lines x= +_ (a-b) t ,  t> 0 play the role of shock 
waves for the function Z. 

2.  Proofs  
h 

For each h >0 and each a >b we let A = We define the continuous 
function a - b " 

[ n ( a + b ) A + a ( t - 2 n A ) , 2 n A < t < ( 2 n +  l )A ,  
J h ( t ) - I ( n + l ) a A + n b A + b ( t - ( 2 n + l ) - A ) , ( 2 n + l ) A < t < 2 ( n + l ) A ,  (2.1) 

i n = 0 ,  1, 2 . . . . .  

J 
JO h 

/ (2ZJ,(ct+b} A ) 

Fig. 1 

and for k__> 1 by 

We shall now describe the solution of the initial value problem stated in 
Section 1. 

For k <  0, the particle trajectories zh(t) are given by 

h- - f k h  t, Zk(t) = ~kh + a O< t< - kA, (2.2) 
- a k A + j h ( t + k A ) ,  t > - k A ,  

~..  ( k h + b t ,  O<t<kA,  (2.3) 
Zk( t )=~kh+bkA+J~  t>=kA. 
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It follows from the last set of formulas that 

X(x, t)= lira Z~(t) 
k,~-O 
k h = x  

exists and is given by 

x + a t ,  
a+b  x 

X(x, 0 = T t + T '  

x + b t ,  

x< - ( a - b )  t, t>=O, 

- ( a - b ) t < x < ( a - b ) t ,  t>=O, 

( a - b )  t ~ x ,  t>=O. 

That Z satisfies X , = 0  when x #  +.(a-b)t, and the initial conditions 

is immediate. 
That the limits 

ia, x <0~ X(x,O)=x and Zt(x,O)= b, x>OJ 

lira ~k(t) and lira Z~+I-Z~ 
h-,o§ h-*o+ h 
k h = x  k h = x  

(2.4) 

have the proper value for I kh ] = I xl > ( a -  b) t is a direct consequence of equations 
(2.2) and (2.3). 

That the limits of these same quantities fail to exist when Ikh l=lx l  < ( a - b ) t  
follows from (2.2) and (2.3) and the oscillitatory character of Jo h (see (2.1)). 

The existence of the slowly varying and rapidly varying decomposition of the 
trajectories ~ ( t )  is a consequence of the observation that 

d:o 
dt  ( t+2A)=--~- ( t ) ,  t>O, 

and therefore that 
dx~ d h 
dt  ( t + 2 A ) = ~ ( t ) ,  t>l_ klA. 

We define the slowly varying flow 

1 2A 1 I+21t 

 (0=kh-2- I z (s)ds+@ I 
A routine computation shows that the difference between ~ ( t )  and ~ ( t )  

may be written as h~l~(t) where r/~ is O(1) and has a time derivative ii~,=O(l/h). 
We shall now show that 

lira (Vh(t) = a + b h-~o* 2 =Zt(x, t) 
k h = x  

whenever [ x [ < (a-  b) L The result for the spacial derivatives follows from similar 
arguments. We have 

dtPk ~ X[(t + 2A)-z~(t)  1 ,+ 2a 
dt  = 2d = 2A S ~ ( s )ds .  

t 
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But, for Ix I= I k h [ < ( a - b ) t  we know that ~ ( t )  is 2A periodic. In fact we know 
[kh[ 

that over any interval (t, t+2A) with t >  (a-b) ~ is equal to a over half of the 
[khl 

interval and is equal to b over the other half. Hence, for t > ( a -  b--------~ 

d ~k h a + b 
d ~ - ~  Q.E.D.  

3. Concluding Remarks 

We shall now make a number of observations which contrast the behavior 
of solutions of the limiting continuous system to the behavior of solutions of the 
particulate system from which it was derived. 

Our first observation is that the limiting solution is dissipative while each 
comparable particulate system is conservative. We shall demonstrate this by the 
following elementary computation. We let L > 0 be any positive number, and we 
let 

L 
E(L, t)=�89 J ](2(x, t)dx. (3.1) 

-L 

The quantity E(L, t) is merely the kinetic energy at time t of those mass points 
located in the interval ( - L ,  L) at t=0 .  A simple computation shows that 

L 2 2 t ( a_b)3  ' 0<t__< L E(L, t )=-~-(a + b  ) - -~-  a_l----ff 

L L 
= 4  (a+b)2' a - b  < t < o o .  

(3.2) 

is the kinetic energy at time t of all particles (each of mass h) located in the 

interval I -  I L l  - 1, [ h i  + 11 at t=0 .  A quick computation shows that 

L (a 2 + b2)] ~ (a 2 + b2 ) h (3.4) Eh(L, t ) -  T 

for all times t and hence that 

E~ t)-- lim Eh(L, t )=L (a2+b2), t>O. (3.5) 
h.-*O + 

A comparison of (3.2) to (3.5) yields one example of the dissipative nature of the 
limiting continuous system. 

Now, let h be any positive number. Xkh(t) will be the solution of the particulate 
problem (see equations (2.2) and (2.3)) and 

[~-]§ 
Eh(L, t)-~�89 E h(~kh(t)) 2 (3.3) 

k= - I L l -  1 
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Similar computat ions show that for any xl  < x2 and any time t 

x2 [-~-] +l 

E(xl, x2,0=--�89176 x2,t)=--lim�89 ~ h (Zkh(t)) 2 (3.6) 
X l  h ' - }O + k = [ - ~ - - ]  - 1 

with strict inequality holding if t > m i n  [Ix1 l, I x2l] \ a - b  ~ 
Finally, we note that the limit flow Z defined in (2.4) is a non-standard solution 

of the Burger-Hopf Equation 
v, + vv,=O. (BH) 

That  is if we let v(y, t)-Zt(x,  t) when y = z ( x ,  t), then v satisfies (BH) almost  
everywhere together with the initial conditions 

{~ ,<~ 
v(y,O)-- b, y > 0 J "  (I .C.)  

The normally accepted solutions to this problem is 

v(y, t )=  Y < ~  
a+b " 

b, y > - - f - -  
Our solution is 

a, y<bt ,  

v ( y , t ) =  a+b ~ ,  b t<y<at ,  

[b, a t<y.  

We point out that the normally accepted solution to this problem would have 
been obtained as a limiting solution of our discrete system had we imposed the 
condition that  all collisions were plastic rather than elastic. 
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