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1. Let f(x) be an integrable function in Lebesgue sense, and periodic of

period 2π, and let

1
/(.r)~-^2-tfo +2^(α Λ cos n x + bn sin n x),

1
σ*(x) =—^-a0 -h^AZ-Xav cos v x + bv sin v x

where a > — 1, and An = .
\ τι

DEFINITION 1. If a > - 1, and

then the Fourier series of /(ί) is said to be absolutely summable (C, α), or

briefly summable \C9a\ at the point Λ:.

Various theorems concerning the absolute Cesaro summability of Fourier

series have been obtained by many authors.

Supposing that p > 1 and / € Lp, we write

(1. 1) wp(t) = ( - L . Γ2t |/(χ + t) - f{x) I vdx)'V (t > 0).

Recently, Chow [3] has proved that

(I) I f U M 2 , / 6 ZΛ and

(l. 2) r . w o dt <

then the Fourier series of/is summable |C, a\ almost everywhere for a > \/p

(II) If l ^ ρ ^ 2 , fe Lp, and

( 1 \-0+llp+e)

log-t-J (/ -^ 0),
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for some S > 0, then the conclusion in (I) is true for a = 1/p.
We can show that the condition (l. 2) itself implies the conclusion in (II)

when 1 < p <Ξ 2, under some additional condition, and to do it is the purpose
of this note.

DEFINITION 2. We define \{x) such as
1° λ(;r) > 0 for all x ^ xQ > 0,
2° X(x) t °° as x t °o,

3α H <\(xs)/\(x) <: 1 f or 0 < δ < 1 and x > x0, where H i s a positive
constant depending only on δ.

We may take as λ(x), e. g.,

(log xf, (log *)71oglog x, (log log x)\ {a > 0).

After this definition, we see easily that \(x) = o(x*) as x\°°, for every £ > 0.
Now, the theorem to be proved is as follows:

THEOREM 1. If l<p<:2, f€ Lp, and for a fmiction w%t) > wp(t),

lt< oo,(1. 3) Γ™
Jo t

then the Fourier series of f is summable \C, l/p\ almost everywhere, pro-
vided that

ίwtiX/x) log x]"1

is a function λ defined by Definition 2.

We have the "allied Fourier series"-analogue, cf. loc. cit. [3].

COROLLARY 1. The conclusion in Theorem 1 is true, if 1 < p <Ξ 2,
and for some S > 0,

/ 1 \-(l+€)

W&) = 0{log-ή-) (ί->0).

2. Proof of Theorem 1. We write for the sake of convenience,

a = 1/p.

Employing the identity

n nn n

in order to prove Theorem 1, it is sufficient to show that

(2.
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for almost every x, since (2. 1) implies, as it may be easily verified, the con-
vergence of Σ n'11 σl(χ) — f(χ) I.

We have

(2. 2) <*-'(*) - /(*) = -?- Vφlt)Kt-\t)dt,

where

(2. 3) φx(t) = —ίf(x + t) + f(x -t)~

and K*~\t) is the n-th. Fejer kernel of order a — 1. And, as it is well known,

Kn~Ί(t) = Λ*~ (ί) + Rn~ \t\

where

/9 Aλ \«-ΊU\ _ cos (yι t + a{t- 7r)/2)

(2. 5) KΓ\t) = O(n) (0 ̂  ί ^ TΓ),

(2. 6) Rtr\t) = O(l/^2) f-̂ - ^ ί ^ TΓ) ,
\ n '

O being uniform in n and t.
(2. 2) is written as

7Γ

(2. 7) = Γφx(t)AΓ\t)dt + (""φx(t)Kt-\t)dt

Here, for the proof, supposing that [wp(l/x) log J : ] " 1 is a function λ defined
by Definition 2, we may use the function wp(i) itself in place of w%t\ since
the conclusion remains unchanged by the assumption w*μ(t) > wμ(t). Besides,
then,

[w^l/x)]'1 = [wp(l/x) log xT1 log x

is also a function λ, and the condition (1. 3) replaced w* by zvp, i. e.,

(2. 8) f ' ^ ^ -έ&<



296 K. YANO

is equivalent to

(2 8)' Σ -^- *

In these circumstances, by (2. 3) and (2. 5) we have

= O(Σ,J dtj \9>Jt)\dz)

which is finite by (2. 8). Similarly, by (2. 4),

Next, by (2. 6),

Further, by (2. 4),

Hence, letting

where

— ΓGx(t)emdt
•JΓ Jo

dx.

|2sin«/2)r '

the proof is, by 2.1) and (2. 7), completed if it be shown that



(2. 9)
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1 Γ
Σ~^r Prk*)dχ
n=ι n J0

since the conclusion is unchanged using φx(t) in place of ^ x

Supposing that Gx(t) considered as a function of t is periodic of period
2 7r, we have, since a = l/p,

r
JQ

which implies Gx(t) € Lp in 0 ^ t ^ 2 7r, for almost every :r. So, in view of
1 < /> 2ϊ 2, by a Paley's theorem, cf. Zygmund [5, p. 203], we see that, for
almost every x,

(2. 10) Pn(x) ή np'2 ^ Ap Γ \Gx(t) - Gx(t + h)\pdt,
JQ

where Ap is a constant depending only on p. And, it is seen with no difficulty
that, f or 0 < I S TΓ,

GXt) -

where O is independent of J:, t and Λ. Hence, neglecting the constant factors,
and since a = l/p,

Γ dxΓ\ Gx{t) - Gx(t + h) I pdt
Jo Jo

JQ t -T n Jo Jo

< f* [wp(h)Jdt hP f* [wMTdt

n)

It is analogous to \ dx \ \Gx(t) - Gx(t + h)\*dt.
Jo J%

Integrating both sides of (2.10) with respect to x over (0. 2 7r), and again
neglecting the constant factor and the term O{h"), we have

(2. 11) Σ
71 = 1

By the assumption,

* [Pn(x)Ydx 7Γ

~fΓ + h
hγ •

(2.12) ir
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is a function λ defined by Definition 2. Multiplying both sides of (2. 11) by

h[log (

and then integrating them with respect to h over (0,1), we obtain

y Γ1 X(l/h)\sin(nh/2)\pdh Γ2π [ρn(x)]pdx

(2.13) n β l °
s* Γ Wp{h) 77 . Γ hp~1\(l/h)dh Γ [tfwfί^^ίiί τ
\ i dfi -f- i I = j

Jo h Jo [log (7r/hyf'p Jo t(t + h)p

Jx is clearly finite by (2. 8). And

^2 ~ / - dt[ I + I ) — ^^r; ,^-,n „ = ι/a + J'ί
J0 ^ \J0 Jt2/

As it is noticed before, λ( r) = o{xe) as α: -> oo for every £ > 0. So, taking
= 1/2, and observing that 1 < p <j 2.

< Γ JWsUλLΛ f A
h t h (t + hf

Jo ^

dh

Jo t

Further, taking into account the property of the function λ, and p > 1,

f• Γ1 [wn(t)Y

h t
• f [w,,(t)Y X(JΛΛ f

I / 1*2/ / „

dh

by (2. 12),

»2τt

which is finite by (2. 8). On the other hand, the coefficient of I [pn(x)Y nv~2 dx
Jo

in the first member of (2. 13) is, since p :< 2 and |sin (nh/2) \p > |sin (nh/2) | 2 ,
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Γ1 Ml/h)\sm(nh/2)\"dh

Γ i / ^ j _ c o s w A

n) r
[log(/I7r)]3-ί> Jlίn 2h

d t ι

> ^λ(w) [log (WTΓ)]1'-1 = , by (2. 12),

for n > w0, where ^ is a positive constant independent of n. Thus, observing
that Jι and J2 are finite we see, from (2. 13),

(2.14) ]

Letting q = p/(p — 1), we now obtain by Holder's inequality,

which is finite by (2. 8)' and (2. 14), and we get (2. 9). This completes the
proof.

3. REMARK 1. Using the notations in § 1, and applying the argument
employed in the preceding proof to the ParsevaΓs equation

!>2(ί)7 = ~~- ΓlΛ* + t) - f(x)Ύ dx = 2Σ (al + bl) (sin-f tU) ,

where / G L2, we see that one of the two expressions

JQ t \ t '

and

Σ,(a% + bΐ)\(n) log n

converges, then the other does.
Hence, if f(x) satisfies the condition
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(3. 1) w2(t) = θ(log-j-)~(β+° (a > -L, S > o),

then, taking λ(l/t) = (log (l/ί)Γ" I +% we have

CO

(3. 2)

In particular, we see that by a theorem of Wang [1], also cf. Tsuchikura [2],

the condition (3.2) and so (3. 1) implies the summability |C, a\9 a. e., of the

Fourier series of f for a > 1/2, or # = 1/2, according a s α = 1/2 or a = 1.

Thus, Corollary 1 stated in § 1 is a result from the Wang's theorem with a

= 1, when p = 2.

REMARK 2. Using the ParsevaΓs equation in place of the Paley's ine-

quality we can prove the following theorem quite analogously as Theorem 1.

THEOREM 2. Let by w(t) denote the modulus of continuity of the func-

tion f in (0, 2 7r). If for a function w*(f) > w(t),

Jo t

then the Fourier series of f is summable \ C, 1/21 everywhere, provided that

is a function λ defined by Definition 2.

COROLLARY 2. The conclusion in Theorem 2 is true, if for some S>0,

w(t) =

This corollary improves a result of Chow [4, Theorem 3].
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